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Abstract
It is widely acknowledged that the Extracellular Matrix (ECM) of connective tissues plays active roles in numerous 

biological processes such as cell differentiation, life/death promotion and carcinogenesis. Breast cancer is commonly 
associated to drastic massive alterations of ECM architecture and composition, especially for what concerns its 
collagenous component. This mini-review is not aimed to give a comprehensive overview of this complex biological 
event, but to pick up selected early and recent studies on peculiar features of this field and recapitulate specific 
aspects related to collagen changes in the affected stroma, such as the re-appearance of OF/LB collagen the 
accumulation of type V collagen and the identification of tumour-associated collagen signatures at structural and 
gene expression levels. In addition, the effects of OF/LB and type V collagens on the phenotype of cultured breast 
cancer cells, as well as recent data on the active role played on neoplastic cells by collagen fragments originating 
from prominent tissue turn-over are summarized and discussed. 

Extracellular Matrix Modifications in Breast Cancer
A great deal of experimental evidence has demonstrated that the 

Extracellular Matrix (ECM) is not to be regarded as a mere passive 
scaffold for connective tissues within organ architecture, but that cell-
ECM interactions may influence a number of biological activities such 
as cell proliferation, differentiation, biosynthetic ability, polarity and 
locomotion via a number of structurally-different receptors. The study 
of the biological complexity of the ECM and its constituents has allowed 
gathering so far an extensive number of data. Each contributing to the 
knowledge of not only the dynamic relationships between the different 
components of connective tissues which regulate cell signalling and 
gene expression in normal conditions, but also the relevant role played 
by the ECM components in the onset of a considerable number of 
diseases. 

The metastatic process of carcinomas can be schematized as a 
series of events that lead to: i) the invasive in growth of cancer cells into 
the primary site after the dissolution of the sub-epithelial basement 
membrane. ii) the “intravasation” of the more malignant cell variants 
into the local vessels after the lysis of the sub-endothelial basement 
membrane, and, iii) the “extravasation” and eventual colonization of 
anatomically-distant sites exposing molecular determinants that may 
allow tumour cell adhesion. One of the key features of the first step 
of this chain of events, i.e. the colonization of the primary site, is the 
perturbation of the delicate equilibrium of molecular mechanisms 
governing host tissue normal physiology and homeostasis. Already 
in 1982, Nicolson had postulated that the microenvironment present 
within the host tissues might exert an influence on the behaviour of 
cancer cells by modulating their phenotype. And in his review articles 
of 1984 and 1986, once verified the occurrence of morphological 
alterations of the breast stroma in the pre-neoplastic stage as well as 
during the invasive growth. van den Hooff had tentatively proposed 
that signal molecules emanating from the ECM, such as collagens 
and their peptides, could “contribute to at least one aspect of ultimate 
malignancy of neoplastic cells” [1-4]. After more than two decades, it 
is now widely recognized that cells and ECM do exchange “instructive” 
signals in both directions. In fact, if on one hand tumour- and tumour-
stimulated host cells acquire the ability to release and accumulate 
in breast ECM a number of newly synthesized macromolecular 
components and to regulate their pattern of assembly, on the other 
hand the new composition and architecture of the ECM can exert a 
prominent feedback effect on the control of the malignant phenotype 

of cells scattered in it [5]. The recent utilization of in vitro 3D 
microengineered cell-ECM systems and hybrid cell-ECM models 
[6,7] has allowed to obtain information on the drastic effects exerted 
by changes in micro-environmental composition, topography and 
stiffness on breast cancer cell attitude to proliferate and migrate into 
the tissue. Data obtained from animal and human model systems 
have evidenced changes regarding the amount and distribution of 
diverse ECM components of tumour-affected breast tissue, such as 
osteopontin/hyaluronan [8,9], tenascin-C [10], laminin-322 [11], 
thrombospondin-1 [12], and, most conspicuously, collagens as it will 
be considered in the following paragraphs. 

The Collagen Family: A Concise Overview
Collagen, a major constituent of connective tissues, is a protein 

family composed of at least 28 genetically-distinct species; their 
soluble subunits, tropocollagens, share a triple-helical conformation 
originating from the coiling of three polypeptides of about 1,000 
aminoacids, called α-chains. Each of them is characterized by a (Gly-
X-Y)n repeat, with proline and 4-hydroxyproline accounting for
a large aliquot of X and Y, although they display a certain degree of
biochemical and functional heterogeneity as well as tissue specificity.
The α-chain composition of the different collagens can give rise to
either homo- or heterotrimeric types with a molecular mass of about
300 kDa, that accumulate in the ECM, thereby interacting with other
micro-environmental components as well as cell receptors.

 In light of the variety in their supra-molecular structures, vertebrate 
collagens are catalogued in different subgroups. Type I, II, III, V, XI, 
XXIV and XXVII collagens belong to the category of the fibril-forming 
collagens, that once processed by removal of their N- and C-terminal 
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telopeptides generate cross-striated fibrils and suprafibrillar aggregates. 
Type IX, XII, XIV, XVI, XIX, XX, XXI, XXII and XXVI collagens are 
the fibril-associated collagens with interrupted triple helices (FACITs); 
they exhibit one or more interruptions, or imperfections, in their triple-
helix conformation, and have been shown to associate with (“decorate”) 
fibrillar collagen species, thereby bridging the latters with other ECM 
constituents. Type XIII, XVII, XXIII and XXV are known as the 
collagens with transmembrane domain, involved in hemidesmosome 
and focal adhesion assembly and in ECM compositional changes 
when their extracellular portion is proteolitically-released from the cell 
surface. Among the non-fibrillar collagens, hexagonal network-forming 
collagens (type X), basement membrane collagens (type IV, XV and 
XVIII, the latter two known as multiplexins), beaded filaments-forming 
collagens (type VI) and anchoring fibrils-forming collagens (type VII) 
can be additionally recognized [13].

Different receptors, members of integrin, receptor tyrosine kinase 
and immunoglobulin-like superfamilies [14], mediate cell adhesion 
to collagen domains. Among the recognition sites in α-chain primary 
structures, apart from the “classical” RGD tripeptide [15], the GPO 
and GFOGER motifs [16], the binding sites in type IV collagen [17], 
the KGD motif [18] and the NC1 domain [19] have been characterized 
most extensively. 

Ex Vivo Studies on Collagen Composition and 
Architecture in Breast Cancer ECM

It is known that the stroma of neoplastic breast undergoes 
to desmoplastic reaction commonly characterized by the over-
deposition of a dense fibrous tissue containing newly synthesized 
ECM components, and mainly collagen [20]. Desmoplasia leads to 
the formation of a solid lump, which was traditionally considered 
as an antagonistic response of the host stroma to the development 
of the primary tumour; on the other hand, such condensation of the 
ECM appeared surprisingly ineffective in restraining the metastatic 
process. Indeed, tumour cells subsist within a tissue context, which 
provides paracrine communications influencing the behaviour of the 
disseminated cell types. The more represented non-neoplastic cellular 
components of tumour stroma include fibroblasts, endothelial and 
immune cells which, collectively, produce a variety of molecules that 
accumulate in the tissue microenvironment, such as ECM proteins, 
enzymes, cytokines and growth factors. Cancer associated fibroblasts 
(CAF) exert a key effect on the growth promotion of breast tumour 
cells through a feedback process initiated by a reactive stromal response 
triggered by neoplastic cells, and followed by a modification of cancer 
cell responses induced by the modified CAFs via their secretome, 
distinct to that of normal tissue-associated fibroblasts, which includes 
stromal cell-derived factor 1 (SDF-1), hepatocyte growth factor (HGF), 
TGFα1, various metalloproteases and the syndecan SDC-1 [21-23]. 
CAFs are also involved in the onset of the angiogenic process and in 
the remodelling of the ECM, being the main cytotype responsible for 
the over-production of collagen in breast cancer stroma, although a 
contribution by tumor cell themselves has been reported [24].

Concerning the compositional aspects of the collagen content in 
the ECM, earlier studies on the Ductal Infiltrating Carcinoma (DIC) 
of the breast indicated the occurrence of an over-deposition of bundles 
of type I and III collagens localized at the invasion front of the tumour 
[25,26]. A parallel biochemical characterization of collagen extracted 
from DIC tissue showed an increment of type V collagen content 
up to 10% of total collagens, whereas it accounts for less than 1% in 
normal breast tissue [27]. In light of electron microscopic evidence of 

the perturbation of type I collagen normal fibrillogenesis in vitro in the 
presence of increasing concentrations of type V collagen [28], such 
tissue over-deposition of type V collagen might be conceivably linked 
to a derangement of the physiological organization of type I collagen 
fibrils and fibres. Due to the formation of mixed components whose 
accumulation might be instrumental for breast cancer invasion [29]. 

In addition, the appearance of a new collagen species, which was 
initially presumed to be a homotrimeric [α1(I)]3 variant of type I, 
accounting for 40-50% of total collagens, was also reported [30,31]. 
Noteworthy, when submitted to fibrillogenesis in vitro, this latter 
collagen formed striated fibrils endowed with a banding pattern 
different to that of “regular” type I collagen, thus demonstrating to be a 
stable phenotype and not a product of tumour-dependent dysregulation 
of the mechanisms of α1(I) chain assembly [32]. Such peculiar 
modifications of the stromal composition and organization were not 
observed in other non-tumoural desmoplastic reactions occurring in 
breast ECM, e.g. fibrocystic mastopathy [33], thereby representing a 
feature typically linked to the progression of DIC development. To 
get more into molecular details, the preparations of homotrimeric 
collagen were submitted to bidimensional electrophoretic separation 
of its α chain. The data obtained indicated the presence of three distinct 
polypeptides of about 100 kDa, i.e. a unique acidic component with 
an apparent isoelectric point of 4-5, thereby structurally distinct from 
the regular α1(I) collagen chain, and two other components migrating 
as α1 (II)and α1(III) collagen chains. Confirmation of the structural 
diversity of the acidic chain from regular α1 (II) and α1(III) chains 
was obtained by trypsin digestion and sequencing of some resulting 
peptides [34]. Another peculiar property shown by this collagen type, 
not shared by regular type I and III collagens, was its strong ability to 
bind laminin in affinity chromatography experiments; the interaction 
with laminin required the presence of all three α chain components in 
native conformation. Noteworthy, collagen of this type was found also 
in colon carcinoma tissues, as well as in bovine embryonic tissues and 
human umbilical cord. For all these reasons, the homotrimeric collagen 
species was termed onco-foetal/laminin-binding (OF/LB) [35]. 

More recent analyses on the collagenous components of breast 
cancer biopsy fragments have been focussed on an advanced 
microscopic approach of morphological modifications in collagen 
deposition and arrangement aimed to the identification of the so-
called Tumour-Associated Collagen Signatures (TACS), and on the 
evaluation of changes in collagen gene expression. 

Multiphoton laser scanning and second harmonic generation 
microscopy have been used to image collagen organization at high 
resolution in unfixed, intact, and non-stained breast tumour explants 
and microarrays [36]. Three different TACS, related to the progression 
of breast carcinogenesis in mouse models, were described, i.e. TACS-
1, which is a limited collagen density localized around small tumour 
foci. TACS-2 characterized by stretched collagen fibres tangentially-
oriented along a smooth tumour boundary, and TACS-3 characterized 
by collagen fibres aligned perpendicularly to an irregular tumour 
boundary and oriented in the direction of cell invasion [37]. The analysis 
of a 196 sample-tissue microarray [38] clearly indicated that in human 
samples TACS-3 may represent a robust and reliable marker associated 
with disease outcome, especially in those cases such as triple negative-
breast cancer where other biomarkers are lacking, thereby allowing to 
predict breast cancer recurrence and survival in patients. An additional 
promising aspect of this type of analysis is that it can be performed 
also on histological slides and therefore potentially incorporated in 
the clinical practice. In parallel studies, second harmonic generation 
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microscopy was also used to monitor collagen fibre density in normoxic 
and hypoxic areas of breast tumours [39], suggesting a restructuring of 
collagenous architecture in the hypoxic microenvironment that might 
influence cancer cell invasive growth. More recently, this imaging 
technique was employed in a quantitative way, thus investigating 
collagen structural changes at the molecular scale, evaluating the 
percentage of abnormal collagen fibrils and developing a numerical 
parameter, i.e. anisotropic/isotropic (A.I.) region ratio, which estimates 
the number of areas with aligned or randomly-oriented collagen fibres 
and allows to differentiate malignant from other breast pathologies 
[40]. Also, the quantitative evaluation of forward-to-backward second 
harmonic generation signals have proven useful to differentiate 
invasive breast cancer and to monitor the progress of collagen changes 
during breast carcinogenesis [41]. It is worth mentioning that also 
another technique suited for analysis of large-scale organization of 
macromolecules, such as small angle x-ray scattering, was successfully 
employed to the identification of the structural aspects of collagen in 
breast cancer tissues, allowing discriminating regions of cancer cell 
invasion and predicting the direction of cancer spreading [42].

Another line of research was addressed to identify collagen gene 
expression signatures that can represent reliable metastasis-associated 
biomarkers. The best candidate, which has been the object of a number 
of recent studies, is COL11A1 encoding for the α1 chain of collagen 
XI. Ellsworth et al. [43] have produced evidence that COL11A1 is 
upregulated in primary breast cancer compared to the metastatic lymph 
node, thereby suggesting that this collagen type may contribute to 
organize permissive ECM enabling metastasizing cells to disseminate. 
Subsequent studies [44] demonstrated that COL11A1 is synthesized by 
cancer cell themselves other than tissue fibroblasts, and, interestingly, 
that its over-expression is paralleled by the up-regulation of COL5A2, 
encoding for α2 chain of collagen type V whose abnormal deposition in 
the ECM of DIC was already reported in earlier publications [27,45], 
as discussed previously. In addition, up-regulation of COL11A1 and 
COL5A2 has been reported also in colorectal carcinoma tissue [46]. 
Since both collagens are not expressed in adult human colon but 
only in foetal gut and intestine, a possible explanation of this finding, 
which might be extended also to breast cancer for COL11A1, is the 
carcinogenesis-associated reappearance of an embryologic expression 
pattern in the affected tissues, as already postulated in the case of OF/
LB collagen. Very recent studies suggest that COL10A1 encoding 
for the α1 chain of collagen type X might be another gene expression 
signature for diverse tumoural histotypes, including those of the breast. 
In particular, immunostaining of the protein product appeared to be 
selectively positive for breast tumour-associated vasculature compared 
to normal breast tissue, thereby representing a potential novel 
biomarker for the diagnosis of breast cancer [47].

In Vitro Studies on the Interactions between Collagens 
and Breast Cancer Cells

Since the beginning of the 80s, researchers utilized collagen as a 
culture substrate for breast cancer cells to evaluate which could be the 
“instructive” effect imparted by the film/matrix to the attached cells, 
being the paper by Leung and Shiu [48] one of the earliest available 
in PubMed on this field. More recently, collagen-derived peptides 
representative of the accumulating products of ECM lytic enzyme 
activity have been also used as supplements to the culture media to 
monitor their effects on tumour cells.  

Concerning the collagen types whose deposition was previously 
described as abnormal in DIC, i.e. OF/LB and type V, their effects on 

the phenotype of neoplastic cells of the 8701-BC line, derived from a 
primary DIC, was the object of a line of investigation. Tumour cells 
recognized OF/LB collagen as an optimal substrate for adhesion 
[49] and their attachment determined an increase of proliferation 
rate compared to uncoated plastic substrate with consequent 
diminution of the population doubling time from about 47 to 43 
hours. An enhanced motile attitude also substantiated by the related 
reorganization of cytoskeletal actin, which were not observable in cells 
plated onto regular type I collagen substrate, and an increase in the 
secretion of metalloprotease-1, -2, -9, and -10 [50-52]. Noteworthy, 
OF/LB collagen substrates were found to induce a faster attachment 
also of BCS-TC2 colon adenocarcinoma cells, if compared to type I 
and IV collagen (Luparello and Lizarbe, unpublished results). When 
modifications of gene expression levels in 8701-BC cells cultured 
onto OF/LB collagen substrates were analyzed through differential 
display-PCR. Up regulations of MLL septin-like fusion protein B, 
encoding for a protein involved in cytokinesis and cell division [53], 
protein phosphatase 2A regulatory subunit α-isotype, whose protein 
product exerts a prominent role in the regulation of cell cycle and 
mitosis [54], and hRPB17, encoding for one of the subunits of RNA 
polymerase, were identified [55,56]. Moreover, among different ECM 
substrates, OF/LB collagen was found to be the most powerful inducer 
of the release of parathyroid hormone-related peptide (PTHrP), a key 
element potentially instrumental in promoting carcinogenesis [57-
59]. Interestingly, either OF/LB or type I collagen were used to fill the 
wound beds of dermal excisions performed on the back of guinea pigs 
which were sacrificed after five days. From the histological examination 
of the OF/LB collagen-containing area, strips of epithelial cells were 
found to migrate and invade locally the underlying ECM, whilst in the 
presence of type I collagen the boundary between the epithelium and 
the granulation tissue remained clearly visible [60]. OF/LB collagen 
was also found to induce subcutaneous tumours in mice when co-
injected with BCS-TC2 colon adenocarcinoma cells (Luparello and 
Lizarbe, unpublished data). These collective data suggest that in DIC, 
stromal accumulation of OF/LB collagen, which seems to be ascribed at 
least in part to tumour cell themselves [61], could be one of the reasons 
why the dense desmoplastic ECM present in most invasive breast 
carcinomas [20] appears ultimately unable to impede breast cancer 
progression. Bundles of this collagen type, in fact, could assemble 
selected preferential stromal pathways acting as “contact guidance” 
for a fast dissemination, instead than a drastic obstruction, of attached 
tumour cells.

Conversely, type V collagen substrate was a much less efficient 
substrate for adhesion of 8701-BC breast cancer cells, which appeared 
to occur through the non-integrinic 67 kDa-laminin receptor [62]. The 
cell subset(s) allowed to adhere onto this collagen substrate showed 
a decrease of the proliferation rate with a consequent enhancement 
of population doubling time, from about 47 to 61 hours. Neither 
locomotion-oriented organization of the cytoskeleton, nor cell motility 
recorded by time lapse-cinematography, could be observed for cells 
attached onto type V collagen [51,63,64]. The restraining influence on 
the proliferative behaviour of DIC cell was maintained also in hybrid 
type V/type I collagen substrates, being directly related to the amount 
of type V collagen present [28]. When modifications of gene expression 
levels in 8701-BC cells cultured onto type V collagen substrates were 
analyzed through differential display-PCR, up-regulation of m-calpain, 
large subunit [65], a neutral Ca++-dependent non-lysosomal enzyme 
belonging to the cysteine protease family and involved in apoptosis, 
and down-regulation of the putative transcriptional activator 
KIAA0309/SRCAP [55], and of protein kinase C-isoform δ, whose 
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changes in the expression level are known to be implicated in the onset 
of post-lactation mammary gland involution in rats [66], were found. 
Moreover, both 8701-BC and T47-D breast cancer cell lines were 
proven to be addressed to a death pathway by signals transduced after 
cell adhesion to type V collagen substrate. In particular, both exhibited 
an increase of ethidium bromide-positive nuclei (hallmark of plasma 
membrane damage), as well as a large percentage of fragmented DNA 
with an electrophoretic ladder-like pattern (hallmark of apoptotic 
promotion), and the up-regulation of some apoptosis-related genes 
[65-68]. Therefore, albeit caution must be exercised in extrapolation 
of in vitro results to the in vivo situation, type V collagen seems to 
be endowed with “tumour-restraining” properties. It might build 
a natural barrier which inhibits the proliferative/invasive activity 
of breast cancer cells, subsequently addressing these cells to a death 
program. Thus, the over-production of this collagen species, which is 
to be ascribed solely to cells of the mesenchymal compartment, could 
represent an aspect of the genuine defense reaction of the host tissue to 
the incoming expansion of the primary tumour.

Recent data have shed some light on different features of the 
functional interactions between breast cancer cells and collagens, 
focussing on the role that processing products may play in cell 
proliferation and invasion, as in the case of type I and VI collagens. Due 
to the accumulation of proteases around tumour cells in the local breast 
microenvironment during carcinogenesis, it is indeed conceivable that 
stable fragments of collagen chains become highly enriched in the 
stroma compared to full-length molecules. 

It is widely acknowledged that type I collagen does not represent a 
permissive substrate for breast cancer cell proliferation and motility. In 
fact, apart from a great deal of publications of the past decades on this 
topic [50,51,60]  also more recent reports confirm that breast cancer cells 
grown into three-dimensional type I collagen gels decrease drastically 
their proliferation index and that such suppression of proliferation may 
be ascribed at least in part to down-regulation of cyclin E1, consistent 
with the inhibition of G1/S phase transition [69,70]. On the other hand, 
the COOH-terminal trimer of procollagen type I, termed C3, is highly 
enriched in breast cancer specimens, as well as in bone metastases, due 
to ECM degradation and remodelling. Noteworthy, this fragment was 
found responsible of exerting a mitogenic and motogenic effect on both 
endothelial and MDA-MB231 triple negative breast cancer cells [71]. In 
addition, C3 triggered the up-modulation of the secretion of vascular 
endothelial growth factors A and B and exposition of CXCR4 receptor 
by tumour cells, thereby playing a role in promoting angiogenesis and 
sustaining cell growth and invasion, as also shown in xenograft models 
implanted in nude mice [72,73].

Adipocytes are one of the most represented cytotypes in breast 
tissues and they secrete considerable amount of type VI collagen. 
Studies performed in rodents and confirmed in human MCF-7 cell line 
have demonstrated that type VI collagen, whose synthesis by fat cells is 
up-regulated during mammary tumour progression, stimulates cancer 
cell proliferation via NG2/chondroitin sulphate proteoglycan receptor, 
and probably α2β1integrin, transducing a signal that stabilizes β-catenin 
and up-regulates cyclin D1. Interestingly, the domain that appears to 
be responsible of such effect is the COOH-terminus of α3(VI) chain, 
and its isolated cleavage product, also called endotrophin, has been 
found to co-stimulate TGFα-mediated epithelial-mesenchymal 
transition of neoplastic cells thereby potentiating cell invasive attitude, 
and also tissue fibrosis and inflammation via fibroblast activation and 
chemoattraction of immune cells, respectively [74,75]. 

Collagen Changes and Breast Cancer Progression: 
Conclusions and Perspectives

Considerable progress has been made in the identification of 
molecular and structural changes of the ECM of neoplastic breast, 
and in the understanding of the biological consequences of such 
modifications on the phenotypic expressions of tumour and resident 
cells [76]. It is now well recognized that mammographic density, which 
largely reflects variations for collagen, is strongly associated with an 
increased risk of breast cancer [77]. Tumor–stroma ratio has shown 
to be a prognostic parameter in breast cancer patients, especially those 
affected by the triple-negative histotype that lacks definite prognostic 
biomarkers, independently of other clinico-pathological parameters 
and systemic therapy [78]. Fibrosis grade was also associated with 
distant-organ metastasis appearing as more reliable predictive factors 
for bone metastasis than nodal status [79]. 

The host environment can indeed play a key prominent role in 
facilitating the processes of proliferation and motility, which are per 
se inherent features of cancer cells, thereby profoundly controlling 
cell invasion and metastatization. The mechanical modification of 
cell shape and related changes in cytoskeletal architecture imparted 
in vivo by ECM substrates on cancer cells can play a key role in the 
switching between phenotypes critical for the carcinogenetic process, 
such as those related to viability/proliferation, directional motility and 
differentiation level. In fact, an increase in collagen density massively 
influences matrix stiffness, which affects the number and nature of 
binding sites available for neoplastic cell attachment and migration. 
This, in turn, stimulates metastatic cells to increase contractile force 
generation and cell spreading, thereby allowing them not only to 
reorganize their cytoskeletal structure and infiltrate into the dense 
stroma but also regulate gene expression and differentiation. It is 
recognized that neoplastic cells undergo to Rho-mediated contraction of 
the actin-myosin cytoskeleton leading to activation of the downstream 
signalling pathways including FAK, ERK, and PI3K that promote cell 
proliferation. On the other hand, the hypoxic microenvironment of 
large fibrotic foci triggers angiogenesis and lymphangiogenesis via 
up-regulation of VEGFA and CA9, and potential activation of Ras and 
Akt signaling [80-83]. Noteworthy, collagen-derived soluble peptides 
originating from enhanced enzymatic turn-over can also generate signal 
cascades which drastically reprogram the transcriptional regulation of 
breast cancer cells via non-attachment-related processes [84].

A great deal of accumulating evidence have unveiled so far only 
a part of the network of biological interactions occurring between 
the multitude of stromal components and the cells scattered in 
the connective tissues. Starting from this point, the ECM is to be 
perspectively considered as a reservoir full of “natural” components, 
including collagens, whose potential ability to act as anti-neoplastic 
agents is still far to be widely exploited, due to the complexity of ECM-
cell interrelationships. Thus, a more complete understanding of the 
biological properties of connective tissue components can surely allow 
cancer biologists to select a new array of molecules that may find several 
clinically oriented applications, such as coating agents for cell-directed 
nanoparticles, constituents of chimaeric antibodies directed against 
tumour cell-specific surface determinants, and components for semi-
synthetic bio-engineered ECM scaffolds and/or injectable biomaterials. 
Targeting tumour cell membranes with micro-environmental 
materials having adequate chemical and physical properties to reverse 
or attenuate neoplastic aggressiveness may represent a potentially 
promising approach to develop novel and less harmful anti-cancer 
treatments. 
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