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Abstract
Bioactive arachidonic acid (AA) metabolites produced by lipoxygenases (LOXs), and to a certain extent the 

LOX enzymes themselves, has been implicated in cancer development and progression. LOX enzymes and their 
AA metabolites have been shown to both promote and suppress cancer. In vitro and in vivo studies have shown 
that 5-LOX and p12-LOX promote tumor formation and progression, while 15-LOX-2 suppresses tumor progression. 
15-LOX-1’s role in cancer appears to be tissue dependent; inhibition of 15-LOX-1 suppresses tumors in some tissues
while promoting tumors in other tissues. Further research on the roles of lipoxygenases in cancer is needed to
develop new approaches to cancer prevention and treatment.

Introduction
After more than thirty years of research, there is a little doubt that 

a functional relationship exists between polyunsaturated fatty acids 
(PUFA), inflammation and cancer. When healthy, the arachidonic 
acids (AA) found in meat, egg, and dairy products are an essential 
part of our diet. These fatty acids are the precursors to important 
autocrine and paracrine hormones; sufficient quantities are needed to 
maintain normal physiological functions, including tissue regeneration 
and immune response [1]. However, excessive consumption of 
these fatty acids lead to accumulations of pro-inflammatory and 
proliferation-inducing lipid molecules in already chronically inflamed 
and premalignant tissues – further contributing to the conditions 
that promote abnormal growth and malignant transformation. 
Many studies have already connected dietary fat, more specifically 
ω-6 fats, to cancer incidence [2,3]. The expression of lipoxygenases 
(LOXs), one of the major AA metabolizing enzymes, is thought to 
be regulated by established oncogenes and tumor suppressors, and 
several lipoxygenase products have been shown to contribute to cancer 
incidence, progression, and invasion. Lipoxygenases are involved in 
carcinogenesis and are promising targets for cancer treatment. 

Lipoxygenases form a complex family of non-heme iron containing 
enzymes that dioxygenate (1Z,4Z) -pentadiene groups [4], found 
in several PUFAs, into (1Z,3E) -1-R,5-R’,5-peroxypentadienes via 
carbon radical intermediates. So far, at least eight distinctive human 
LOX isozymes, classified according to the regio-specificity of their AA 
dioxygenation, have been identified [5]. These enzymes synthesize 
more than a dozen biologically active metabolites, many of which from 
AA, that exert just as many, and often opposing, biological effects. 

5-LOX
5-LOX stereo-specifically inserts O2 into AA at C-5. The only

known human 5-LOX isozyme, which is constitutively expressed 
in myeloid derived cells, B lymphocytes, and endothelial cells of the 
pulmonary artery, catalyzes the rate-limiting step of leukotriene 
(LT) and lipoxin (LX) synthesis [4]. After binding to 5-lipoxygenase 
activating proteins (FLAPs), 5-LOX primarily oxygenates AAs into 
5S-hydroperoxyeicosatretraenoic acid (HpETE). After synthesis, 
5S-HpETE spontaneously reduces to 5S-hydroxyeicosatetraenoic acid 
(HETE) and is further converted, by 5-LOX, into LTA4, the precursor 
of pro-inflammatory LTB4 and cysteinyl leukotrienes LTC4, LTD4, and 
LTE4. Furthermore, 5-LOX converts eicosapentaenoic acid (EPA), an 
ω-3 acid, into anti-inflammatory series-5 leukotrienes. 

In tissues that express 5-hydroxyeicosanoid dehydrogenase 
(HEDH), 5S-HETE is oxidized into 5-oxo-eicosatetraenoic acid 
(5-oxo-ETE). The pathophysiology of 5-oxo-ETE is not completely 
understood; however, evidence suggests that it acts as a chemo 
taxis agent and potently attract eosinophils and to a lesser extent, 
neutrophils. In vivo studies have shown that 5-oxo-ETEs also promote 
tumor survival; block 5-LOX inhibitor induced tumor apoptosis, and 
might be involved in asthma, allergies, and cardiovascular disease [6]. 

5-LOX also oxygenates 15S-HpETEs, formed by 12- and 15-LOXs,
into (5S,6S) -epoxy-15S-HpETEs, which are in turn hydrolyzed into 
anti-inflammatory LXA4, LXB4, and cysteinyl lipoxins LXC4, LXD4, and 
LXE4 during the resolution phases of inflammation. In the presence of 
aspirin, another AA metabolizing enzyme, cyclooxygenase-2 (COX-2), 
undergoes a biologically peculiar phenomena and initiates 15R-HpETE 
synthesis. Like 15S-HpETE, 5-LOX oxygenates 15R-HpETE into 
(5S,6S) -epoxy-15R-HpETE, the precursor to corresponding anti-
inflammatory epi-lipoxins [7]. 

Because of the roles that 5-LOX metabolites play in inflammation 
and immune responses, several 5-LOX and leukotriene inhibitors are 
used clinically for the management of chronic asthma. The 5-LOX 
inhibitor, zileuton (ZYFLO CR), has been shown to also suppress 
cancer in the laboratory. 

12-LOX
So far, there are four known human 12-LOX isozymes: platelet

type 12-LOX (p12-LOX), leukocyte type 12/15-LOX (l12-LOX), 
epidermal type 12-LOX (e12-LOX), and 12R-LOX. p12-LOX is the first 
discovered mammalian lipoxygenase and oxygenates AAs exclusively 
into 12S-HpETEs. l12-LOX and e12-LOX are less regio- and substrate 
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specific, both enzymes oxygenate AAs into 12S- and 15S-HpETEs, 
and linoleic acids (LAs) into13S-HODEs. 12R-LOX is the only LOX 
isozyme that generates products with R chirality and metabolizes AAs, 
predictably, into 12R-HpETEs [8]. 

Another LOX isozyme that exhibits hydroperoxide isomerase 
activity was discovered very recently. Epidermal lipoxygeanse-3 
(eLOX-3) is not a 12-LOX, but is involved in the 12R-LOX pathway 
and known to play a role in the terminal differentiation of keratinocytes 
and adipocytes [5,9]. 

After synthesis, 12S-HpETE is either reduced to 12S-HETE or 
converted into hepoxilins (HX), which are speculated to mediate a wide 
array of physiological processes, including insulin secretion, neutrophil 
migration, pro-inflammatory responses in epidermal and mucosal 
tissues, and interestingly, anti-inflammatory responses in neutrophils 
[7]. Less is known about 12R-HETE, but evidence hints that it has pro-
inflammatory effects and may play a role in the regulation of ocular 
transparency and tissue osmolarity [10]. If not reduced, 12R-HpETE 
enters the 12R-LOX/eLOX3 pathway. 

Hydroperoxide isomerase cycling of 12R-HpETE is the preferred 
action of eLOX3, but purified eLOX3 has been observed to oxygenate 
AAs into a racemic mixture of 5-, 7-, and 9-HpETEs. Aside from 
5S-HpETE, the biological effects of these AA metabolites have never 
been observed in humans and these reactions are not speculated to 
occur in nature [11]. 

15-LOX
Two 15-LOX isozymes have been identified in humans. 15-LOX-1 

is the ortholog of murine Leu-12-LOX and is expressed in reticulocytes, 
eosinophils, macrophages, and airway epithelia in humans. 15-LOX-
1 shares high homology with l12-LOX and also demonstrates little 
substrate specificity. 15-LOX-1 preferentially oxygenates LAs to 
13S-HpODEs, but also oxygenates AAs into12S- and 15S-HpETEs 
[4,12,13]. 

15-LOX-2 is the ortholog of murine 8-LOX and is constitutively 
expressed in most healthy tissues, but most notably in the prostate, 
lung, and cornea. Unlike 15-LOX-1, 15-LOX-2 is substrate specific; 15-
LOX-2 metabolizes LA poorly and AAs exclusively into 15S-HpETEs 
[14]. 

After synthesis, 15S-HpETEs are either converted to pro-
inflammatory eoxins, anti-inflammatory lipoxins, or more often, 
reduced to 15S-HETEs that counteract the pro-inflammatory actions of 
LTs and prostaglandins, inhibit superoxide production, and neutrophil 
migration across cytokine-activated endothelium. The 13S-HpODE 
produced by 15-LOX-1 is reduced to anti-inflammatory 13S-HODE 
[7,15]. 

In addition, 15-LOX has also been reported metabolize ω-3 
docosahexanenoic acids (DHA) into 17S-DHAs, the precursors to 
potent anti-inflammatory resolvins and protectins [15]. 

Lipoxygenase Involvement in Carcinogenesis
Speculation of LOX’s involvement in cancer dates back to the 

1970s. A study in 1977 probed for, and found, a previously unknown 
AA metabolite formed through the LOX pathway in rat basophilic 
leukemia cells [16]. During the 1980s, LOX inhibitors were shown to 

decrease the incidence of skin cancers in mouse models [17] and LOX 
metabolites were shown to potently attract circulating tumor cells [18] 
(Figure 1). 

Our knowledge of LOX’s role in cancer, however, remains 
incomplete. Evidence shows that this pathway’s involvement is 
extraordinarily complex; not only because the LOX family of enzymes 
itself is complex, but also because the profile of LOX expression vary 
greatly from cancer to cancer, sometimes with conflicting effects. 
Nevertheless, 15-LOX-1 and 15-LOX-2, along with their murine 
orthologs, are preferentially expressed in healthy tissues and benign 
lesions and often absent from carcinomas; while 5-LOX and p12-LOX 
are absent in normal epithelia, unless induced by pro-inflammatory 
stimuli, and are constitutively expressed in carcinomas [5]. 

5-LOX and Cancer
A survey of malignant prostate tissues from 22 different patients 

showed that 5-LOX mRNA expression is, on average, 6 folds higher 
in malignant tissues than benign tissues from the same patient, and 
expression of 5-LOX protein and its primary metabolic product, 
5-HETE, are more than 2 folds higher in malignant tissues than in 
benign tissues [19]. Other studies have confirmed up-regulated 5-LOX 
and FLAP expression in colon, lung, breast, pancreas, bone, and 
mesothelium cancers [4]. 

In vitro studies confirm that targeted inhibition of 5-LOX activity 
reduces malignant growth. Treatment with Rev-5901, a potent LTD4 
receptor antagonist and a less-potent 5-LOX inhibitor, down-regulates 
the expression of anti-apoptotic protein Bcl-2 and induces increased 
expression of the pro-apoptotic protein Bax in MiaPaCa-2 and AsPC-1 
pancreatic cancer cells. Further, Rev-5901 treatment alone permeates 
the mitochondrial membrane and induces procasphase-3 cleavage into 
caspase-3, a protease involved in the execution phase of apoptosis, in 
both cell lines [20]. 

Animal models show that less than one half as many EGDA rats fed 
1,000 ppm zileuton develops esophageal tumors as control EGDA rats 
over 40 weeks [21] and only 3/5th as many hamsters treated with topical 
6% zileuton develops oral carcinoma as untreated hamsters in DMBA 
tumor initiation models [22]. Inhibition of FLAP with 25 mg/kg MK-
886 was also shown to both decreased the number of and reduce the 
average weight of lung tumors induced by NKK, a carcinogen found in 
cigarette smoke, by roughly 50% in 7 week old A/J mice [23]. 

The specific mechanism behind 5-LOX induced tumor survival 
is still not fully understood. Studies have generated evidence, using 
pharmacological interventions, suggesting that 5-HETE and LTB4 
simultaneously stimulate proliferation through activation of the 
MEK/ERK1/2 and the PI-3K/Akt kinase pathways. At the same 
time, up-regulations of 5-oxoETE, which is known to counteract 
the chemopreventative effects of 5-LOX inhibitors, have also been 
observed in many prostate cancers; up-regulations of CysLT1, a 
G-protein coupled receptor responsive to LTC4, LTD4, and LTE4, 
have been observed in colorectal cancers; and genotoxic stress has 
been shown to selectively antagonize p53 induced apoptosis through 
increased 5-LOX expression. It’s not clear if these mechanisms are 
somehow interconnected or which one is predominately responsible 
for the observable effects but the chemopreventitive phenomena of 
5-LOX inactivation has been reproduced in prostate, renal, esophageal, 
gastric, pancreatic, and breast carcinomas [4-6]. 
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Figure 1: The lipoxygenase metabolic pathway. In humans, arachidonic acid is metabolized through three primary pathways: the epoxygenase pathway, cyclooxygenase 
pathway, and lipoxygenase pathway. Arachidonic acids that are metabolixed by lipoxygenases ultimately become leukotrienes, lipoxins, hepoxilins, and eoxins.

One interesting note is that this chemopreventitive property of 
5-LOX inhibitors is compounded in the presence of COX inhibitors. 
When taken together, 5-LOX and COX inhibitors offered 2-4 times 
more protection against tumor incidence and growth than if taken 
alone at twice the dosage [21-23]. 

More recently, studies are beginning to show that 5-LOX also play 
a role in angiogenesis and metastasis. Changes in 5-LOX expression 
after exposure to inflammatory carcinogens or inhibitory antisense 
RNAs have been reported to coincide with corresponding rises 
and falls in MMP2 and VEGF levels [24-26] for some time now. No 
definitive evidence directly connects 5-LOX to VEGF yet; but one 
group, studying the destabilization of atherosclerotic plaque, directly 

implicated 5-LOX, and more importantly its metabolite LTB4 in 
MMP2 production. Exposure to 4-hydroxynonenal (4-HNE), a major 
product of lipid peroxidation that is speculated to play roles in cell 
signal transduction, induces elevated MMP2 levels in 5-LOX positive 
vascular smooth muscle cells. Through pharmacological inhibition of 
LT receptors, this group further showed that BLT receptor antagonists, 
but not cysLT receptor antagonists, counteract this effect; indicating 
that 5-LOX mediates MMP2 production through the LTB4-BLT 
receptor pathway [27]. 

12-LOX and Cancer
p12-LOX expression may not become dysregulated in all cancers. 
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A survey of prostate cancer specimens only detected p12-LOX mRNA 
in 38% of samples [28] and a survey of melanoma specimen showed 
that baseline p12-LOX expression in healthy epidermis varies greatly 
among patients and its expression is not necessarily uniform within 
individual malignant lesions [29]. Nevertheless, p12-LOX has been 
shown to exert similar tumor promoting properties as 5-LOX, and its 
expression is strongly correlated with tumor grade and associated with 
increased angiogenic and invasive potential. 

Matched normal and cancerous epidermis tissue collected from 
8 patients with melanoma showed a consistent correlation between 
p12-LOX expression and malignant transformation. Computed 
image analysis of IHC detection of p12-LOX revealed that p12-LOX 
protein levels are two-folds higher in melanoma tissues than in normal 
epidermis [29]. In vitro experiment showed that JB6 P+ murine 
epidermal cells that over express p12-LOX are significantly more 
sensitive to TPA induced neoplastic transformations than JB6 P- cells 
that do not over express p12-LOX. Inhibition of p12-LOX using either 
baicalein a selective but not especially potent p12-LOX inhibitor, or 
siRNA blocked this neoplastic transformation in JB6 P+ cells. Further, 
treatment of these cells with 12S-HETE enhances TPA actions and 
counteracts baicalein and siRNA effects [30]. 

Along a similar line, p12-LOX was demonstrated to promote 
tumor cell survival in two gastric cancer cell lines, AGS and MKN-
28. Treatment with baicalein significantly inhibits the growth of both 
cell lines in vitro, and 12S-HETE, again, counteracts baicalein actions. 
This study further showed that both baicalein treatment and p12-LOX 
antisense RNA induces p53 independent, caspase mediated apoptosis 
in these cells [31]. 

In prostate cancers p12-LOX has also been shown to modulate tumor 
growth through increased vascularity. Like PGE2, 12S-HETE induces 
the expression of VEGF and basic fibroblast growth factor (bFGF), 
another protein that modulates angiogenesis, and directly stimulates 
EC proliferation, migration, and tube formation. PC3 prostate 
carcinoma cells transfected with p12-LOX expression constructs only 
showed growth advantage in vivo. Both transfected and control cells 
doubled approximately every 36 hours in vitro, but compared to the 
control, subcutaneously implanted transfected cells showed significant 
growth acceleration after 15 days and a 7 fold increase in tumor volume 
after 40 days. The tumors formed by the transfected cells also showed 
significantly increased vascular density [32]. 

Further experiments confirmed that the growth advantage 
is secondary to increased angiogenic potential. Migration assays 
shows that 12S-HETE alone is capable of inducing EC migration at 
nanomolar concentrations, and treatment with N-benzyl-N-hydroxy-
5-phenyl-pentanamid (BHPP), a compound that selectively inhibits 
12S-HETE synthesis, significantly desensitizes ECs to bFGF and VEGF 
induced proliferation, blocks VEGF induced migrations, and inhibits 
EC tube-like structure formation in Matrigels. Conversely, p12-LOX 
overexpression in ECs induces migration and tube-like structure 
formation in Matrigels and p12-LOX over expression in PC3 cells 
produces dramatic, though never quantified, increases in vascular 
density and penetration in in vivo Matrigel plug assays [32,33]. 

p12-LOX expression is also positively correlated with metastatic 
potential in prostate cancer and melanoma cells; and its product, 
12S-HETE, has been shown to regulate multiple steps of the metastatic 

process [4,5,34]. Two groups independently confirmed that p12-LOX 
expression in MCF-7 spheroids mediates tumor cell intravasation into 
lymphatic vessels. Both studies observed that MCF-7 spheroids that 
express p12-LOX induces the formation of circular chemorepellent-
induced defects (CCID) in human lymphatic endothelial cells (LEC) 
monolayers, creating openings for tumor cells to metastasize into the 
lymphatic system. Further, the formation of CCIDs is accompanied by 
upregulations of mesenchymal markers and down regulation of VE-
cadherin, a vascular endothelial adhesion protein. Baicalein treatment 
was found to counteract CCID formation and shRNA mediated 
knockdown of 15-LOX-1, MCF7 cells do not express p12-LOX and 
12S-HpETE synthesis is instead catalyzed by 15-LOX-1, considerably 
reduced the size of the CCID openings. Knocking in of 12-LOX 
reestablished these cells’ ability to form CCIDs [35,36]. 

12S-HETE may also, to some extent, regulate tumor cell adhesion. 
Several studies have suggested that 12S-HETE, but not 12R-HETE 
or 5S-HETE, exposure triggers immediate secretion of cathepsin B, 
a lysosomal cysteine enzyme involved in extracellular proteolysis, 
through the Protein Kinase C (PKC) pathway in highly malignant cells 
[37-39]. 12S-HETE has also been reported to increase Alpha-V/Beta-3 
Integrin expression in endothelial cells, presumably increasing tumor 
cell adhesion to vascular endothelia [40]. 

p12-LOX’s role in cancer is backed by more than 20 years of 
research; however, a handful of relatively recent studies have indicated 
that its effects are likely to be tissue dependent [4]. Studies have 
reported that inhibition of p12-LOX actually promotes survival in 
cortical neurons, and increased 12S-HETE concentration induces 
apoptosis in cortical neurons, fibroblasts, and neuroblastoma through 
distinct mechanisms [41-43]. 

15-LOX-1 and Cancer
15-LOX-1 has the most diverse set of substrates and products of the 

lipoxygenase enzymes; and as a consequence, appears to play conflicting 
roles in tumor initiation and progression. In vivo lymph metastasis 
model have confirmed that 15-LOX-1 knocked down MCF7 (MCF7/
ALOX15kd) cells have greatly reduced metastatic potential. While 60% 
of control MCF7 xenographs produced lymph node metastases in 
mice after 32 days, no MCF7/ALOX15kd tumor xenograph produced 
metastasis; and while all control xenographs produced metastasis 
after 63 days and only 5% of MCF7/ALOX15kd xenographs produced 
metastasis [35]. 

In addition to the role that 15-LOX-1 plays in MCF-7 cells, 15-LOX-
1 expression is strongly associated with Gleason scores, a malignancy/
prognosis indicator for prostate cancers, and its regulation is possibly 
lost due to mutations in p53 genes, a cell cycle regulator and tumor 
suppressor. IHC staining of prostate cancer specimens show that 15-
LOX-1 and mutant p53 (mtp53) protein expressions are densest at the 
cancer foci [44]. 

In vitro experiments show that forced overexpression of 15-
LOX-1 in PC-3 cells leads to significantly increased proliferation 
and diminished growth-stimulating effects of 13S-HODE that can 
be observed in parental cells. 15-LOX-1 over expressing cells also 
exhibited anchorage independent growth, not observed in parental or 
control cells, increased VEGF secretion, and generated more and larger 
tumors than the control in mice models [45]. 

Likewise, a survey of tissues extracted from LPB-Tag mice, 
transgenic mice that develop extensive high grade prostatic 
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intraepithelial neoplasia (HGPIN) and invasive and metastatic 
carcinoma, indicated that 12S-HETE expression is four folds higher in 
HGPIN than in healthy tissue, but interestingly secondary to Leu-12-
LOX overexpression, not p12-LOX overexpression. This same study 
also confirmed that Leu-12-LOX is upregulated in invasive carcinomas, 
with detectable expression in about one half of metastatic nodes [46]. A 
later published, but less detailed study of Transgenic Adenocarcinoma 
of Mouse Prostate (TRAMP) mice also reported that prostate cancer 
progresses with corresponding increases in Leu-12-LOX activity, based 
on increased rates of 13S-HODE, 12S-HETE, and 15S-HETE synthesis 
[47]. 

In contrast, 15-LOX-1 expression is lost in colon, lung, and 
pancreatic cancers. Clinical specimens indicate that 15-LOX-1 
expression is down regulated in 87% of colorectal adenocarcinomas. 
Loss of 15-LOX-1 functions also coincides with loss of apoptotic 
functions and terminal differentiation in colon cancer cells. Conversely, 
reestablishment of 15-LOX-1 expression alone is enough to restore 
apoptotic functions in Caco-2 colorectal carcinoma cells, and NSAID 
induced apoptosis are commonly associated with increases in 15-LOX-
1 expression and 13S-HODE synthesis [4,48]. 

Similarly, 15-LOX-1 and its metabolites 15S-HETE and 13S-HODE 
are significantly reduced in malignant lung cancer tissues, and 15-
LOX-1 expression is essentially undetectable via IHC staining of 
pancreatic intraepithelial neoplasias, primary tumor, and lymph node 
metastases. MiaPaCa2 and S2-O13 pancreatic adenocarcinoma cells 
stably transfected with 15-LOX-1 expression vectors show significantly 
decreased proliferation, compared to control groups, and treatment 
with 15S-HETE, but not 13S-HODE, have been shown to induce 
apoptosis. In vivo animal models confirm that the loss 15-LOX-1 is 
an early event in lung carcinogenesis. Mice treated with NKK showed 
declining 15S-HETE levels 26 weeks after initial exposure, followed by 
the emergence of lung tumors within six to eight weeks [49,50]. 

The specific mechanisms behind 15-LOX-1 modulated 
proliferation and apoptosis are not fully understood, but several studies 
have suggested that it is through the selective inhibition and activation 
of specific peroxisome proliferator-activated receptors (PPAR). In 
colorectal cancers, 13S-HODE, produced by endogenous 15-LOX-
1, is reported to bind to and inactivate PPARβ/δ, a tumor promoter; 
and consequently up regulate PPARγ, a tumor suppressor, activity. In 
prostate cancers, both 15S-HETE and 13S-HODE are reported to bind 
directly to and activate PPARγ; however, 13S-HODE is also reported 
to more potently up regulate EGF-initiated MAP kinase activity that 
subsequently inactivates PPARγ, yielding net growth stimulation 
[5,51,52]. Other studies, however, have reported that 15S-HETE is 
the 15-LOX-1 product that exerts effects on tumor cell proliferation. 
In vivo lung tumor initiation models suggests that the emergence of 
tumors coincides more closely with diminishing 15S-HETE levels than 
with diminishing 13S-HODE levels [49,50]. 

15-LOX-2 and Cancer
Unlike 15-LOX-1, the effects of 15-LOX-2 are not, for the most 

part, tissue dependent. While alone study found elevated 5-LOX 
and 15-LOX-2 expressions in ovarian cancer specimens, 15-LOX-2 
expression has consistently been reported to be down regulated and 
often lost in late stage esophageal, lung, breast, head and neck, and 
prostate cancers [53-59]. 

15-LOX-2 activity has never been reported to cause significant 
changes to tumor incidence, but in vitro studies strongly indicate that 

15-LOX-2 is a negative cell cycle regulator and its expression is inversely 
correlated with malignant growth. Western blots of cultured prostate 
cell lines showed that, compared to non-malignant cells, 15-LOX-2 
protein and mRNA are significantly reduced in all malignant lines and 
liquid chromatography/tandem mass spectroscopy indicated that the 
remaining enzymes have impaired catalytic activity [60]. Further in 
vitro studies have tied 15-LOX-2 activity to suppressed tumor growth. 
Compared to control groups, TE-1, TE-8, and TE-12 esophageal cancer 
cells transiently transfected with 15-LOX-2 expression vectors show a 
33% decrease in tumor cell proliferation [56], and PC3 prostate cancer 
cells stably transfected with 15-LOX-2 expression vectors show as 
much as an 80% decrease in tumor cell proliferation. Further, these 
transfected PC3 cells showed an unspecified increase in the percentage 
of apoptotic cells in culture, dramatically decreased cell viability in the 
presence of 5 µM AA, and produced significantly smaller tumors when 
injected into nude mouse prostates [61,62]. 

Several distinct mechanisms been identified to account for this 
phenomena. Like 15-LOX-1, existing evidence suggests that 15-LOX-2 
may exert its anti-proliferation effects through PPARγ. 15S-HETE has 
been confirmed to be an endogenous PPARγ ligand, and PPARγ agonists 
have been demonstrated to induce apoptosis in cancer cells [63]. Other 
studies have shown that 15S-HETE and 8S-HETE also inhibit DNA 
synthesis and induce cell cycle arrest through the activation of p38 
mitogen-activated protein kinases [64,65]. However, an alternatively 
spliced 15-LOX-2 variant, 15-LOX-2sv-b, that has no AA metabolizing 
ability also appears to inhibit tumor growth [61], suggesting that a 
third, 15S-HETE independent mechanism exist. 

Studies also indicated that 15-LOX-2 also suppresses tumor 
progression. IHC staining of matched-pairs of prostate cancer 
specimens showed that 15-LOX-2 expression is almost universally 
reduced in higher grade tumors [53] and a survey of 160 clinical lung 
cancer specimens showed that 15-LOX-2 expression is correlated with 
better differentiation in NSCLCs [58]. In vitro, 15-LOX-2 expression 
has also been correlated with larger, flatter phenotype in normal 
human prostate (NHP) cells and NHP cells have been observed to 
autonomously upregulated 15-LOX-2 mRNA and protein expression 
shortly before they become senescent. Treatment of cultured NHP and 
prostate carcinoma cells with 25 µM 15S-HETE induces an enlarged, 
flattened, and immotile morphology within 72 hours in both cell types; 
and transgenic expression of 15-LOX-2 in mouse prostates induced 
early expression of senescence associated β-galactosidase [66,67]. 

Studies have also reported that 15-LOX-2 expression promotes 
less invasive phenotypes. Western blot analysis of nine prostate cancer 
cell lines clearly showed a correlation between the loss of wild type 
15-LOX-2 and emergence of truncated variants of E-cadherin in all 
9 malignant lines and complete loss of wild type E-cadherin in three 
malignant lines [67]. Treatment with either 30 µM AA or 20 µM 
15S-HETE significantly and almost immediately increased MDA-
MB-435 breast cancer cells adhesion to type IV collagen, likely through 
the MAP kinase pathway [65]. DU145 and PC3 cells transfected with 
15-LOX-2 expression constructs also show significant reductions in 
VEGF-A levels [62]. 

The loss of 15-LOX-2 expression in cancer cells still, for the most 
part, remains to be defined. Analysis of the ALOX15B promoter 
regions have suggested that the transcription factors Sp1 positively and 
Sp3 negatively regulate 15-LOX-2 expression [68]. However, analysis 
of prostate cancers showed that Sp1 expression is surprisingly higher 
in cancer cells than normal cells. Further experiments also ruled out 
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genomic mutations, DNA hypermethylation, and deficient KLF6 
expression [67], a Sp1 family protein that is down regulated in prostate 
cancers. Two studies did indicate that 15-LOX-2 expression could 
be down regulated by glucocorticoid receptor activity [69] or by the 
creation of a negative feedback mechanism responsive to 15S-HETE 
levels and PPARγ activation [70]. 

Targeting Lipoxygenases for Cancer Treatment
The efficacy of lipoxygenase inhibitors and lipoxygenase metabolite 

inhibitors as chemotherapeutics is not well studied and has not been 
established yet. As of now, there are no published clinical trials 
involving lipoxygenase inhibitors and there are no indications that 
patients who take zileuton or the CysLT receptor 1 (CysLT1) antagonist 
montelukast (Singulair) exhibit lower instances of cancer. 

A leukotriene B4 receptor antagonist and selective 5-LOX inhibitor, 
LY293111, did complete phase I trials and all indications suggest that it 
can be safely administered to patients with advanced stage tumors. In 
vitro and animal models have consistently produced promising results, 
especially when used in combination with existing chemotherapeutics 
to treat pancreatic and colorectal cancers. Unfortunately, LY293111 
could not reproduce any beneficial effects for patients with metastatic 
pancreatic adenocarcinoma during phase II trials [71-77]. 

Conclusion and Perspective
Despite the progress that has already been made, many unknowns 

still lie with the LOX enzymes. It is still not clear how the expressions 
and activities of enzymes become dysregulated in cancers or why some 
isozymes, such as p12-LOX and 15-LOX-1, exert radically different 
effects in different tissues. Many studies have reported interactions 
between LOX products and PPAR receptors, while others have 
indicated that these enzymes may exert their effects independent of 
these receptors or even independent of their products. There is no 
holistic explanation and a fuller understanding of these mechanisms 
is needed before treatments that target these pathways can be 
implemented successfully. 

Furthermore, the LOX isozymes oxygenate a diverse set of PUFAs, 
not just AA. Metabolites generated from other substrates often exert 
effects that oppose those of the AA metabolites. Studies have found 
correlations between dietary ω-6 fatty acids and cancer [3], and at least 
one study has reported that dietary ω-3 fatty acid supplements enhance 
the efficacy of therapies that target VEGF and AA metabolizing 
enzymes [78]. Research into this field can have profound impact on 
our understanding of nutrition and identify diets that supplement and 
enhance existing treatments. 

The expression of LOX enzymes become dysregulated in cancers 
and all research indicates that this pathway is involved in carcinogenesis 
and tumor progression. Studies using animal models have demonstrated 
that these enzymes are promising targets for intervention; in vivo 
models have shown that many LOX inhibitors reduce tumor incidence, 
growth, and acquisition of invasive phenotypes. Unfortunately, these 
results have not yet been translated into the clinic successfully. The 
development of new and the repurposing of existing inhibitors of LOX, 
LOX metabolites, or even the downstream receptors can provide novel 
and effective therapeutic options. Considering the evidence that is 
presented above, treatments that target the LOX pathway, whether used 
alone or in combination with existing treatments, can have profound 
impacts on cancer patients - including pancreatic cancer patients, since 
modulation of the LOX pathway has produced promising anti-cancer 

results in pancreatic cancer cell lines. Because these LOX enzymes have 
also been shown to be involved in many other disorders, including 
asthma, allergies, arthritis, and various other cardiovascular and 
immune disorders, the development of these LOX based treatments 
can be especially cost-efficient, since the treatments can be repurposed 
quickly and used to treat various other conditions. 
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