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Abstract

Breast cancer is now the leading cause of cancer mortality among women worldwide, with more that 40,000
American women dying from the disease annually. While these statistics are grim, numerous epidemiological studies
generally support a protective effect of physical activity for breast cancer. Animal data using voluntary wheel running
and invasive cancer models are in line with human epidemiological data suggesting that physical exercise has anti-
tumor affects and may be associated with an increase in reactive oxygen species (ROS). Elevated production of
mitochondrial ROS (mtROS) is also associated with the promotion of tumor progression, and attenuation of oxidative
stress with a mitochondrial targeted antioxidant has been shown to reduce tumor burden and metastasis in an
invasive breast cancer mouse model. However, if an anti-tumor effect of running is associated with an increase in
ROS, then there is a potential paradox in that any anti-oxidant activity directed to mitochondria might mitigate ROS
and prevent anti-tumor affects. There are several mechanistic scenarios involving the tumor microenvironment and
tumor associated macrophages where exercise and antioxidants may be compatible, thereby suggesting that physical
activity and mitochondrial antioxidants could be complimentary and/or synergistic in suppressing invasive breast
cancer by preventing or reversing the pro-tumor cell microenvironment and enhancing an anti-tumor microenvironment.
Investigation of oxidative stress in the tumor microenvironment is an area highly relevant to understanding not just the
biology of cancer, but also the mechanisms through which regular physical activity mediates changes in normal tissue
during tumorigenesis and metastasis. Several antioxidant compounds that target mitochondria, such as the Szeto-
Schiller (SS) peptides and mitoQ compounds, are being developed which could easily be tested in preclinical studies

for compatibility with exercise training in the treatment and possible prevention of invasive breast cancer.
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Introduction

In the last few years, regular exercise and physical activity have
garnered excitement in the field of cancer prevention. There have
been consistent reports in the literature that exercise stimulates an
anti-inflammatory response [1,2] and upregulates gene expression
of endogenous anti-oxidants [3]. These two mechanisms are
potential anti-carcinogenic effects of regular exercise, since increased
inflammation and mitochondrial oxidative stress are characteristic
hallmarks of malignancy. In addition, a recent report using National
Health and Nutrition Examination Survey (NHANES) data from 2003
to 2006 documented that 50% of Americans consume some kind of
nutritional supplement, with multi-vitamins and multi-minerals the
most commonly consumed supplement [4]. This social trend presents
an interesting paradigm: would combined use of antioxidants and
regular exercise have a synergistic effect on attenuating cancer risk?
Multi-vitamins such as Vitamin E and C quench free radical activity,
but are spatially restricted to the cytoplasm and unable to penetrate
the mitochondria. This is where developments in mitochondrial-
targeted antioxidants such as the SS peptides or mitoQ present an
advantage over conventional dietary antioxidants. In this review, we
describe the effects of exercise and physical activity on breast cancer
outcomes and the mechanistic relationships with mitochondrial ROS.
We also hypothesize the effects of combining mitochondrial-targeted
antioxidants with exercise on chemoprevention.

Breast cancer and physical activity

Breast cancer is now the leading cause of cancer mortality among
women worldwide. According to the American Cancer Society, there
were an estimated 207,090 new cases of breast cancer in 2010, with a

further 39,840 American women dying from the disease. While these
statistics are grim, epidemiological evidence supports a protective effect
of physical activity for breast cancer. For example, the risk of death from
invasive breast carcinoma was 30% lower in American women aged 35-
64 years that participated in recreational physical activity throughout
their lifetime compared with women that were sedentary [5]; women
with stage I-IIT breast cancer who participated in 3-5 hours of walking
per week had decreased risk of breast cancer recurrence and mortality
[6]. Moderate physical exercise, including brisk walking, reduced
postmenopausal breast cancer risk suggesting that increases in activity
after menopause are beneficial [7]. In 670 women diagnosed with local
or regional breast cancer and monitored for six years, any recreational
physical activity and consumption of better quality diets was associated
with a 91% reduced risk of death from breast cancer [8]. However, not
all studies have shown this negative association between increased
physical activity and reduced breast cancer risk and mortality. For
example, a negative correlation between amount of physical activity
and risk of breast cancer mortality was recently reported [9]. The
limitation of physical activity-focused epidemiological studies is that
they are observational. Therefore, in order to define the underlying
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associated with a beneficial effect of physical activity on cancer biology,
pre-clinical studies would be useful [10].

We have conducted preliminary experiments in mice comparing
the effects of two-months of voluntary nocturnal wheel running on
mammary tumorigenesis and metastasis. We used the Polyoma Middle
T Oncoprotein (PyMT) transgenic mouse, a widely used preclinical
model to study metastatic breast cancer with a near 100 per cent
metastasis to the lungs [11]. Although the PyMT gene is not expressed
in human breast cancer cells, its products bind to, and activate several
signaling pathways such as Src, Ras and Phosphatidylinositol (PI)-3
kinase, which are all implicated in human breast cancer. The PyMT
model also demonstrates loss of estrogen and progesterone receptors,
in addition to expressing Epidermal Growth Factor Receptor Family
(ErbB2/Neu) during the late carcinoma stage, both of which resemble
human breast cancer with poor prognosis [11]. Our running wheel
system (Figure 1A) allows us to monitor the activity status of each
individual mouse throughout the experiment. Each mouse is housed
in an individually ventilated cage and provided fresh food pellets in a
ceramic bowl twice weekly. Rotation of the wheel by the mouse transmits
an electrical signal wirelessly to a hub and the number of revolutions is
recorded on the Wheel Manager software (Med Associates Inc) every
minute. The activity is recorded as the distance covered across time, and
exported to Excel (Microsoft) as a graph (Figure 1B). Our preliminary
data show PyMT mice that run between 12.6km and 22km daily for one
month have decreased primary tumor invasiveness, as demonstrated by
histopathological sections, compared to PyMT sedentary mice, which
have their wheels locked in place (personal observations). These data
are in line with human epidemiological data suggesting that physical
exercise has anti-tumor affects.

Physical activity and ROS

It has been shown that ROS are generated during physical
exercise in both animal models and humans, and that increased ROS
production can overwhelm antioxidant systems and cause oxidative
damage [12,13]. The term “hormesis” has been adopted to explain how
a mild oxidative stress associated with moderate exercise-training can
result in favorable adaptations that protect the body against more severe
stresses that can cause disease, for example cancer [14]. Activation of
redox-sensitive pathways, such as anti-oxidant enzymes, transcription
factors, and metabolic proteins, by physical exercise can result in gene
products that enhance antioxidant activity and protect against oxidative
damage. Conceivably, these hormetic effects can occur within tumor
cells or within immune surveillance mechanisms programmed to
eradicate transformed and malignant cells. The question is whether a
mitochondrial antioxidant in conjunction with a regular and consistent

physical exercise program will attenuate ROS-mediated activation of
redox-sensitive pathways and counterbalance anti-tumor effects. And
if so, whether these antioxidant effects are solely observable in cancer
cells or if cells within the tumor environment such as macrophages are
also affected.

Breast cancer and mitochondrial ROS

Breast cancer is mainly a disease of older postmenopausal women.
Aging is associated with gradual mitochondrial dysfunction that
results in increases in ROS production and oxidative stress. Elevated
production of mitochondrial ROS (mtROS) damages mitochondrial
constituents, further impairs oxidative phosphorylation and results in
an oxidative-damage/ mitochondrial dysfunction loop. Within tumor
cells, increased mtROS can disrupt the delicate balance between tumor
suppressors and oncogenes, stimulate epithelial-to-mesenchymal
transition, and create an inflammatory environment conducive to
tumor progression [15-17]. Additionally, mitochondrial dysfunction
causes malignant cells to shift energy production from oxidative
phosphorylation to aerobic glycolysis. This shift towards aerobic
glycolysis generates ROS, and prevents cancer cells from depleting
their ATP stores, thus avoiding mitochondrial- mediated apoptosis
[18]. As well, the shift to aerobic glycolysis increases the intermediates
that could be used for anabolic activities, such as nucleotide synthesis,
protein translation and cell growth. In addition to generating mutations
in mtDNA and impairing mitochondrial respiration, ROS act as direct
signal transducers to alter downstream pathways in tumor growth and
migration. Hydrogen peroxide (H,0,) can activate Protein Kinase B
(Akt) and inactivate Phosphatase and Tensin Homolog (PTEN) [19],
two well-known pathways implicated in tumor progression. Further,
exposure to H,0, can induce MMP2 expression by human endothelial
cells resulting in disengagement from the basement membrane [20],
suggesting that a pro-oxidative microenvironment results in tumor
and stromal cells secreting matrix metalloproteinases (MMPs) to
degrade the local basement membrane. Subsequently, tumor cells can
disseminate to distant organs.

Given that oxidative stress promotes tumor progression, attenuation
of oxidative stress with an antioxidant should result in reduced tumor
burden and metastasis. We have found that old mice expressing
mitochondrial targeted catalase (mCAT) have a decreased tumor
burden [21] and that PyMT transgenic mice expressing mCAT show
lower percentages of aggressive mammary carcinomas and reduced
pulmonary metastasis in association with decreased ROS levels in both
the primary tumor and lungs [22]. The mCAT mouse is also protected
from age-associated mitochondrial dysfunction and insulin resistance
[23], suggesting that PyMT mice expressing mCAT have improved

A

Figure 1: Voluntary running wheel setup. A. An individual mouse is given access to a running wheel that either freely rotates or is locked. Rotation of the running
wheels transmits an electrical signal wirelessly to a hub and the number of revolutions is recorded on the Wheel Manager software. B. Each colored line reflects

distance ran by a different mouse.
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metabolic function. Therefore, mCAT likely protects PyMT mice
from metastatic progression because of changes in oxidative stress,
mitochondrial function and related metabolic pathways indicating
that a mitochondrial targeted antioxidant approach for breast cancer
intervention may have merit.

ROS and tumor associated macrophages

Stromal cells within the tumor microenvironment secrete factors
and cross-talk with cancer cells to display the phenotypic hallmarks of
cancer, such as self-sufficiency in growth and increased invasiveness
and metastatic potential [24]. Tumor associated macrophages (TAMs)
are stromal cells generally associated with poor prognosis in cancer
survivors [25]. However, TAMs are phenotypically diverse, reflecting
their plasticity within different tissue microenvironments. Two
different sub-populations have been described. “Classically activated”,
or M1 macrophages, have anti-tumor activity, secreting products
that can destroy tumors by activating tumoricidal natural killer
cells [26], T-helper (Th)1 cells [27], and upregulate Nuclear Factor
(NF)-xB transcription [28] to elicit anti-tumor immune responses.
“Alternatively-activated”, or M2 macrophages, secrete factors and
cytokines such as Vascular Endothelial Growth Factor (VEGF)-A (pro-
angiogenic), Interleukin (IL)-10 (inhibits dendritic cell maturation
and promotes Th2 response for tumor immune tolerance) and MMPs
that enhances primary tumor invasiveness. It is conceivable that as a
tumor is initiated to grow, M1 macrophages are recruited to the tumor
microenvironment and respond in an attempt to suppress tumor
growth. With progressive growth and acquisition of malignancy, tumor
cell signaling polarizes M1 macrophages to differentiate towards M2
macrophages [29]. Since it has been shown that physical activity or
regular exercise training can influence various aspects of macrophage
physiology, such as phagocytosis, chemotaxis, metabolism and anti-
tumor activity [30], it is possible that physical exercise could prevent
M2 polarization and enhance the presence of M1 macrophages as an
anti-tumor mechanism.

When mitochondrial-targeted antioxidants are utilized in mouse
cancer models, the initial recruitment of macrophages to the tumor
microenvironment during early tumorigenesis may be attenuated.
This is based on our previous work showing that mCAT reduces ROS

in tumor cells and cells in the tumor microenvironment [22]. We
now have preliminary data to suggest that the presence of mCAT in
the transgenic PyMT breast cancer mouse attenuates M2 macrophage
polarization in the tumor microenvironment (personal observations).
Therefore, the macrophages are still recruited to the tumor site, but
the population is more M1 in polarity. As the tumor progresses, some
tumor-associated macrophages would still be polarized to become M2
macrophages, but due to an attenuation of mitochondrial oxidative
stress, there would be a reduction in the cytokines produced by tumor
cells and/or stromal cells, resulting in a balance shifted towards M1
as opposed to M2 macrophages (Figure 2). A reduction in the M2
macrophage population would decrease the extensive basement
membrane degradation and tumor invasion, and thus reduce the extent
of metastasis, as well as decrease endothelial growth and vascularization
[31]. When physical activity is added to the antioxidant scenario, the
hypothesis is that, because exercise increases the Th1/Th2 balance in
the tumor microenvironment [32], there should be an increase in M1
TAMs (Figure 2), and the addition of a mitochondrial antioxidant
should further enhance the M1 TAM population.

Clinical implications

There is a potential paradox if an anti-tumor effect of running is
associated with an increase in ROS in that any anti-oxidant activity
might mitigate ROS and prevent anti-tumor affects. There are several
mechanistic scenarios where exercise and antioxidants might be
compatible. First, increases in ROS production in tumor cells may not be
accompanied by increases in endogenous antioxidant activity in those
tumor cells, resulting in a ROS-triggered pathway to apoptosis. Since
some antioxidants may induce apoptosis in tumor cells [33], a possible
mechanism for an enhanced anti-tumor affect could be accelerated
apoptosis. Secondly, it is possible that physical activity in combination
with a mitochondrial targeted antioxidant improves mitochondrial
respiration, thus, by improving mitochondrial respiration in tumor
cells, substrate utilization is shifted, and “aerobically conditioned” cells
may be less able to survive than their hypoxia-conditioned counterparts.
These mechanisms may act in concert and provide exciting intervention
targets for breast cancer patients [34,35].

Thirdly, running may generate ROS by mechanisms other than

Figure 2: Physical activity and mitochondrial targeted antioxidants may be complimentary and/or synergistic in suppressing invasive breast cancer by preventing
or reversing a protumor cell microenvironment (M2 TAMs) and enhancing an anti-tumor microenvironment (M1 TAMs).
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those involving mitochondria. Exercise-induced oxidative stress was
originally thought to originate from mitochondria in skeletal muscle
fibers, due to the increased metabolic demand or as a consequence
of skeletal muscle damage [36]. Earlier support for skeletal muscle
mitochondria as key sources of exercise-induced ROS was based on the
fact that increased oxygen consumption during exercise could elicit a
proportionate 50- to 100-fold increase in superoxide generation [37].
However, during exercise, skeletal muscle mitochondria are primarily
at a low state of respiration associated with relatively low levels of ROS
[38]. In another study, skeletal muscle myotubes electrically stimulated
to simulate contractile activity demonstrated only a mild increase in the
rate of oxidation [39]. This relatively small increase in oxidative stress
does not support mitochondria as a major source of exercise-induced
ROS. There are several sources of extra-mitochondrial ROS that might
contribute to exercise-induced oxidative stress including reduced
Nicotinamide Adenine Dinucleotide Phosphate (NADPH)-dependent
oxidase found to be located in the sarcoplasmic reticulum of skeletal
muscle and capable of reducing oxygen to form super oxide [40]. A
second source could be calcium-independent isoform of skeletal muscle
phospholipase A, (PLA,) shown to generate ROS in skeletal muscle
[41]. A third source could be xanthine oxidase, shown to be associated
with increased superoxide during muscle contraction and reperfusion
[42]. Hence, it is plausible that exercise-induced oxidative stress and
the subsequent redox-signaling pathways may be different from that of
tumor-associated redox signaling and provide complementary ways of
attenuating invasive cancer.

In summary, implications for human cancer intervention are huge
if it can be shown that physical activity and mitochondrial antioxidants
are complimentary and/or synergistic in suppressing invasive breast
cancer. These affects could act directly on tumor cells and may in fact
target cells in the tumor microenvironment by preventing or reversing
pro-tumor support and enhancing anti-tumor activity. An example
would be TAMs and the ability of an exercise and mitochondrial
combination to repolarize from an M2 support mode to an M linhibitory
mode. Oxidative stress in the tumor microenvironment has received
relatively little attention in the context of physical activity and breast
cancer research. This is an area highly relevant to understanding not
just the biology of cancer, but also the mechanisms through which
regular physical activity mediates changes in normal tissue during
tumorigenesis and metastasis. Several antioxidant compounds that
target mitochondria, such as the SS peptides [43] and mitoQ compounds
[44], are being developed which could easily be tested in preclinical
studies for compatibility with exercise training in the treatment of
invasive breast cancer.
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