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Introduction
When a drug is administered to a human subject, the drug generally 

passes through an absorption phase, distribution phase, metabolism 
phase, and finally an elimination phase within the body. The blood 
or plasma concentration-time curve (C (t)) is often used to study the 
absorption and elimination of the drug. Some of the indexes that can be 
obtained from concentration curves are AUC, Cmax, tmax, and PSR that 
denote the area under C (t) , the maximum value of C (t), the time at 
which concentration curve reaches its maximum value, and probability 
similarity region (i.e. common area under two corresponding 
concentration curves of the test and reference formulations).

Bioavailability is the rate and extent to which the active drug 
ingredient is absorbed from a drug product and becomes available at 
the site of drug action. Both AUC and Cmax are used to evaluate extent 
and rate of bioavailability, respectively. 

 The aim of bio-equivalence problem is to show the therapeutic 
equivalence of two or more different formulations (treatments) of the 
same drug. 

There are three types of bio-equivalence studies, namely, average 
bioequivalence (ABE), (ii) individual bioequivalence (IBE) and (iii) 
population bioequivalence (PBE) (see e.g. Chow and Liu [1]).

 The designs of bio-equivalence study and decision rules based 
on such studies are governed by some clinical regulations. These 
regulations, are stated by FDA, and reviewed in Chapter 16 of 
Chow and Liu [1]. For example, a bio-equivalence is concluded if 
the average bioavailability of the test formulation is within ±20%of 
the reference formulation with a certain assurance. Some requires 
that the ratio of means of log-transformed data to be within 
80% and 125% with probability 90% to accept bio-equivalence. 
In this work, we are interested in the case of two treatments. A new 
treatment under development (called a test, T) and an existing 
treatment (called a reference, R) for the same disease used as a standard 
active competitor. 

Short Review of Statistical Procedures
Several procedures were used in the literature to solve the problem 

of bio-equivalence. In this section we report some of these methods.

Westlake [2] and others pointed out that the classical testing 
hypothesis that depends on testing equality of two means of two 

independent normal populations scarcely makes sense from a medical 
point of view. Schuirmann [3,4] suggested two one-sided procedure.
This procedure depends on splitting the problem of testing
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Where T Rθ µ µ= − , A and B are given tolerance constants. If both 
hypotheses are rejected one concludes bio-equivalence. This procedure 
had been modified by Liu and Weng [5] and by Berger and Hsu [6]. 
Power-test procedure was suggested by Schurimann [3]. This test 
applies what is called 80/20 rule which states that; if T is not statistically 
different from R and if there is at least 80% power for detection of a 20% 
difference of R, the bio-equivalence is concluded. He compared this test 
with the two one-sided tests. Anderson and Hauck [7] and Hauck and 
Anderson [8] suggested a test statistic whose distribution is non-central 
t with random non-centrality parameter. They also approximated that 
distribution of the test statistic by a normal distribution and also by 
a t-distribution. Other parametric methods were used by Locke [9], 
Dannenberg et al. [10], and Wassmer [11].

Confidence interval approach for testing bio-equivalence was 
used by several researchers such as Meltzler [12], Westlake [13,14], 
Kirkwood [15], Locke [9], Chow and Shao [16], Liu [17], and Hus et 
al. [18]. The dispute was about using ordinary confidence interval, or 
symmetric confidence intervals. Moreover, should one construct (1-α) 
100% or (1-2α) 100% confidence interval.

Bayesian methods were used by Rodda and Davis [19], Mandallaz 
and Mau [20], and Grieve [21]. Nonparametric methods were used by 
Hauschke et al. (1990). Moment based criteria was used by Holder and 
Hsuan [22]. Bootstrap methods were used by Chow [23].
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Abstract
The statistics of bioequivalence testing have received much attention in the literature. However, there is an 

ignorance of checking the validity of some of the underlying assumptions imposed on some of these tests. In this 
paper we review the mostly used tests. Moreover, we introduce Shannon bio-equivalence index and the concept 
of (1-β) 100% Shannon equivalent distributions and apply it together with a bootstrap method to test average 
bioequivalence of two formulations. An illustrative example is considered to compare the results of the suggested 
test with those that are given in the literature. The results of suggested test agree with those in the literature.
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Shape analysis methods were used by Steinijans et al. [24] and 
Chinchilli and Elswick [25]. Kullback–Leibler directed divergence 
(KLD) were used by Dragalin et al. [26] and Pereira [27]. It is shown 
that KLD has several good properties, namely, it (i) possesses the 
natural hierarchical property that IBE PBE ABE⇒ ⇒ , (ii) is invariant 
to monotonic transformations of the data, (iii) is applicable over a wide 
range of distributions of the response variable (i.e. there is no need to 
assume normality), and (iii) generalizes easily to the multivariate case 
where equivalence on more than one parameter (for example, AUC, 
Cmax and Tmax) is required.

Entropy test for bio-equivalence

Let X be random variable with probability density function f(x). 
Shannon [28] suggested an entropy measure of X and denoted it by 
H(X) or H(f) and is defined as the expected value of –log(f(X)). If X is 

continuous on the interval [a,b], then ( ) ( ) log( ( ))
b

a
H X f x f x dx= −∫ . 

On the other hand, if X is discrete with probability vector P = (p1,…,pn), 

then 2
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It is interesting to note that Shannon entropy is a measure of 
uncertainty (missing information). This is due to the fact that H(X) in 
maximum for the uniform distribution which is non-informative.

There are several methods to estimate entropy of a random variable. 
The simplest two methods are relative frequencies of the values (or 
classes of values) of the random variable and kernel estimates. More 
methods are given in Beirlant et al. [29].

Based on this entropy, we suggest Shannon bio-equivalence index as 
the ratio of Shannon entropy of test T to Shannon entropy of reference 
R, i.e. SI = H(T) / H(R). Two formulations are bio-equivalent if this 
index belongs to a suitable interval, e.g. 0.80 < SI < 1.20. Moreover, 
we introduce the concept of at least (1-β)100% Shannon equivalent 
distributions as follows. 

Definition: Two random variables X and Y are said to be at least 
(1- β) 100% Shannon equivalent if 

 ( ) ( ) | | 0 1
min{ ( ), ( )}

H X H Y for some
H X H Y

β β−
∆ = ≤ < < .

This definition may be used to test bio-equivalence using either one 
of the following:

Given observed values of T and R, we say that T and R are bio-
equivalent if ∆(T,R) ≤ β. One may take 0.80 < 1 - β < 1.20.

Efron [30] introduced the bootstrap concept. Diaconis and 
Efron [31] introduced the computer intensive methods with some 
applications (see e.g. Noreen [32] who reviewed these methods for 
testing hypotheses). Using the above definition and the computer 
intensive methods we suggest a procedure for testing bio-equivalence. 
This procedure depends on using computer intensive methods to 
bootstrap each of the given samples of T and R a large number of 
times, e.g. 10000 times. For each obtained sample calculate ∆(T,R). 
Use the obtained 10000 values of ∆(T,R) to construct an upper 95% 
confidence interval for the true value of ∆(T,R). If the obtained interval 
is contained in (0,β) conclude that the two formulations are at least (1-
β)100% Shannon bio-equivalent with 95% confidence level.

Illustrative example

Consider the 2x2 cross over study for the comparison of 
bioavailability between two formulations of a drug product stated in 
Chow and Liu [33]. The study was conducted on 24 healthy volunteers 
(subjects). During each dosing period, each subject was administered 
either five 50 mg tablets (test formulation T) or five ml of an oral 
suspension (50 mg/ml) (reference formulation R). Blood samples were 
obtained and AUC values from 0 to 32 hours are given bellow. Let R1 
denote AUC in sequence 1 period 1, T1 denote AUC in sequence 2 
periods 1, T2 denote AUC in sequence 1 period 2, and R2 denote AUC 
in sequence 2 periods 2. It is usually assumed that the data follow 
normal distributions and there is no carry over effect or period effect. 
Two formulations are said to be bio-equivalent if A < µT - µR < B, or if a 
< µT / R < b, where A, B, a, and b are constants. 

The data matrix is given below where the rows represent R1, T1, T2, 
and R2 respectively.

74.675 96.4 101.95 79.05 79.05 85.95 69.725 86.275 112.675 99.525 89.425 55.175
74.825 86.875 81.675 92.7 50.45 66.125 122.45 99.075 86.35 49.925 42.7 91.725
73.675 93.25 102.125 69.025 69.025 68.7 59.425 76.125 114.875 116.25 64.175 74.575
37.35 51.925 72.175 71.875 71.875 94.025 124.975 85.225 95.925 67.1 59.425 114.05

To analyze this data, we have produced a Mathematica 8 package, 
which applies some of the procedures, which are suggested in the 
literature to test bioequivalence together with testing underlying 
assumptions. The output of this package is reported in three tables. 
Table 1 gives the bootstrapped quantiles of the test statistic ∆(T,R). 
Table 2 gives the mean, standard deviation and 95% confidence 
intervals of Shannon entropy of each of T, R, T-R and T/R based on 
10000 bootstrapped samples from the given data. For the purpose of 
comparison, Table 3 gives the results of applying some bio-equivalence 
procedures that are given in the literature based on both raw and log-
transformed data together with entropy index.

Discussion and Conclusion
First, we started testing the underlying assumptions that are 

imposed in the literature. Shapiro-Wilk test of normality gave 0.999609 
and 0.765868 as p-values for R and T respectively. Hence normality 
assumption holds. Second, at level of significance 5%, the ANOVA 
table showed that there is no significant difference in each of carry over 
effect, direct drug effect, and period effect. 

Concerning Shannon entropy procedure for testing bioequivalence 
of R and T, we found that a kernel estimator for probability density 
functions of T and R yielded Shannon index SI = 1.02169 ∈ (0.80,1.20). 
This means that T and R are Shannon bio-equivalent. Moreover, 
∆(T,R)= 0.021 which means that the two formulations are at least 97.9% 
Shannon bio-equivalent. On the other hand, a 10000 bootstrapped 
study gave an average bootstrapped value of ∆(T,R) equal to 0.0705 
which means that T and R are 93% Shannon bio-equivalent. In 
addition, if some one wants to construct probability content interval 
(confidence interval) for ∆(T,R) he needs some of the most commonly 
used quantiles of the distribution of ∆(T,R). For example, using Table 
(1), (0, 0.19400) is an upper limit one-sided 95% confidence interval for 
∆(T,R). This means that we are 95% confident that the two formulations 
are at least 80.6% Shannon equivalent. And so, the two formulations are 
bio-equivalent. On the other hand, a 10000 bootstrapped study yielded 
a bootstrapped estimate for Shannon index SI = 1.84 / 1.83 = 1.00456, 
which leads same conclusion obtained from the kernel estimator from 
the given data. 
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Order Quantile Order Quantile Order Quantile Order Quantile
0.025 0.00127 0.250 0.02820 0.900 0.15200 0.990 0.24200
0.050 0.00438 0.500 0.05580 0.950 0.19400 0.999 0.29500
0.100 0.01180 0.750 0.09950 0.975 0.22000

Table 1: The bootstrapped quantiles of the test statistic ∆(T,R).

Variable
Mean of S.D. of 95% C.I. for Shannon Entropy

Shannon Entropy Lower Limit Upper Limit
T 1.84 0.108 1.56 1.98
R 1.83 0.113 1.55 1.99

T-R 1.77 0.137 1.46 1.97
T/R 1.32 0.279 0.785 1.91

Table 2: Shannon Entropy based on 10000 Bootstrapped Samples from the data.

Topic Procedure Note Raw data Log-data Comment

crossover Carry over effect
Point -9.59167 -0.073641

No difference in carry over 
effectp-value 0.546808 0.395214

C.I. (-42.1,22.9) (-0.25,0.10)

Direct drug effect
Point -2.2875 -0.0124434

No difference in direct drug 
effectp-value 0.546334 0.612057

C.I. (-10.03,5.45) (-.63,.038)

Period effect
Point -1.73125 -0.0119826

No difference in period 
effectp-value 0.647392 0.625221

C.I. (-9.47,6.01) (-.062,.038)
 Equality of variances p-value 0.942656  0.951822 Equal variances
Indexes PSR index 0.834627 0.957676 Bio-equivalent

Shannon index Kernel 1.02169 1.12405 Bio-equivalent
C.I. Band Interval Simulation (91.67,100) (95.8,95.8) Bio-equivalent

Classical  (89.56,104.99) (97.16,101.53) Bio-equivalent
Based on Fieller’s theorem (90.88,104.10) (97.22,101.52) Bio-equivalent
Schuirmann  (89.85,105.20) (97.19,105.46) Bio-equivalent

Tests Schuirmann two one-sided Bio-equivalent

Anderson  p-value 0.00029844 0.00000000 Bio-equivalent

Equality of means p-value 0.701094 0.712434 Bio-equivalent

Power  Power 0.98404 1.000000 Bio-equivalent

Table 3: Comparison of some bio-equivalence procedures.

It is clear from Table 3 that all tests under consideration, included 
the suggested Shannon entropy test, and yielded the same conclusion. 
This supports the applicability of the suggested test. Moreover, both 
raw data and log-transformed data gave same results which indicate 
that transforming this data is not necessary.

KLD is used in bioequivalence studies. Under some regularity 
conditions, the distribution of KLD is usually approximated by chi-
square distribution (see e.g. Kullback [34]. It is interesting to note that 
Awad et al. [35] gave an example where this approximation is not valid. 
Even if this approximation holds it needs a large sample size which 
may not be available in bioequivalence studies. So, the distribution 
of each of KLD and Shannon entropy indexes need to be simulated 
when ever its exact form is unknown. Hence any of them seem to be a 
reasonable index when normality assumption is not satisfied. A hence 
transformation of data is not required in such cases.

It is interesting to mention that the produced Mathematica 
8 package is capable of producing analysis of data based on all 
concentration points. So, based on comments of two referees, an 
extensive comparison of several divergence and entropy measures, 
based on concentration points of some real data, will be the subject of 
another article that will be submitted for publication in the near future.
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