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Introduction
Increasing concern about environmental issues, such as global 

warming and greenhouse gas emissions, as well as the predicted scarcity 
of oil supplies have made energy efficiency and reduced emissions a 
primary designing point for automobiles. HEVs have demonstrated 
improved fuel economy with lower emissions than conventional 
vehicles. Superior HEV performance in terms of higher fuel economy 
and lower emissions, with satisfaction of driving performance, 
necessitates a careful balance of key component sizes as well as control 
strategy parameter monitoring and tuning. 

Optimal parameter value of component sizes and control strategy for 
HEVs have been studied previously [1-3]. The parametric optimization 
based on rule-based control was widely used in early studies whereas 
control concepts based on optimal theories such as Dynamic 
Programming (DP) or Pontryagin’s Minimum Principle (PMP) [4,5] 
is more current. The optimal control parameters are obtained if the 
driving-cycle and vehicle performance such as fuel consumption, 
exhaust emission, and acceleration performance are known. In this 
case, the DP approach can find the global optimal solution [11-13]. 
However, DP has to use one more step, a post-processing step, such 
as neural networks to approximate the results of the optimal control 
pattern. Even then DP cannot cover all driving conditions. Hence, the 
real-time controller based on DP is effective only for the driving cycle 
that is used for rule extraction.

Another approach based on optimal control theory is PMP 
requiring less computing time than DP. While, control based on PMP 
can reduce the computational time for getting an optimal trajectory, it 
is a local optimal solution, not a global solution in general problems [7-

9]. In addition, some other approaches have used for the optimization 
of HEV. Asians (1996) tried to find optimal input variables including 
the sizes of ICE, EM and battery pack. The optimization objective was 
to improve the FC when the driving performances were kept within 
the standard limits. However, they did not account for the exhaust 
emissions [13]. Montazeri (2006) used Genetic Algorithm (GA) to 
find optimal component sizes and control strategy. Their objective 
was to minimize a weighted sum of FC and emissions while the PNGV 
(the Partnership for a New Generation of Vehicles) performance 
requirements were considered as constraints [6]. Wu used Particle 
Swarm Optimization to achieve optimal parameters for both the 
powertrain and control strategy, and vehicle performances were also 
defined as constraints. This research aimed to reduce FC, emissions, 
and manufacturing costs of HEVs. To solve this problem, they used a 
single objective problem with a goal-attainment method to replace the 
original multi-objective optimization problem. 

In 2012, Long, used a basic Bees Algorithm to optimize parallel 
HEV component sizes and control strategy. The parameters include 
three parameters of component size and six parameters of control 
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Abstract
A Pheromone-Based Bees Algorithm (PBA) is employed to optimize the key component sizes and control strategy 

for parallel Hybrid Electric Vehicles (parallel HEVs) presented. The Basic Bees Algorithm (BBA) is an intelligent 
optimization tool mimicking the food foraging behavior of honey bees. In this research, however, a new version of BBA 
which uses pheromones, chemical substances secreted by bees and other insects into their environment, enabling 
them to communicate with other members of their own species, is applied. The PBA employs the pheromone to 
attract bees to explore the promising regions of the search space, and the parallel HEV configuration and an Electric 
Assist Control Strategy are used to formulate the research. The value of the key component size and control strategy 
parameters is adjusted according to PBA to obtain the minimization of weighted sum of Fuel Consumption (FC) and 
emissions while vehicle performance that satisfy the PNGV constraints. In this research, ADVISOR software has 
been used as the simulation tool, and driving cycles, FTP, ECE-EUDC and UDDS, are employed to evaluate FC, 
emissions and dynamic performances. Following a description of the algorithm, the paper shows the results obtained 
for the simultaneous optimization of key component sizes and control strategy for parallel Hybrid Electric Vehicles. 
The results prove that PBA is a strong algorithm for determining the optimal parameters of component sizes and 
control strategy resulting in improvement of FC and emissions without sacrificing vehicle performance. Compared 
to BBA, the new version, PBA, showed an improvement of about 25% in convergence speed with the nearly same 
results of optimization targets.
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strategy. In this paper, the number of parameters of control strategy 
is expanded to seven [14]. In order to enhance convergence speed, the 
component size and control strategy parameters of parallel HEVs are 
optimized simultaneously by using the new version of Bees Algorithm, 
the Pheromone-Based Bees Algorithm, to obtain the minimization 
of weighted sum of FC and emissions when the PNGV driving 
performances such as acceleration and grad-ability of parallel HEVs 
are maintained.

Parallel HEV component sizing and control strategy
The parallel HEV component sizing: The parallel HEV 

configuration is shown in (Figure 1). In this configuration, both ICE 
and EM are mechanically connected to the driving wheels. The EM 
plays the role of assisting the ICE in supplying the required power. The 
ICE can also drive the EM as a generator to charge the battery [15-17]. 
In this research, the ICE, EM and battery are treated as key components 
in the design process of parallel HEVs.

HEV control strategy: There are some control strategies that 
are proposed for parallel HEVs. The Electric Assist Control Strategy 
(EACS) has been used in this research. Using EACS, the main energy 
provider is ICE and the EM is used as ICE assistance. The EACS is 
described in (Figures 2-4) [8] and [2].

The EACS can use the EM in a variety of ways [10]: 

1.	 If the required speed is less than the electric launch speed 
(which is dependent on the SOC), the ICE could be turned off.  In 
(Figure 4), above solid line the ICE is on and below solid line the vehicle 
attempts to run all electrically.

2.	 If the SOC is higher than its low limit, the ICE could be 
turned off. If the requested speed is less than the launch speed and the 
SOC is higher than the low limit, the ICE will be turned off.

3.	 If the required torque is less than a cutoff torque, cs_off_trq_
frac fraction of the maximum torque T max, the ICE could be turned off. 
If the requested torque is lower than this cutoff and the SOC is higher 
than the low limit, the ICE will be turned off.

4.	 When the battery SOC is below cs_lo_soc, additional torque 
is required from the ICE to charge the battery. This additional charging 
torque is proportional to the difference between SOC and the average 
of cs_lo_soc and cs_hi_soc. This ICE torque is prevented from being 
below a certain fraction, cs_min_trq_frac, of the maximum ICE torque 
T max at the current operating speed. This is intended to prevent the ICE 
from operating at an inefficiently low torque.

Optimization targets: The HEV research objective is to minimize 
the weighted sum of FC and exhaust emissions (HC, CO and NOx) 
while still satisfying charge sustaining requirement and driving 
performances. The PNGV passenger car constraints described in (Table 
2) [19] are used as dynamic performance requirements to show that 
vehicle performance is not sacrificed during optimization. 

The objective function is defined as follows:

G(x) = f1FC + f2HC + f3CO + f4NOx 	                                                                           (1)

Where, f1 to f4 are also defined as weighting factors used to 
investigate the effect of different objectives on the optimization results.

Bees algorithm for simultaneous optimization of component 
sizes and control strategy

Bees Algorithm mimics the food foraging behavior of a swarm of 
honey bees. This algorithm performs a type of neighborhood search 

combined with random search. 

Basic bees algorithm: The basic bee’s algorithm is an intelligent 
optimization tool imitating the food foraging behavior of honey bees 
found in nature. In the natural environment bees are able to discover 
food sources using two kinds of search methods, namely, a global 
random search and a local search. The former consists of sending the 
bees at random around the hive. Once these bees, which are called the 
scout bees, discover potential food sources they return to their hive and 
start recruiting more bees to exploit those food sources which were 
discovered during the random search attempt. The bees waiting in the 
hive receive their instructions from the returning scout bees in the form 
of a waggle dance which gives them the following useful information: 
the location of the nearest food source, the quality of that food source, 
and the amount of energy needed to harvest the food. Logically, the 
better the food source and the closer to the hive the more numerous 
the recruited bees will be. The search performed by the recruited bees is 
similar to a local search. While some bees are recruited to conduct local 
search, a percentage of the bee population continues the global random 
search to look for other promising food sources. This ensures that the 
search continues cycle after cycle in an iterative manner until all the 
good food sources including the best food source in the vicinity of the 
hive are found. This is similar to an intelligent optimization process 
and can be formulated into an algorithmic form as in the basic Bees 
Algorithm [15].

Pheromone-based bees algorithm: In nature, the bees are known 
to secrete pheromones in a liquid form which is transmitted by coming 
into direct contact with it or as it is a vapor. The pheromones release 
chemical signals proportional to the amount which has been deposited 
by scout bees for marking potential food sources, marking their hive, 

Figure 2: EACS, SOC > cs_lo_soc

Figure 1: Paralllel HEV configuration 
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scenting potential hive sites, and assembling or recruiting other bees. 
The scent arising from the secreted pheromones can intensify or 
diminish over time depending on the level of bee activity at that site. 
A strong scent will help to recruit bees in larger numbers to the food 
source while a mild scent will indicate the depletion of nectar in a 
previously marked food source.

In the Pheromone-Based Bees Algorithm the number of scout 
bees allocated for global random search is defined by parameter “n” 
and the number of bees assigned to search around the selected site 
“e” is defined by parameter “m”. In order to facilitate the search 
within a sphere centered on the selected sites, the parameter “ngh” is 
used to define the neighborhood size. In the Pheromone-Based Bees 
Algorithm, pheromones are used to recruit bees to search around 
each selected site. In every iteration, the bees deposit pheromones on 
the sites they are drawn to and the exact amount on a particular site 
depend on the quantity of pheromones already present on that site 
which is influenced by a decay rate, the fitness of that site, and the 
number of bees found on that site. The amount of pheromones found 
on a site will gradually evaporate to nothing, over time, if there is no 
bee activity there. Due to pheromone evaporation, the older the site, 
the less attractive it is (because it has been exploited and the nectar 
in it might have exhausted). As a consequence, the number of bees 
recruited to each site will be proportional to the quantity of pheromone 
already present on that site, and the fitness of that site. Thus the use 
of pheromones allows an automatic and dynamic recruitment of bees 

across the search space. The pheromones are used to recruit bees to 
a particular site, uses not only the quality of that site, i.e. fitness, but 
also the amount of pheromone found on the site. The precise amount 
of pheromone accumulated on each site will be calculated in each 
iteration using a pheromone update equation which will show either 
an increase or decrease in its level [15].

The Pheromone-Based Bees Algorithm is shown as in Figure 5, and 
its parameters are described in Table 3.

The algorithm starts with the initial population of n scout bees 
to search randomly in the solution space. Then, the fitness of the 
scout bees associated with their respective sites is evaluated in step 
2. However, only bees with the highest fitness are chosen as “selected 
bees” and sites visited by them are selected for neighborhood search in 
step 3. After that, in steps 4, 5 and 6, the algorithm will search in the 
neighborhood of the selected sites, the number of bees “m” recruited 
for each selected site depends on the pheromone deposited on that site. 
At the end of each neighborhood search, the bee having the highest 
fitness value associated with its visited patch is selected to form the next 
bee population

In order to avoid local optima, in step 7, the remaining bees (n-e) 
in the population have to search randomly around the solution space 
to find new potential sites. The iteration of these above steps will not 
be finished until a stopping criterion is met and the best bee of the last 
population is treated as the optimal solution [21,22].

Pheromone-based bees algorithm in parallel HEV optimization:  
In order to apply PBA to the simultaneous optimization of parallel 
HEVs, the fitness in step 2 is the inverse of objective function G (x) in 
Equation (1). However, the optimization task is required to maintain the 
on road performances such as acceleration and grad-ability of parallel 
HEVs. Unfortunately, the PBA cannot work directly with constrained 
optimization problem. To solve this problem, it is necessary to add 
penalty functions into objective function G(x) [23]. 

Min G (x) x = (x1, x2---x10)	 	                                                  (2)
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Where, x1, x2… x10 are parameters of component sizes and control 
strategy listed in (Table 1)

 Ci (Sj)(x), αi and Fi (x) are penalty function, desired value and 
evaluated value related to ith constrain hi (x) in (Table 2)

 The penalty function is used to penalize infeasible solutions 
by reducing their fitness values. Ci (Sj)(x) = 0, if the constrain hi (x) is 
satisfied.

ki is penalty factor chosen by trial and error as given in (Table 2)

Figure 4: EACS, the electric launch speed logic

Figure 3: EACS, SOC < cs_lo_soc 
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fitness (Sj)(x) is the fitness value of site Sj

The optimization process using PBA for parallel HEVs can be 
stated as follows:

Step 1: Initialize the population of scout bees, each scout is a set of 
specific values of all variables of component sizes and control strategy 
in (Table 1)

Step 2: Evaluate the FC, HC, CO, NOx and penalty functions Ci(x) 
for each scout bee by combining between PBA and ADVISOR software

Step 3: Calculate the fitness value of all scout bees according to 
Equation (3) and (4)

Step 4: Choose e bees with highest fitness

Step 5: Recruit bees for selected “e” sites according to the 
pheromone levels at those sites (local search) to conduct searches in the 
neighborhood of the selected e sites and choose a bee with the highest 
fitness for each site. The number of bees given by nb (Sj, t) recruited for 
a site Sj of e sites at time t is calculated from Equation (5)

Step 6: Assign the remaining (n-e) bees to search randomly around 
the search space for new potential solutions

Step 7: At the end of the local and global search, the best bees from 
all the sites are sorted according to their fitness

Step 8: Update new population

Step 9: Update pheromone level on each site by using Equation (7)

Step 10: Stop the program if the convergence criteria is satisfied, 
otherwise go to step 4. 
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Where, fs (Sj) is the fitness score of site Sj,. Se+1 are the best 
performing site among the non-selected sites. Note that the fitness 
score fs (Sj) is normalized to smooth noise and suppress systematic 
variations. The optimization process is programmed and linked with 
ADVISOR by using *.m file in Matlab [7]. The linkage configuration 
between ADVISOR and PBA is described in (Figure 6). The parameters 
of PBA used in this optimization are chosen as in (Table 4)

Where, up. Bound (i) and lo. Bound (i) are the upper bound and 
lower bound of variable ith listed in (Table 6)

ADVISOR software gives different component modules such as 
fuel converter, energy storage, motor, etc. to build a vehicle system. In 

Parameters Description
fc_trq_scale scaling factor for torque range of ICE
mc_trq_scale torque scaling factor of EM
ess_module_num number of battery modules in a pack
cs_hi_soc highest desired battery state of charge
cs_lo_soc lowest desired battery state of charge
cs_electric_launch_spd_lo Vehicle speed below which vehicle runs as pure electric vehicle (ZEV mode) at low battery SOC 
cs_electric_launch_spd_hi Vehicle speed below which vehicle runs as pure electric vehicle (ZEV mode) at high battery SOC 
cs_off_trq_frac cs_off_trq_frac*Tmax = minimum torque threshold; when commanded at a lower torque, the engine will shut off if SOC > cs_lo_soc

cs_min_trq_frac cs_min_trq_frac * Tmax= minimum torque threshold; when commanded at a lower torque, the engine will operate at the threshold torque 
and the motor acts as a generator if the SOC < cs_lo_soc

cs_charge_trq cs_charge_trq*((cs_lo_soc + cs_hi_soc)/2-SOC) = an accessory like torque loading on the engine to recharge the battery pack 
whenever the engine is on.

Table 1: Parameters of component size and EACS
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1. Initialise a Population of n Scout Bees
 

2. Evaluate the Fitness of the Population 
 

3. Select e Sites for Neighborhood Search
 

4. Determine the Size of Neighborhood
(Patch Size ngh)

 

5. Recruit Bees for Selected Sites
 

6. Select the Fittest Bee from Each Site
 

7. Assign the (n–e) Bees to Random Search
 

8. New Population of Scout Bees 
 

Figure 5: The flowchart of PBA

Parameterst Description ki

Acceleration time
Time for 0–96.6 km/hr  ≤ 12s 1.2

Time for 64.4–96.6 km/hr  ≤ 5.3s 1.5
Time for 0–136.8 km/hr  ≤ 23.4s 1.2

Gradeability 6.5 % grade ability at 88.5 km/hr, 272kg 
additional weight for 20 min 2.0

Maximum speed ≥ 137 km/hr 1.2
Maximum 

acceleration ≥ 5 m/s2 1.2

Distance in 5 sec ≥ 42.7m 1.2

Table 2: PNGV performance constraints
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order to continuously adjust component sizes in the search space, the 
fixed parameters are used for the simulation of the parallel HEV shown 
in (Table 5). To vary component size, the baseline ICE of Geo Metro 
1.0L SI engine is used. The engine torque scale factor, fc_trq_scale, 
is also used to vary the ICE size. In addition, for the baseline electric 
motor, a Westinghouse AC induction motor is employed. The same 
as ICE, the motor torque scale factor, mc_trq_scale, is used to vary the 
EM size. Similarly, the Hawker Genesis Valve-Regulated Lead-Acid 
(VRLA) battery is used for battery sizing. To vary the battery size, the 
number of battery modules, ess_module_num, is changed [8].

The range of component size and control strategy variables is given 
in (Table 6).

Simulation results and analysis: In order to eliminate the influence 
of energy from the battery on fuel consumption, the simulation has 
been run several times starting with different initial SOC values until 
the final SOC is close to the initial SOC. After running the optimization 
program with PBA parameters in (Table 4) following three driving 
cycles, FTP, ECE-EUDC and UDDS. The optimal parameters, FC, 
emissions and dynamic performances, are shown in (Tables 7-9). 

The results in the above tables prove the power of the PBA. With 
the optimal parameters of component sizes and control strategy listed 
in (Table 7), the FC, HC, CO and NOx are improved and dynamic 
performances are satisfied the PNGV constrains. The FC, emissions and 
vehicle performances obtained by using PBA with the driving cycles 
FTP, ECE-EUDC and UDDS are nearly same as ones employed by BBA. 
However, the rate of convergence of PBA is faster than that optimized 

by BBA [13,14]. The optimization process in this research will be 
stopped after 30 iterations or when the value of objective function does 
not reduce after 15 iterations. The set of component size and control 
strategy variables of the last best bee at the last iteration is considered 
as the best solution for optimization of the parallel HEVs. Compared to 
the BBA, the new version, PBA, showed an improvement of about 25 % 
in convergence speed. This indicates the good performance of the PBA 
approach in saving time to achieve the optimal parameters. 

Conclusions

The paper presents a simultaneous optimization of parallel HEV 
component sizes and control strategy to minimize the weighted sum 
of FC and emissions without sacrificing road performance by using 
a new approach, Pheromone-Based Bees Algorithm. Similar to the 
BBA, the PBA employs a type of neighborhood search (local search) 
combined with a random search (global search) in the solution space, 
so the results of component size and control strategy parameters of 
parallel HEVs are ensured to be global solutions. However, as the PBA 
employs pheromones to attract bees to explore promising regions 
of the search space, it can find the best solution approximately 25% 
faster than the basic Bees Algorithm. The results show that, the PBA 
approach is powerful in searching the best parameters of parallel HEVs 
in the solution space resulting in improvement of FC and reduction of 
HC, CO and NOx, while PNGV constrains are maintained.

Figure 6: The combination between ADVISOR and Pheromone-Based Bees 
Algorithm

Parameters Description
n number of scout bees 
e number of sites selected out of n visited sites
m number of bees recruited for selected e sites 
ngh size of patches, which includes site and its neighborhood

Table 3: The parameters of PBA

n e m ngh(i)

23 7 5 (up. bound(i)-lo. Bound (i))/40

Table 4: The parameters of PBA

Parameters Lower bound Upper bound
fc_trq_scale 0.5 1.5
mc_trq_scale 0.1 1.2

ess_module_num 7 30
cs_electric_launch_spd_lo (m/s) 0 10
cs_electric_launch_spd_hi (m/s) 11 35

cs_min_trq_frac 0.1 0.8
cs_off_trq_frac 0 0.2

cs_lo_soc 0.15 0.57
cs_hi_soc 0.58 0.95

cs_charge_trq (N.m) 5 40

Table 6: The range of variables

Parameters Description

ICE
Geo Metro 1.0L SI engine with the maximum 
power output of 41 kW and peak efficiency of 
0.34

EM
Westinghouse AC induction motor with a 
maximum power output of 75 kW and peak 
efficiency of 0.92

Battery pack Lead-Acid (VRLA), 12V26Ah
Body mass 592 kg
Rolling resistance coefficient 0.009
Body aerodynamic
drag coefficient 0.335

Vehicle front area 2 m2

Wheel radius 0.282 m

Gearbox Gear ratio: 2.84, 3.77,
5.01, 5.57 and 13.45

 Efficiency: 95 %

Catalyst converter close-coupled conventional converter for an 
SI engine

Cargo mass 136 kg.

Table 5: The fixed parameters of parallel HEVs
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cs_electric_launch_spd_lo (m/s) 0.375 4.294 0.232
cs_electric_launch_spd_hi (m/s) 29.609 13.828 30.506
cs_min_trq_frac 0.109 0.346 0.122
cs_off_trq_frac 0.146 0.021 0.150
cs_lo_soc 0.537 0.459 0.542
cs_hi_soc 0.719 0.800 0.726
cs_charge_trq (N.m) 6.526 23.569 8.971

Table 7: The value of optimal parameters

Parameters FTP ECE-EUDC UDDS
Grade 7.4 7.0 7.2

(0-97)km/h    (s) 10.4 10.5 10.5
(64-97)km/h  (s) 5.3 5.3 5.3
(0-137)km/h  (s) 21.9 22.2 22.0

Max. speed (m/s) 176.6 174.9 175.7
Max. acc (m/s2) 5.0 5.0 5.0

Dist. In 5 sec. (m) 50.8 50.8 50.6

Table 9: The dynamic performances

Parameters FTP ECE-EUDC UDDS
FC (liter/100km) 5.3 5.9 5.4

HC (g/km) 0.291 0.39 0.37
CO (g/km) 1.234 1.76 1.60
NOx (g/km) 0.244 0.27 0.29

Table 8: FC and emissions
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