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Introduction 
Multiple surveillance studies from across the globe report 

widespread multi-drug resistant Gram-negative pathogens [1-5]. 
Multi-drug resistance in Pseudomonas aeruginosa, Acinetobacter 
species, Escherichia coli, and Klebsiella species limits the availability 
of antimicrobial options in the treatment of these infections [6,7]. 
Regardless of antimicrobial selection and intervention strategies, 
clinical outcome of these infections remain undesirable in the form 
of potential extended length of stay, extended drug exposures leading 
to adverse effects, or mortality [8-11]. The challenges of this clinical 
scenario are not only in management of individual infections at the 
patient level but also in wide-spread antimicrobial use and application 
at institution and geographical levels to curtail resistance. Antimicrobial 
stewardship programs are focused to address the need for prudent and 
optimal use of antibiotics at institution levels [12-14]. These programs 
have demonstrable impact on selective use of antimicrobials, however, 
little progress on ameliorating resistance rates are currently observed 
[15]. During an era where there is a lack of new antimicrobials and 
antimicrobials with novel mechanisms of action, there is an obvious 
need for heightened attention to dosing current antibiotics to 
optimize their efficacy and to curtail resistance development. There 
has been an increase in pharmacokinetic/pharmacodynamic (PK/PD) 
investigations of current and old antimicrobials in the past two decades; 
however, the translation of this knowledge to the bedside is limited 
by sparse prospective clinical data and the need for more research 
in specific antimicrobial applications. Clinicians must resort to the 
collective interpretation of pharmacokinetic properties, in-vitro data, 
experimental simulations, animal studies, and retrospective evaluations 
to implement dosing strategies for a variety of infections. It is critical 
that clinicians optimize therapy both to maximize clinical outcomes 
and to minimize the risk of resistance. This review will primarily focus 
on the application of PK/PD principles in the treatment and prevention 
of gram-negative resistance with commonly used antimicrobials. 

PK/PD Principles 
The pharmacokinetics/pharmacodynamics of an antimicrobial can 

be described as the complex relationship between the pharmacokinetic 
exposure characteristics of an antimicrobial in a human to the effect 

of that antimicrobial [16,17]. The pharmacokinetic exposure has 
been typically characterized by steady-state parameters such as peak 
concentration, the duration that concentrations remain at specific 
levels, and the area under-the-curve while the antimicrobial effect 
has been typically characterized by reduction of bacterial colonies in 
attempts to quantify magnitudes of this relationship. This relationship 
can be possible when there is an association between drug exposure 
characteristics to antimicrobial potency such as the minimum 
inhibitory concentration (MIC). Therefore, antimicrobial dosing 
and regimens may be designed to achieve exposure targets that are 
associated with a higher probability of desirable microbiological and 
clinical outcomes [17].

The three practical PK/PD parameters that have been mainly 
investigated are the ratio of peak concentration to the MIC (Cmax/
MIC), the time during which the concentration exceeds the MIC as 
a percentage of the dosing interval (%T>MIC), and the ratio of the 
24-hour area under the concentration-time curve to the MIC (AUC/
MIC or AUIC). AUC is the most measured parameter for many
antimicrobials as it can be regarded as the entire exposure of a drug over
a given time period. Furthermore, most antimicrobials exhibit linear
pharmacokinetics where the AUC is directly proportionate to dose, the
most easily manipulated component of an antimicrobial regimen. The
peak concentration and the concentration over time can independently
affect the AUC. Consider the example of a concentration-time profile
of a drug where all PK parameters (peak concentration, absorption
rate, time) remain constant with the exception of clearance. Decreasing
the rate of clearance of a drug over the same time period increases
concentrations throughout the period, thereby, increasing the AUC
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Abstract
While infections due to multidrug-resistant Gram-negative organisms overwhelm hospitals worldwide, 

preservation of current antimicrobial treatment options becomes paramount in the face of dwindling development 
of novel antibiotics. There is extensive data demonstrating that application of pharmacokinetic/pharmacodynamic 
principles improves the possibility of enhancing clinical and microbiological outcome. There is expanding evidence 
demonstrating that unfavorable clinical outcomes and antimicrobial resistance may be suppressed when specific 
pharmacokinetic/pharmacodynamic targets are attained for beta-lactam and carbapenem antibiotics. This paper 
highlights pertinent studies that contribute to the principles and application of these principles.
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(and AUC/MIC) and potentially durations that concentrations remain 
above a threshold (as in the %T>MIC). Thus certain antimicrobials 
may be linked with both AUC/MIC and another parameter, but 
one parameter typically prevails with a relatively higher association. 
Animal and in vitro experimental models have demonstrated that this 
interdependence can be addressed with dose-fractionated approaches 
[16,18]. 

The application of each of these PK/PD parameters varies according 
to the microbial killing characteristics of different antimicrobial 
drug classes. Antimicrobials that exhibit increased bacterial kill with 
increasing concentrations are categorized as concentration-dependent 
drugs. Antimicrobials such as aminoglycosides, fluoroquinolones, and 
daptomycin exhibit increasing bactericidal activity as concentrations 
increase with relatively little dependence on duration of exposure. 
The PK/PD parameters, Cmax/MIC or AUC/MIC ratio, logically 
correlates with their activity [19-21]. Conversely, antimicrobials that 
reach maximal killing early in the presence of low concentrations 
within clinically achievable ranges and with higher dependence on 
duration of exposure, are categorized as concentration-independent 
or time-dependent antimicrobials. Antimicrobials such as beta-
lactams, carbapenems, linezolid and tigecycline are considered time-
dependent drugs whose activity is maximized as the duration that 
their concentrations remain above a multi-fold of the MIC (T>MIC) 
is extended [22-24].

Negri et al. was one of the first investigators to demonstrate that 
the selection of resistant bacteria is associated with antimicrobial 
concentrations [25]. These investigators hypothesized that there is a 
selection window of concentrations in which there is a higher potential 
for selection of strains with increased levels of resistance. This concept 
soon translated to the 'mutant prevention concentration' (MPC), which 
describes the lowest antimicrobial concentration that is able to prevent 
the growth of the least susceptible single-step mutant. Therefore, the 
mutant selection window describes the concentration range between 
the MPC and the MIC of the more susceptible sub-population of 
a given organism [26]. At this point, several experimental models 
have utilized this pharmacodynamic endpoint and there is a need for 
further determination of the application of this resistance measure in 
experimental and clinical evaluations. 

Antimicrobial Resistance
The prevalence of antimicrobial resistance is threatening the human 

race on a global level. The World Health Organization has labeled this 
critical issue as one of the three greatest threats to human health [27-29]. 
There is justified concern over the increased morbidity and mortality in 
patients with infections due to antimicrobial-resistant gram-positive, 
gram–negative, fungal, and viral pathogens. The overwhelming 
prevalence of resistant gram-positive organisms has resulted in 
the development of several potent and efficacious antimicrobials 
in the forms of linezolid, daptomycin, tigecycline and ceftaroline 
to battle infections caused by methicillin-resistant Staphylococcus 
aureus (MRSA) or vancomycin-resistant Enterococci (VRE) [30-32]. 
Tigecycline and ceftaroline are broad-spectrum antimicrobials that 
exhibit activity against gram-negative pathogens as well. However, 
there is an absence of new antimicrobials with novel mechanisms of 
action and narrow spectrum of activity against resistant-gram-negative 
pathogens. This deficiency necessitates heightened assessment of PK/
PD characteristics of ubiquitous antimicrobials that are used both 
broadly and specifically for nosocomial gram-negative infections: 
beta-lactams (i.e. piperacillin/tazobactam, cefepime) carbapenems (i.e. 
meropenem, doripenem) [33].

Beta-lactams

Beta-lactam-resistant organisms have been reported in the literature 
as far back as the 1950s following the development of penicillin, as 
well as prior to its introduction into clinical use [34]. Predictably, 
the introduction of cephalosporins and other broad-spectrum beta-
lactams was followed by the same timeline of events [35-37]. Of 
greater concern is the increasing prevalence of extended-spectrum 
beta-lactamases (ESBL) in Pseudomonas species, Acinetobacter species, 
and Enterobacteriaceae that render current beta-lactam antimicrobials 
useless. A worldwide survey in 2004 collected 6156 gram-negative 
isolates from patients with intra-abdominal infections in 28 different 
countries. The overall rate of ESBL production was 17% among K 
pneumoniae and 10% among E coli isolates [38]. Similar results were 
reported by the Tigecycline Evaluation and Surveillance Trial global 
surveillance study in 2007 [39]. 

Numerous in vitro and in vivo investigations confirm that 
T>MIC is widely regarded as the main parameter that describes the
pharmacodynamic killing activity of beta-lactam antibiotics. The
%T>MIC required for bacteriostasis and bactericidal activity for
penicillins and cephalosporins is 30% and 50% and 35-40% and 60-70%,
respectively [16,22,40,41]. Evidence for %T>MIC endpoints for beta-
lactams that prevent the development of resistance in Gram-negative
organisms is currently sparse. For example, one in vivo experimental
study reported that resistant strains of Pseudomonas aeruginosa were
only detected in those animals receiving cephalosporins in which the
%T>MIC was less than half of the dosing interval [42]. Until further
evidence becomes available, it would be prudent to employ dosing
regimens designed at achieving concentrations greater than 4 times the
MIC for extended intervals to maximize the likelihood of eradicating
entire bacterial populations that may include resistant sub-populations
[43,44].

While CI dosing has been shown to be superior to intermittent dosing 

It has been suggested that bacteriostasis and bactericidal-based 
endpoints may not be adequate to treat serious infections [45,46]. 
Recent retrospective clinical data for critically ill patients suggest 
higher and longer antimicrobial exposures than those reported in 
experimental studies [47,48]. McKinnon et al. demonstrated that 
patients receiving a cephalosporin for serious infections with %T>MIC 
of 100% had significantly better clinical and bacteriological outcomes 
than patients with %T>MIC of <100%. Consequently, maintaining 
concentrations above the MIC for 90-100% of the dosing interval with 
continuous infusion (CI) or extended-infusion (EI) of antimicrobials 
has been suggested to ensure that minimum PK/PD targets are achieved 
[47,49,50]. Alternatively, time-dependent antimicrobials could be 
dosed more frequently to achieve higher %T>MIC but with obvious 
practical and convenience issues. Targeting a multi-fold of the MIC for 
extended durations can become difficult to achieve with intermittent 
dosing of rapidly clearing beta-lactams. This may be especially true 
when treating critically-ill patients with variable pharmacokinetics and 
infections due to potential pathogens with higher baseline MIC’s or 
greater resistant sub-populations. Two clinical studies provide evidence 
for unfavorable outcomes when PK/PD target attainment is not 
achieved in infections due to pathogens with elevated MIC’s. Bhat et al. 
demonstrated significantly worse 28-day mortality in subjects who had 
Gram-negative bacteremia with cefepime MICs of ≥ 8 μg/mL vs. those 
with MICs of <8 μg/mL (54.8% vs. 24.1%) [51]. In investigations of 
piperacillin-tazobactam for Pseudomonas aeruginosa bacteremia, Tam 
et al. demonstrated higher 30-day mortality in subjects with elevated 
MICs of 32 μg/mL or 64 μg/mL [52]. 
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in in vitro and in vivo experimental studies, numerous comparative 
clinical studies have demonstrated no significant differences in patient 
outcome [53-55]. This investigational group of studies is characterized 
by variety of study design archetypes, heterogeneous subjects, mixed 
infections, an array of outcome measures, and limited power [50]. An 
example of a reasonably designed larger comparative clinical study 
was performed by Lau et al. who investigated CI versus traditional 
intermittent dosing of piperacillin-tazobactam in 167 patients [56]. They 
reported cure rates of 86.4% and 88.4% for continuous infusion and the 
intermittent infusion, respectively. Similar microbiological results with 
no statistical difference was noted in a large variety of clinical trials [57-
60]. Recent meta-analyses also echo similar outcomes between CI and 
intermittent dosing of beta lactams across heterogeneous hospitalized 
patient populations [61-63]. Alternatively, prolonging the infusion 
time of intermittent dosing regimens has been suggested to enhance 
the %T>MIC without some of the CI-associated disadvantages such as 
drug stability, waste, and toxicity [48,50]. Recently, two retrospective 
clinical trials demonstrated advantages with piperacillin-tazobactam 
given as extended-infusion (4-hour infusion period) compared to 
traditional intermittent (30-minute infusion period) dosing regimens 
in collectively, 288 subjects. Both studies exhibited a statistically 
significant lower mortality in the EI groups (9.2% and 12.2%) versus 
intermittent dosing groups (17.9% and 31.6%) [48,64]. Additionally, 
a significantly lower length of stay was noted in the single-center 
cohort study with critically ill patients [48]. In another retrospective 
investigation, no difference was observed in 30-day mortality rates 
between patients who received EI piperacillin-tazobactam compared 
to historical controls who received intermittent infusions [65]. In 
addition, several publications report successful implementation of 
hospital wide dosing of extended infusion of piperacillin-tazobactam 
[66,67]. 

Carbapenems

The development of carbapenemases in gram-negative organisms 
with the ability to hydrolyze carbapenems was foreseeable. Since their 
introduction to clinical use in the 1980’s, carbapenems have widely 
been considered as the antimicrobials of choice for the treatment of 
infections due to resistant-Gram-negative organisms [68-70]. Following 
historical resistance trends, we now witness an alarming increase of 
pathogens resistant to carbapenems including outbreaks resulting 
in overwhelming morbidity and mortality [71-74]. Carbapenem 
resistance was reported in up to 4.0% and 10.8% in Escherichia coli 
and Klebsiella pneumoniae, respectively, in the National Healthcare 
Safety Network (NHSN) from isolates collected in 2006-2007 [75]. 
Surveillance of meropenem susceptibility in the Meropenem Yearly 
Susceptibility Test Information Collection Program report significant 
increase in non-susceptible clinical isolates of Klebsiella pneumoniae 
from 0.6% in 2004 to 5.6% in 2008 [76]. 

The pharmacodynamic activity of carbapenems, possessing the 
beta-lactam ring in their chemical structure, is best described by time-
dependent bactericidal activity. Therefore, the PK/PD parameter that 
is linked with carbapenems is the percent time that the unbound 
concentration exceeds the MIC (%T>MIC). Previous experimental in 
vivo studies have established that carbapenems achieve bacteriostasis 
and bactericidal maximal activities when %T>MIC of 20% and 40% are 
achieved, respectively [16,77,78]. Relative to beta-lactams, %T>MIC 
requirements are lower and may be due to their inherent potency 
and post-antibiotic effect. As discussed earlier for other beta-lactam 
antibiotics, the same general principles of maximizing the %T>Max 
continues to hold true for carbapenems for the same reasons. Thus, 

conventional dosing schemes may be modified to achieve a target 
%T>MIC through extended- or continuous-infusion dosing regimens. 
A few studies have demonstrated the potential application of CI of 
carbapenems with comparable outcomes to intermittent dosing in 
both experimental modeling and human investigations [58,79-82]. 
For example, a PK/PD study evaluated CI versus intermittent dosing 
of meropenem at low and high doses [82]. Utilizing Monte Carlo 
simulation, a population pharmacokinetic modeling technique, it 
was determined that the probability of target attainment against 
Pseudomonas aeruginosa was higher with CI and high dose regimens 
while no differences were noted between dosing regimens against 
Klebsiella pneumonia and Enterobacter cloacae. However, the potential 
utility of the CI dosing strategy is diminished by sparse data and the 
requirement of frequent intravenous bag exchanges or the use of cold 
pouches to prevent the rapid drug instability [83].

Given this latter limitation for CI dosing, alternative small and 
frequent dosing (i.e. 500 mg every 6 hours) of meropenem has been 
proposed. Several population pharmacokinetic studies utilized the 
Monte Carlo method to determine the target attainment probability 
of meropenem given as 500 mg every 6 hours and 1 gm every 8 hours 
against a variety of Gram-negative pathogens. Pharmacokinetic 
variables were obtained from healthy volunteers as well as simulated 
for varying renal function. The probabilities of the two dosing schemes 
were similar across the simulations [84,85]. Several clinical studies 
evaluating the same meropenem dosing schemes report similar findings 
with no statistical difference in in-hospital mortality, clinical success, 
length of stay, or treatment duration [86-88]. Interestingly, secondary 
pharmacoeconomic evaluations suggests some cost advantages with 
this alternate dosing. Despite these theoretical advantages, there is 
concern over the ability to attain adequate %T>MIC in critically-ill 
patients with variable pharmacokinetics or who are also infected by 
pathogens with potentially elevated MICs. 

With the beneficial characteristics of slightly longer half-lives 
and a relatively higher toxicity threshold, carbapenem PK/PD 
investigations have included the application of EI as well as increasing 
the dose. Extended-infusions of 3 and 4 hours (as opposed to 30 
minute infusions) for meropenem and doripenem, respectively, have 
been evaluated in multiple experimental model simulations. Li et al. 
developed a meropenem population pharmacokinetic model using 
patient data with intra-abdominal infections, community-acquired 
pneumonia, or ventilator-associated pneumonia [89]. Meropenem 
dosing regimens of 0.5, 1, and 2 grams over 30 minutes and 3 hours 
every 8 hours were simulated for a fixed susceptibility concentration 
of 4 µg/mL to represent the standard susceptibility breakpoints 
for Enterobacteriaceae, Acinetobacter species, and P. aeruginosa. 
Results indicated that the probability of attaining %T>MIC of 40% 
(minimum bactericidal threshold) was increased from 64% to 90% 
when the infusion was extended from 30 minutes to 3 hours for the 1 
gram dosing level. The highest attainment probability were observed 
for simulations of meropenem dosing regimens of 2 g every 8 hours 
administered as a 3 hour infusion for Acinetobacter species and P. 
aeruginosa. In a comparative population pharmacokinetic study, 
Lomaestro and Drusano demonstrated that 1 g of meropenem given 
every 8 hours as a 3 hour infusion achieved a higher target attainment 
rate against Pseudomonas aeruginosa than either meropenem at 
0.5 g or imipenem-cilastatin given as 0.5 g every 6 hours as a 1 hour 
infusion [90]. Similarly, Jaruratanasirikul et al. evaluated the %T>MIC 
attainment in 9 patients with ventilator-associated pneumonia (VAP) 
and in 8 patients with febrile neutropenia with bacteremia (FNB) who 
received meropenem consecutively as 1 g infused over 10 minutes, 1 g 
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infused over 3 hours and 2 g infused over 3 hours. At an MIC threshold 
of 4 μg/mL, the statistically different mean probabilities of %T>MIC of 
40% were 57%, 73%, and 86% in VAP and 75.7%, 99.24% and 99.96% in 
(FNB), respectively, for the consecutive dosing schemes [91].

Doripenem is a newer carbapenem that shares similar 
pharmacodynamic and pharmacologic properties as meropenem 
with the important distinctions that it has an approximately 2 fold 
lower MIC susceptibility profile, a lower propensity to be hydrolyzed 
by carbapenemases, and is more stable in intravenous solutions at 
room temperature [92-94]. In 0.9% sodium chloride and 5% dextrose 
solutions, meropenem is stable for 1 and 4 hours while doripenem is 
stable for 12 and 4 hours, respectively [95,96]. This increased stability 
potentiates the possibility of administering extended and continuous 
infusion dosing strategies for doripenem. A population pharmacokinetic 
study was performed during the early development of doripenem to 
discern optimal dosing strategies. Monte Carlo simulation revealed 
that dosing regimens simulated at 4-6 hour infusions produced higher 
probabilities of target attainment of %T>MIC of 35% for organisms 
with higher MICs [97]. A few population PK/PD studies report similar 
findings with increased probability of target attainment with prolonged 
infusion when targeting pathogens with elevated MICs [98-100]. These 
findings lead to a well-designed large clinical trial evaluating EI dosing 
of doripenem administered as 500 mg every 8 hours over 4 hours 
vs. intermittent dosing of imipenem [101]. This was a prospective, 
randomized trial in 531 subjects with ventilator-associated pneumonia 
across multiple institutions. Doripenem was found to be noninferior 
to imipenem in the primary efficacy measures of clinical success in 
both the clinical modified intent-to-treat analysis (59.o% vs. 57.8%, 
respectively) as well as in clinically evaluable subjects (68.3% vs. 
64.2%). Additionally, higher cure rates were observed for doripenem in 
subjects with higher Acute Physiology and Chronic Health Evaluation 
II scores and older ages.

Overall

Despite established relation between the pharmacodynamic activity 
and the clinically-relevant exposures of these antimicrobials, CI or EI 
dosing of beta-lactam and carbapenem antibiotics remains uncommon. 
The disparity between the evidence in preclinical experiments and 
clinical reports, the heterogeneity of study designs, the paucity of data 
from prospective clinical evaluations, and practical dosing design 
considerations contributes to the hesitancy of the clinician to shift 
treatment paradigms away from half a century of traditional dosing of 
time-dependent antimicrobials. 

PK/PD challenges 

Since the first description of the influence of pharmacokinetic 
exposure to the bactericidal activity of penicillin in the 1950, significant 
progress has been made to elucidate the role of PK/PD principles in 
the design and application of antimicrobial therapy for optimizing 
bacterial eradication [102]. There is also a growing body of literature 
with compelling evidence for the prevention of resistance emergence 
with PK/PD target attainment. However, a significant portion of this 
data comes from investigations in gram-positive organisms and with 
other antimicrobials such as fluoroquinolones [103]. Little progress 
has been made to elucidate the application of PK/PD principles in the 
prevention of resistance specifically for beta-lactams and carbapenems, 
widely accepted antimicrobials of choice for Gram-negative infections 
[104]. Thus, there is a potential that the PK/PD parameter that reflects 
resistance suppression may not be the same parameter that is associated 
with bacterial eradication [105]. In one of these investigations, Tam et 

al. demonstrated that meropenem dosing that resulted in Cmin (trough 
concentrations)/MIC ratios of less than 6.2 resulted in selection of 
resistant mutations in P. aeruginosa when tested in an in vitro hollow 
fibre model [106]. Evidence of negative clinical consequences from 
falling short of PK/PD targets and the difficulty in achieving parameter 
thresholds in infections due to resistant pathogens, emphasizes the 
need for research with the pharmacodynamic endpoint of preventing 
selection of resistance that confer MIC elevations [47,51,52]. This 
becomes a very challenging task given the necessity to account 
for a variety of factors. Examples of some of these factors include 
pharmacokinetic inter- and intra-individual variability, selection of 
genotypic or phenotypic measures of resistance, selection of the PK/PD 
parameter that correlates to the desired PD outcome, and application 
of alternate therapeutic options. Until more progress has been made 
for resistance prevention strategies in experimental and clinical studies, 
clinicians are challenged with translating experimental evidence of 
bacterial eradication to the bedside. 

Inter- and intra-patient pharmacokinetic variability renders 
the design of dosing regimens difficult when treating patients. The 
influence of volume of distribution and renal clearance can drastically 
change the ability of specific dosing regimens to achieve desirable PK/
PD targets. For instance, the rapid volume expansion that occurs early 
in septic patients can decrease the peak concentration that’s achieved 
with traditional dosing regimens resulting in overall reduced drug 
exposures and an abbreviated time for concentrations to fall below 
MICs [107-109]. As these patients develop acute renal dysfunction, 
the concentration-time profile may shift in favor of time-dependent 
drugs that have a component of renal clearance. However, these 
intricate clinical scenarios require a balanced approach of optimizing 
PK/PD target attainment with avoidance of toxicities. Several 
Monte Carlo simulations have incorporated varying degrees of renal 
function to populate their pharmacokinetic variances [110,111]. 
Volume of distribution becomes more complex when considering 
the clinical significance of reaching sites of infection with active drug. 
Pharmacokinetic assessments derived from serum concentrations may 
not necessarily reflect the concentration-time profile of antimicrobials 
at the site of infection (i.e. lung, bone, cns, skin, etc.). Cmax, absorption 
into the tissue, and clearance from the tissue can be dramatically different 
than serum concentration-time parameters [112,113]. Certainly 
indirect PK/PD associations can be made, but this pharmacokinetic 

There is a lack of prospective clinical trials that incorporate 
endpoint measures for the prevention of resistance in general, and 
specifically for Gram-negative organisms. One exception is a recent 
prospective clinical trial (mentioned above) that included resistance as 
a secondary endpoint in the comparative evaluation of the safety and 
efficacy of extended infusion of doripenem vs. traditional imipenem 
in patients with ventilator-associated pneumonia. This secondary 
subgroup analysis reported that 18% (5 of 28) of P. aeruginosa isolates 
had minimum inhibitory concentration  ≥ or = 8 μg/mL at baseline 
or following therapy in the doripenem arm compared with 64% (16 
of 25) in the imipenem treatment group. The authors concluded that 
one of the possibilities for this finding could be improved PK/PD 
target attainment with the doripenem extended infusion group [101]. 
There is a great need for more prospective clinical trials across different 
populations and for a variety of infections that utilize established PK/
PD parameters that are associated with the development of resistance. 
Furthermore, increased clinical evidence of the influence of collective 
PK/PD targets in combination therapies as well as duration of therapies 
on the prevention of resistance would contribute to the application of 
antimicrobial treatment strategies. 
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consideration is important in assessments of variability. Additional 
assessments must be made for the influence of protein binding in the 
utilization of pharmacokinetic parameters and their variability. It has 
been suggested that the unbound, free fraction of the drug primarily 
contributes to its pharmacodynamics activity [114]. Consequently, 
majority of recent experimental investigations account for this protein 
binding in their PK/PD simulations. Successful clinical experience with 
highly-bound drugs (>90%), however, suggests that this factor may be 
more complex than utilizing a free fraction percentage in modeling and 
necessitates further elucidation in vivo. 

Summary
Novel dosing strategies for beta-lactams that optimize 

pharmacokinetic/pharmacodynamic properties exhibit potential for 
improved clinical outcomes. Carbapenems exhibit a high probability of 
attaining its bactericidal and bacteriostatic pharmacodynamic targets 
with both standard and novel dosing regimens. Pharmacokinetic/
pharmacodynamic profiling is valuable in the design and application 
of antimicrobial dosing strategies to optimize clinical outcomes. 
Moreover, the need for expanded experimental and prospective clinical 
studies that incorporate resistance endpoints is magnified in the face of 
increasing resistance and decreasing development of novel antibiotics.
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