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Abstract
The traditional anti-convulsant drug Valproic Acid (VPA) has been found to be involved in suppressing cancer progression while 

modulating various cancer-associated signaling pathways. In particular, VPA acts as either a Histone Deacetylase (HDAC) inhibitor 
or a Notch signaling activator in suppressing tumor growth. VPA is less toxic, and by itself, has limited anti-tumor effects. Thus, VPA 
has been used as an adjuvant in combination with a variety of other anti-cancer agents for many types of cancers. These combination 
strategies display potential applications in cancer treatments. In particular, VPA could up-regulate certain G Protein-Coupled Receptors 
(GPCRs) in some cancer cells. Some of these GPCRs are highly expressed naturally in many cancer cells and these characteristics 
have been applied towards novel enhanced combination therapeutics with VPA and specific receptor-targeted cytotoxic peptide-drug 
conjugates.
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Introduction
Valproic Acid (VPA) is a branched short-chain chemical molecule 

(C8H16O2) (Figure 1) and has been used as an anti-convulsant drug 
for several decades [1,2]. In recent years, VPA has been investigated 
further for its potential application in cancer treatments [3-6] since its 
initial use in treatment of pediatric malignant gliomas [2]. Due to its 
less potent anti-cancer efficacy alone, VPA is more frequently used as 
an adjuvant in combination with other anti-cancer therapeutic agents 
[3,4,7,8]. The combination therapy displays more synergistic anti-
cancer effects than each individual agent alone. In particular, VPA has 
been found to enhance the expression of certain G Protein-Coupled 
Receptors (GPCRs) in certain cancers [9,10]. These characteristics 
could be applied in a combination treatment using VPA with receptor-
specific cytotoxic conjugates. In this combination therapy, VPA plays a 
critical dual role via acting as a direct tumor suppressor and an indirect 
tumor-suppressing enhancer of receptor-specific cytotoxic conjugates. 

VPA in anti-cancer treatment
VPA has been widely investigated for its anti-cancer efficacy in many 

cancers, including cervical cancer, prostate cancer, neuroblastoma, 
Medullary Thyroid Cancer (MTC), myeloma, colon cancer, glioma, 
leukemia, breast cancer, lung cancer, bladder cancer, melanoma, 
leukemia, glioblastoma, Renal Cell Cancer (RCC), esophageal squamous 

cell cancer, endometrial stromal sarcoma, osteosarcoma, Hepatocellular 
Cancer (HCC), gastrointestinal carcinoid, pheochromocytoma, 
mesothelioma, pancreatic cancer, head/neck squamous cell cancer, 
ovarian cancer, myeloma and cholangiocarcinoma [7,8,11-13]. VPA 
displays its effects in multiple cancer cell functions such as DNA 
damage, cell cycle arrest, cell apoptosis, differentiation, proliferation, 
and senescence as seen in serial in vitro studies. VPA is also involved 
with various associated signaling pathways [2,11,14]. Using serial 
in vivo studies, VPA is also found to suppress tumor growth, tumor 
angiogenesis and tumor metastasis [2,15,16]. VPA alone is currently 
under clinical evaluation in many cancers [7,8] but VPA has very 
limited effect due to its weak anti-cancer efficacy. Conversely, VPA has 
less toxic side effects and is more frequently used as an ideal adjuvant 
agent in combination with many other anti-cancer cytotoxic therapeutic 
agents. These combined therapeutics display synergistic anti-cancer 
effects discussed below.

VPA-mediated anti-cancer molecular signaling
VPA’s anti-cancer effect is involved in multiple signaling pathways 

such as the Wnt signaling pathway, PI3K/AKT pathway, p21WAF1/
CDKN1A pathway and MAPK/ERK [2,7,11,12,17-19]. VPA is believed 
most likely to act as a Histone Deacetylase (HDAC) inhibitor in 
mediating histone deacetylation and subsequent tumor suppression, 
along with its involvement in other signaling pathways [2,20]. Another 
critical signaling pathway, Notch signaling, is also believed to be 
involved in VPA-mediated tumor suppression [21-24]. It is not clear 
whether or how these two signaling pathways correlate or interact 
with each other in VPA-treated cancer cells. VPA could affect histone 
acetylation/deacetylation in many cases. VPA could also simultaneously 
modulate both signaling pathways in others. For instance, VPA up-
regulates Notch1 and enhances acetylation of histone H3 in cervical 
cancer cells [9,25] and in Neuroblastoma (NB) cells [26]. However, 

Figure 1: The schematic structure of valproic acid (C8H16O2, MW: 144).
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VPA was found to suppress cell growth directly via the involvement 
of Notch signaling in others such as follicular thyroid cancer cells and 
pancreatic carcinoid cells [21,27]. We also observed that VPA up-
regulates Notch1 expression and cell growth arrest in carcinoid cells, 
without the involvement of HDAC3 and HDAC4 (data not shown). 

VPA acts as a histone deacetylase (HDAC) inhibitor 

HDACs deacetylate histones via removing acetyl groups from 
lysine residues of histones. Histone deacetylation could block gene 
transcription, initiate cancer progression and lead to drug resistance 
[28,29]. VPA could induce HDAC inhibition, histone acetylation 
and hyperacetylation accumulation, and reverse HDAC-mediated 
transcriptional repression and subsequently mediate various cell 
functions such as cell differentiation and cell apoptosis [28,30-32]. 
In 2001, Klein and co-workers identified that VPA acted as a HDAC 
inhibitor [19] via targeting HDACs including HDAC 1, 2, 3, 4, 5, 6, 7, 
8, 9 and 10 in the four major HDAC classes with 18 different HDAC 
members [28,32,33]. In most cases, VPA was reported mainly to induce 
the acetylation of histones H3 and H4. VPA has been identified in 
mediating histone acetylation/deacetylation and resulting in tumor 
suppression in many different cancer cells such as colon cancer cells, 
glioblastoma cells, neuroblastoma cells, cervical cancer cells, glioma 
cells, leukemia cells, teratocarcinoma cells, prostate cancer cells, 
bladder cancers cells and endometrial stromal sarcoma cells [7,8,30]. 
Besides its use in anti-convulsant treatments, the characterictics of VPA 
in decreasing deacetylation and increasing acetylation could be used 
as a strategy for treatment of cancers. In some cases, however, VPA 
does not always act as a HDAC inhibitor and instead acts as a HDAC 
activator to upregulate HDAC activity in glioma C6 cells [10] and also 
to reduce histone H3 expression but not to affect H3 acetylation in renal 
cell cancer Caki-1 cells [34]. 

VPA acts as a Notch signaling regulator

Notch signaling plays a critical role in determining cell fates and is 
involved in cancer progression. Notch signaling can play different roles 
in different cancers, acting as a tumor suppressor in certain cancers 
and an oncogene in some others. VPA is involved in regulation of 
the Notch signaling pathway and the subsequent tumor progression 
[22,23,26,35,36], playing different roles in regulating Notch signaling 
in a cancer type-dependent manner. Notch signaling acts as a tumor 
suppressor in certain NET tumors such as Medullary Thyroid Cancer 
(MTC) [21,22,37] and certain non-NET tumors such as cervical cancer 
[23,38-40]. In these cancers, VPA was found to act as a positive Notch1 
signaling regulator to subsequently induce tumor suppression. For 
instance, in NET tumors, VPA could activate Notch1 signaling, regulate 
the neuroendocrine phenotype with down-regulation of neuroendocrine 
markers CgA and ASCL1, and further induce cell growth arrest and 
cell differentiation in phenochromocytoma cells, MTC cells, SCLC cells 
and carcinoid cells [21,22,35,36]. In pancreatic carcinoid BON cells, 
VPA could induce cell growth arrest via modulating Notch1 activation 
and the subsequent increase in p21 and decrease in ACSL [21]. In non-
NET tumors such as thyroid cancer, cervical cancer, and osteosarcoma, 
Notch1 signaling also plays a tumor-suppressive role [9,23,25,27]. VPA 
mediates Notch1 upregulation and enhances histone H3 acetylation in 
cervical cancer Hela cells, with an increase of tumor suppressor p21 
in a p53-independent manner [9,25]. In follicular thyroid cancer cells, 
Notch1 knockdown blocks VPA-induced anti-cell proliferation and 
reverses VPA-mediated expression of p21 and cyclin D1, indicating 
VPA induces cell cycle arrest via activating Notch1 signaling [27]. 
VPA could also act as a negative Notch regulator in certain cancers. 
Notch signaling is found to play an oncogenic role in Hepatocelluler 

Cancer (HCC) HEP3B cells [41]. In the HCC HuH7 cell line, VPA 
induced Notch1 down-regulation and caspase-3 up-regulation, with 
suppression of cell proliferation and tumor growth [24]. 

VPA in combination with cytotoxic agents
As described above, due to its limited anti-cancer efficacy alone 

and less toxic side effects, VPA has been more frequently used as an 
adjuvant agent in combination with other anti-cancer cytotoxic agents. 
VPA has been used in combination therapeutics with various other 
compounds, some of which are FDA-approved market drugs [7,8]. These 
combination treatments display more anti-cancer effects compared to 
each alone [9,42,43], with some under clinical investigations [7,8,42]. 
For instance, VPA was used in combination with the topoisomerase I 
inhibitors Camptothecin (CPT), its new analog irinotecan (CPT-11) 
or CPT conjugates for treating many cancers such as breast cancer, 
hepatocellular cancer, cervical cancer, lymphoma, thyroid cancer, 
pancreatic carcinoid, osteosarcoma and ovarian cancer, displaying 
synergistic in vitro anti-proliferative and in vivo anti-tumor effects 
[7,9,44]. In particular, the VPA/CPT combination is under phase III 
clinical evaluation for treating patients with cisplatin-resistant ovarian 
cancers and recurrent/metastatic cervical cancers [8]. The combinatin 
of VPA and All-Trans Retinoic Acid (ATRA, the carboxylic acid form 
of vitamin A, used to treat acute leukemia) was used to treat certain 
cancers such as cervical cancer, head/neck squamous cell cancer and 
leukemia and displayed synergistic anti-cancer effects [7,14,45,46]. 
VPA was also used to treat leukemia and lymphoma in combination 
with the anti-metabolite clofarabine, cytarabine, AZA, Aza-dC (5-aza-
2’-deoxycytidine or decitabine), enzastaurin, rituximab, IFN-alpha, 
AY4 and CPT conjugates [7-9,47,48]. The combination therapeutics of 
VPA/ATRA, VPA/AZA and VPA/Aza-dC are under clinical evaluation 
for treating leukemia [7]. Moreover, VPA in combination was used 
to treat many more cancers such as neuroblastoma with the COX2-
selective inhibitor celecoxib, glioblastoma with the mitotic inhibitor 
paclitaxel, prostate cancer with rapamycin (mTOR) inhibitor RAD001, 
cholangiocarcinoma with gemcitabine, glioma with temozolomide, 
renal cell cancer with AEE788, colorectal cancer with rexinoid IIF, 
lung cancer with the Ras inhibitor FTS, melanoma with dacarbazine, 
mesothelioma with lovastatin and doxorubicin, glioblastoma with 
sorafenib and bortezomib, thyroid cancer with doxorubicin, breast 
cancer with CPT and tamoxifen as well as neuroblastoma with ellipticine 
and celecoxib [3,4,7,8,13,34,44,45,49,50]. Many of these combination 
treatments show synergistic functions and enhanced anti-cancer effects 
while reducing the toxic side effects in some organs that result from a 
single specific high-dose drug, or the multi-drug resistance of cancer 
cells resulting from long-term treatments. VPA, in combination with 
multiple anti-cancer agents, is currently under clinical investigations 
for treating various types of cancers [8,51]. 

VPA in combination with receptor-targeted cytotoxic 
peptide-drug conjugates

While displaying tumor suppression, VPA was also found to enhance 
the expression of certain GPCRs in cancer cells. Thus, these unique 
dual functions displayed by VPA could result in a novel combination 
therapy of VPA with a receptor-specific cytotoxic conjugate and this 
combination could enhance the anti-tumor efficacy of the conjugate 
via increasing its quick internalization. This may display unique and 
significant advantages compared to the conventional combination 
therapeutics of VPA and the other agents described above.

VPA acts as a G protein-coupled receptor (GPCR) regulator 

GPCRs belong to a large family with nearly 1000 members and 
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consist of seven trans-membrane domains, with three extracellular 
loops and a N-terminus outside the cell membranes and with three 
intracellular loops and a C-terminus inside (Figure 2). These receptors 
are involved in various physiological and pathological processes and 
their associated signaling pathways. They are the critical drug targets 
associated with 30-50% of global market drugs. VPA could regulate the 
expression of certain GPCRs in some cancer cells and their receptor-
associated downstream signaling pathways. For instance, VPA was 
found to induce an increase of melatonin MT1 and MT2 receptors in 
glioma C6 cells [10,52] and breast cancer MCF-7 cells [53]. VPA was 
also found to increase the expression of CXCR4 in RCC Caki-1 cells. 
In prostate cancer cells, VPA could decrease intracellular CXCR4 and 
increase CXCR4 accumulation on the cell surface [54]. However, in 
AML cells, VPA exerts different effects on CXCR4 depending on cell 
maturation status [55]. VPA decreased CXCR4 in more differentiated 
CD34-negative AML cells, and increased CXCR4 in highly CD34-
positive, immature AML cells [55]. VPA also decreased the expression 
of beta-adrenergic receptor (β-AR) and β-AR-stimulated cAMP 
production and modulated the expression of Protein Kinase C (PKC) 
[56] while it conversely increased serotonin-2A(5-HT2A) receptors 
in rat glioma C6 cells [57]. VPA-induced increase of SSTR2 was also 
observed in some cancer cells such as pancreatic carcinoid BON cells, 
pulmonary carcinoid H727, HCC HTB-52 cells and MTC TT cells. VPA 
could also up-regulate the expression of GRPR [9] in many other cancer 
cells such as HCC HTB-52 cells, cervical cancer Hela cells [9], SCLC 
DMS53 cells, pancreatic carcinoid BON cells, pulmonary carcinoid 
H727 cells and mid-gut carcinoid CNDT2 cells. VPA was found to 
affect Vasoactive Intestinal Peptide (VIP) receptors PAC1, VPAC1 and 
VPAC2 in cancer cells. VPA could increase PAC1 in cervical cancer 
Hela cells and SCLC DMS53 cells, VPAC2 in carcinoid BON cells and 
MTC TT cells, and decrease VPAC2 in Hela cells. Many of these cell 
surface receptors such as somatostatin receptors, Vasoactive Intestinal 
Peptide (VIP) receptors, melatonin receptors and bombesin receptors 
[7,52,55,56] have their specific ligands, agonists/antagonists and even 
specific antibodies. These peptides and antibodies could be used as 
drug delivery vehicles when coupled with anti-cancer drugs and thus 
form new receptor-targeted peptide- or antibody-drug conjugates. 
Especially, certain of these receptors such as SSTR2 and GRPR are 
highly expressed in many tumor cells or tumor blood vessels [58-60] 
and have been used for receptor-targeted therapeutics. Put together, 
these findings could provide a novel strategy of receptor-targeted 

therapy by combining VPA with these receptor-targeted anti-cancer 
chemotherapeutics such as peptide-drug conjugates and antibody-drug 
conjugates. 

Receptor-targeted peptide-drug conjugates 

Modified long-acting peptide analogs have already been used as 
drug delivery vehicles by being coupled with various small molecule 
anti-cancer agents to form cytotoxic peptide-drug conjugates (Figure 
3). These new peptide-drug conjugates could target the specific GPCRs 
on cancer cell surfaces and quickly internalize drugs of interest inside 
cells [60]. Moreover, these conjugates have been demonstrated capable 
of improving the non-specific small molecule agent’s anti-cancer 
efficacy while reducing severe toxic side effects and multiple drug 
resistance [61,62]. For instance, cytotoxic peptide-drug conjugates such 
as SSTR2-specific cytotoxic conjugates DOX-SST, COL-SST and CPT-
SST, and the GRPR-specific cytotoxic conjugates CPT-BN and DOX-
BN [61,63] display more effective anti-tumor activity in various tumors 
[61,62]. The increase of the specific receptor density will accelarate the 
internalization of these peptide-drug conjugates and further improve 
the anti-cancer efficacy of drugs.

VPA in combination with cytotoxic peptide-drug conjugates

As described above, VPA could function as a tumor suppressor and 
a receptor activator in the same cancer cells. VPA-induced increase of 
receptor density could more quickly promote cell internalization of these 
receptor-targeting conjugates and further enhance their anti-tumor 
ability. Thus, the combination application of peptide-drug conjugates 
and VPA may provide great opportunities to improve the anti-tumor 
efficacy compared to each alone. Indeed, it has been demonstrated that 
VPA-induced receptor up-regulation could dramatically enhance the 
anti-cancer efficacy of these receptor-targeted therapeutic agents [9]. 

Currently, investigators concentrate more interest on peptide-drug 
conjugates that target GPCRs, like SSTR2 and GRPR, due to these 
receptors having been identified as highly expressed in many cancer 
cells. VPA was found to enhance the expression of abundant SSTR2 and 
GRPR in natual cancer cells such as cervical cancer cells, carcinoid cells, 
SCLC cells and hepatocellular cancer cells as described above. Thus, 
a combination therapy with VPA and SSTR2-targeted cytotoxic SST-
drug conjugates (such as CPT-SST, DOX-SST, COL-SST), or VPA and 
GRPR-targeted cytotoxic BN-drug conjugates (such as CPT-BN, DOX-
BN, COL-BN) may possibly be applied in treating these cancers. It has 
been observed that the combination of VPA and the GRPR-targeted 
CPT-BN conjugate additively suppress in vitro cell proliferation in 
leukemia MOLT-4, Jurkat cells, osteosarcoma U2OS cells, carcinoid 
BON cells and CNDT2 cells. We also have observed that the 
combination of VPA and another SSTR2-targeted CPT-SST conjugate 
could enhance the cell proliferative suppression in various cancer cells, 

Figure 2: The schematic structure of the G Protein-Coupled Receptors 
(GPCRs). GPCRs belong to a large gene family with nearly 1000 members. 
They consist of seven trans-membrane domains, three extracellular 
loops and three intracellular loops with an N-terminus at outside and a 
C-terminus at inside.

Figure 3: The schematic structure of a peptide-drug conjugate consisting 
of a peptide carrier, a small anti-cancer molecule of interest and a spacer.
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including cervical cancer Hela cells, carcinoid BON cells, SCLC DMS53 
cells, HCC HTB-52, HB8064 cells, pancreatic cancer CFPAC-1 cells, 
colon cancer HT-29 cells, ovarian cancer OVCAR8 cells, SKOV3 cells, 
MTC TT cells, prostate cancer DU-145 cells and PC-3 cells, leukemia 
MOLT-4 and Jurkat cells [unpublished data]. The in vivo studies further 
confirm their synergitic suppressive effects on tumor growth [9,43]. 
For instance, VPA could act as a tumor suppressor and up-regulate the 
SSTR2 that is highly expressed in cervical cancer Hela cells. Based on 
this, VPA and the SSTR2-targeted conjugate COL-SST, used at much 
lower doses, display a much more synergitic effect on cervical cancer 
Hela tumor growth than did each single one given at higher doses 
[7,43]. Similar results were also observed with the treatment of VPA 
and another conjugate CPT-SST in Hela tumors in xenografts [9]. The 
synergitic effects of VPA and COL-SST, or VPA and CPT-SST were also 
observed in treating pancreatic carcinoid BON tumors and ovarian 
cancer OVCAR8 tumors [unpublished data]. These findings suggest 
that VPA-mediated receptor up-regulation could increase the uptake 
and anti-tumor efficacy of receptor-targeting conjugates.

Conclusion
VPA has less toxic side effects on patients and also has broad but 

limited anti-cancer effects on many cancers. Thus, VPA is a potential 
anti-cancer adjuvant in combination with other anti-cancer agents. In 
particular, with the characteristics of receptor-expressing enhancement, 
VPA in combination with receptor-targeted cytotoxic peptide-drug 
conjugates could be a potential anti-cancer approach. 
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