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Introduction
Statins are well known drugs to reduce cholesterol levels in the body 

by inhibiting HMG CoA reductase enzyme. Inhibition of HMG-CoA 
reductase is rate limiting step in mevalonate pathway. Intermediate and 
downstream products of this pathway including isoprenyl sub units 
are essential for critical cellular functions such as membrane integrity, 
cell signaling, protein synthesis, and cell cycle progression [1]. Cancer 
cells use this pathway to upregulate key essential molecules for tumor 
initiation, growth, and metastasis. By targeting the mevalonate pathway, 
statins exert growth inhibitory activity in cancer cells evident from 
in vitro and animal studies [2]. Protein prenylation is necessary for 
anchoring of proteins to cell membranes, protein-protein interactions 
and localization [3]. The isoprenoid intermediates of mevalonate 
pathway, farnesyl and geranyl-geranyl pyrophosphate are essential 
for post-translational modification of variety of intracellular proteins 
including Rho, Rac, and Ras. The two isoprenyl units activate different 
proteins in cells mediating cell proliferation and survival [4].

Post translational modifications of proteins determine their 
functionality in eukaryotic cells. Proteins undergo different kinds of 
post translational modification and lipid modifications are one of them 
[5,6]. It is found that prenylation (lipid modification) of proteins like Ras 
activates them and lead to cancer [2,7-9]. Prenylation occurs at carboxy 
terminal of protein and aids in binding or docking of the protein to the 
cell membrane or other cellular organelles. Prenylated proteins increase 
uncontrolled proliferation of cells and decrease apoptotic factors. 
Inhibition of specific proteins’ prenylation may show better therapeutic 
values in cancer patients [10,11].

According to clinical studies, continuous supplementation of statins for 
more than 5 years reduced colorectal cancer risk by 47%. But, the patient 
factors like age, sex and ethnic groups are to be taken into consideration 
for better outcome [12]. In a similar study, statins were administered for a 
period of 4 years and it decreased cancer occurrence by 20% [13]. However, 
limitations are suggested to use statins for prolonged period of time due to 
their nonspecific toxicities in body. The high dose of statins may outweigh 
unwanted effects to the therapeutic outcomes [14]. As statins are critical 
regulators of many cell essential proteins and their activation, increasing 
evidence is available to show their use in cancer prevention and treatment. 
Statins demonstrated their anticancer activity in melanoma, glioma, 
neuroblastoma, and leukemia cell lines [1].
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Cohort studies (pharmacoepidemiologic survey) in which patients 
were analyzed based upon their statins use indicate their pharmacological 
benefit of improving cancer patient survival [15]. More than 300,000 
patients with cancer were identified for their statins use in a period 
and divided into groups as statin users, nonstatin users and nonusers. 
Leukemia, lung and renal cancer patients who have taken statins before 
diagnosis showed high overall survival rate. At the same time, statins 
and bisphosphonates combination used group of patients were also 
associated with increased survival compared to that of no treatment 
group. This indicates that the statins use alone or in combination 
can affect isoprenylation of compounds inside the cell to exert their 
anticancer activity [15]. Further clinical investigation is needed to better 
support the data and the pharmacological benefit of statins.

Statins with Prenylation Inhibitors
Statins and prenylation inhibitors are the two different drugs used 

to inhibit the prenylation of proteins at different levels. The prenylated 
proteins which are important in cancer include Ras, Heterotrimeric 
G proteins and Rab proteins [16,17]. When statins and prenylation 
inhibitors are used in combination, statins decrease the pool of isoprenyl 
subunits in the cell and at the same time prenylation inhibitors decrease 
transfer of any isoprenyl units to the proteins. This action is synergistic 
[18,19]. Statins and prenylation inhibitors are acting at same pathway 
but at different stages. Synergistic combination also decreases the dose 
of individual compounds required for showing the therapeutic action 
and lesser associated toxicities.

Ras is a small G protein. The prenylation of Ras is important 
for its malignant action [20,21]. Ras undergoes lipid modifications 
(prenylation) at the carboxy terminal and further its oncogenic activity 
of Ras is increased leading to cancer. Ras undergoes two types of lipid 
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modifications; they are farnesylation and geranylgeranylation [22]. 
Inhibition of Ras prenylation leads to anticancer activity. Farnesyl 
Transferase Inhibitors (FTIs) act competitively with farnesyl transferases 
and inhibit the farnesyl group attachment to the proteins and block the 
protein activity. FTIs can inhibit farnesylation of Ras, Rab and different 
proteins. FTIs inhibit the growth of Ras-dependent tumor cells [23,24]. 
And also, FTIs reduce Vascular Endothelial Growth Factor (VEGF) 
expression in mice and so reduces angiogenesis in cancer [25,26]. Statins 
when tested in clinical trials, the blood concentration was achieved in 
between 0.1-3.9 μM [27]. But concentrations above 3.9 μM are essential 
for anticancer activity of Statins. When given with FTIs the combination 
gave better therapeutic results in different types of cancers.

Cancer is heterogeneous group diseases and can originate from any 
part of the body [28-31]. It consists of uncontrolled proliferated cells that 
vary in morphology, biology, and response to therapy [32,33]. Even there 
are multiple treatment options for cancer, they are still not sufficient to 
treat all the types of cancer completely without tumor relapse, recurrence 
or metastasis. During progression, cancer involves several mutations and 
abnormalities resulting in multiple clones in same tumor [34-38]. Hence 
combination treatment is one of the better options to target the tumor 
at multiple points at same time. GTIs like GGTI-2Z [(5-nitrofuran-
2-yl)methyl-(2Z,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-
tetraenyl-4-chlorobutyl(methyl)phosphoramidate] were developed 
and tested in vitro with combination of Lovastatin [3]. GGTI-2Z is a 
geranylgeranyl phosphate derivative. This combination was able to 
inhibit the proliferation of STS-26T malignant peripheral nerve sheath 
tumor cells synergistically. The inhibition was due to the arrest of G0/
G1 phase of cell cycle.

Statins with γ-tocotrienol
Vitamin E consists of eight isoforms and γ-tocotrienol is one of 

them bearing potent antitumor activity when tested in vitro [39-41]. 
It has very little or no toxicity on normal cells and so can be used in 
cancer treatment safely. γ-tocotrienol also showed its anticancer activity 
in combination studies with statins and celecoxib [42]. The combination 
acts synergistically and can avoid the myotoxicity associated with high 
dose statins monotherapy. Statins and γ-tocotrienol both act on HMG-
CoA pathway. Statins are the inhibitors of HMG-CoA reductase enzyme 
and γ-tocotrienol causes down regulation of HMG-CoA by affecting 
post transcriptional modifications of enzyme [43]. Here, γ-tocotrienol 
showed its combination synergistic activity with simvastatin, lovastatin 
and mevastatin at low doses. Combination of tocotrienol with statins 
induced cell cycle is arrested at G1 phase, and decreased levels of cyclins 
and cyclin dependent kinases [43,44]. Combination of γ-tocotrienol with 
statins inhibited the cyclin D1, CDK2 and further hyperphosphorylated 
Rb protein. Cyclin D1 combines with CDK4 or CDK6 during the G1 
to S transition phase, causes hyper phosphorylation of Rb protein. This 
leads to tumorigenesis [44]. In many breast cancers Cyclin D1 is over 
expressed [45]. As γ-tocotrienol with statins is reducing the levels of 
cyclin D1, this combination treatment may be a promising approach for 
treating breast cancer in women. This combination is also inhibiting the 
Akt and MAPK pathways. γ-tocotrienol along with statins is increasing 
the p27 expression and inhibiting the CDKs [44].

γ-tocotrienol also works in colon cancer cells synergistically 
with atorvastatin when tested in vitro [46,47]. This combination 
decreased the RhoA protein concentration in the cell membrane by 
inhibiting the geranylgeranylation of RhoA and caused cell cycle arrest. 
Membrane binding of RhoA is essential for G1 to S phase transition 
of cells [48]. Instead of acting on RhoA protein, this combination also 

induced apoptosis by caspase 3 activation, PARP cleavage and DNA 
fragmentation.

Statins with NSAIDS
Non-steroidal Anti-inflammatory Agents (NSAIDS) are the 

cyclooxygenase inhibitors. Cyclooxygenase-2 (COX-2) inhibition can 
affect tumor cell survival, angiogenesis and metastasis [49,50]. NSAIDS 
also work through COX-independent mechanisms [51]. They can be 
used not only as anti-inflammatory agents but also as anticancer drugs, 
especially in colorectal cancer [52-54]. But the safety and efficacy are 
the two main factors which are not evaluated well [55,56]. NSAIDS can 
be used in cancers of breast, esophagus, stomach and prostate. Sulindac 
showed very good results when applied in adenomatous polyps [57]. It 
reduced the size and number of adenomatous polyps. Aspirin decreased 
the number of adenomas when tested in colorectal adenomas. However, 
NSAIDS required high dose administration to exert their anticancer 
activity. Long term use may cause gastro intestinal and cardiovascular 
adverse effects. To avoid this problem, we can combine the NSIADS with 
other chemotherapeutic agents and can reduce their dose [58].

In a population based case control study, aspirin is used in 
combination with atorvastatin and simvastatin. This combination 
reduced the risk of colorectal cancer by 62% if used for 5 or more years 
[58]. Moreover, NSAIDS with statins also lowers the risk of prostate 
cancer if used for 5 years [59]. In immune deficient mice injected 
with androgen independent PC-3 prostate cancer cells, celecoxib and 
atorvastatin delayed tumor occurrence significantly and also decreased 
the tumor size in mice bearing tumors [60]. In azoxymethane induced 
colon carcinogenesis rat model, the low dose combination of atorvastatin 
and celecoxib decreased the incidence of adenocarcinomas by 71% [61]. 
Atorvastatin combination with celecoxib decreased the membrane 
association of RhoA [58,62]. Here, atorvastatin is preventing the 
prenylation of RhoA and celecoxib is synergizing the effect and causing 
cell cycle arrest. This may be due to inhibition of negative effect of RhoA 
on p27Cip1/waf1 and p27Kip1. The treatment also induces apoptosis in 
cancer cells by inhibiting PDK1, and PI3K phosphorylation [62].

Statins with Doxorubicin
P-glycoprotein (P-gp) inhibitory property of statins is useful for its 

combination treatment with other chemo therapeutic agents [63]. P-gp 
is a glycosylated membrane associated multi drug resistant protein and 
responsible for the decreased drug concentration in multi-drug resistant 
cells [64]. P-gp mediated mechanism pumps drug out of the cell and 
the desired drug concentration inside the cell is regulated. Doxorubicin 
is an antibiotic and used in the chemotherapy of variety of cancers. 
When doxorubicin is used along with lovastatin in ovarian cancer 
cells, the statins sensitized the cells to doxorubicin and potentiated its 
anticancer activity synergistically. By blocking the drug efflux mediated 
by P-gp, Lovastatin increases the doxorubicin concentration inside the 
cells [63]. Simvastatin, atorvastatin or lovastatin inhibit the P-gp in 
high concentration [65,66]. Statins in combination with doxorubicin 
in human neuroblastoma cells (SH-SY5Y and STA-NB-10 cells) 
increased the concentration of doxorubicin inside the cancer cells [67]. 
Doxorubicin further caused the apoptosis. Lovastatin also decreased 
the P-gp levels in KG1a-leukemia cells and further increased the 
daunorubicin concentration inside the cell [68].

Statins are also able to decrease the glycosylation of P-gp. P-gp is 
present in two forms, fully glycosylated species (~180 kDa) and core 
glycosylated species (~140 kDa) [69]. Simvastatin and Atrovastatin are 
able to decrease the fully glycosylated form of P-gp. The core glycosylated 
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P-gp cannot be folded properly and cannot transport the drug out of 
the cell. The glycosylation inhibitory action of statins may be due to 
the inhibition of dolichol synthesis [2]. So, statins decrease the P-gp 
content of the cell by two mechanisms.

Statins with FOLFIRI
In phase-II clinical study, simvastatin was tested in combination 

with FLOFIRI. FOLFIRI chemotherapy includes the administration of 
irinotecan, 5-fluorouracil and leucovorin. FOLFIRI treatment is used in 
colorectal cancer chemotherapy as a first line treatment. Combination 
increased the Time-to Progression (TTP) of colorectal cancer. At the same 
time, there is no increase in toxicity because of adding simvastatin [70].

Statins Effect on PSA Levels
Prostate Specific Antigen (PSA) is present in the serum of healthy 

men. PSA levels are increased beyond certain level in several prostate 
disorders or prostate cancer. It is evident that use of higher doses of 
statins can reduce the risk of advanced prostate cancer in men [71,72]. 
In a study, long term use of statins decreased the PSA levels by 42% 
[73]. Statins dependent decline in PSA levels may be the reason for 
reduced risk of advanced prostate cancer. Statins may reduce the risk 
of advanced prostate cancer by altering the prostate biology [74]. 
Reduction in the cholesterol bodies decreases the amount of membrane 
signaling domains in prostate [75]. Statins when given reduced the LDL 
levels by 28-41% and PSA levels are decreased significantly at the same 
time. Further studies are needed to understand whether the statins are 
influencing prostate cancer diagnosis by altering PSA levels.

Conclusion
Statins can be used as better chemotherapeutic agents in the 

future. Future directions should concentrate more on combination of 
statins with other anticancer agents, molecular targeted agents, and 
radiotherapy. They can also be used to prevent cancer occurrence, and 
in maintenance therapy.
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