

Commentary

Antibiotic Resistance in Bacterial Pathogens: Evolution, Spread, and Solutions

Edward Huang*

Department of Infectious Diseases and Bacteriology, Eastern Lakes University, Suzhou, China

DESCRIPTION

Bacterial pathogens have evolved ways to survive antibiotic treatments that once were effective. Resistance arises by mutation of existing genes, acquisition of new genes via plasmids, transposons or bacteriophages, or changes in regulation of expression. For example, *Staphylococcus aureus* strains resistant to methicillin produce altered penicillin-binding proteins; Enterobacteriaceae may carry beta-lactamases that degrade carbapenem antibiotics; Pseudomonas aeruginosa can overexpress efflux pumps that expel drugs from inside bacterial cells. Each mechanism reduces drug effectiveness and complicates treatment.

Spread of resistant bacteria occurs in clinical settings, agricultural environments, community spaces. Use of antibiotics in livestock encourages selection of resistant strains that can pass to humans *via* food or water. Hospitals, with high antibiotic usage and much swelling of patient populations, are breeding sites for multidrug resistant organisms. Insufficient sanitation, or lack of strict infection control measures allow transfer between patients or surfaces to act as reservoirs for pathogens.

Predicting which bacteria will resist certain drugs requires monitoring gene prevalence and patterns of drug use. Laboratory surveillance including sensitivity testing, molecular detection of resistance genes, and epidemiology of patient outcomes are essential. Where results show resistance high, clinicians avoid standard drugs and choose alternatives-even if more expensive or with more side-effects. Stewardship programs promote rational prescription of antibiotics, limit overuse, discourage self-medication and omit unnecessary prophylactic courses.

Treatment protocols must adapt. Combination therapy may be more effective: using two drugs with different modes of action reduces chance bacteria survive both. Old drugs sometimes regain usefulness when resistance mechanisms impose fitness cost on bacteria; rotating among drug classes can reduce selective

pressure. Development of new antibiotics remains a long process; many promising compounds under trial target cell wall synthesis, protein synthesis, or DNA replication. Some agents may evade known resistance mechanisms by avoiding recognition by existing enzymes.

Prevention of resistance spread involves cleaning surfaces in hospitals, washing hands, using sterile instruments, isolating infected patients when needed. In agriculture, reducing antibiotic use for growth promotion, employing hygiene in animal rearing, and preventing infections in livestock lowers requirement for antibiotic treatment. Proper disposal of pharmaceutical waste and monitoring of environmental antibiotic residues reduce exposure of environmental bacteria to low drug concentrations, which otherwise select for resistance.

Genetic studies show that resistance genes often cluster in mobile genetic elements; plasmids may carry several resistance determinants, moving between unrelated species. Horizontal transfer in soil, water or inside human microbiome spreads genes widely. Bacteria in biofilms often resist antibiotics more than free-living cells: reduced penetration, slow growth, presence of persister cells all contribute.

CONCLUSION

Bacterial resistance to antibiotics is a growing problem driven by evolutionary capacity of microbes, misuse of drugs, and insufficient control measures. A combination of surveillance, prudent drug use, hygiene, novel therapies and public policy is required to maintain ability to treat bacterial infections successfully. Emerging tools include phage therapy: bacteriophages that infect and kill bacteria may act where antibiotics fail. Alternatives such as antimicrobial peptides, inhibitors of resistance enzymes, or agents that disrupt biofilms are under study. Diagnostic tests that quickly identify resistance profile at point of care allow treatment to target resistant bacteria early, reducing use of broad spectrum drugs which tend to select for resistance.

Correspondence to: Edward Huang, Department of Infectious Diseases and Bacteriology, Eastern Lakes University, Suzhou, China, E-mail: edward.huang@elu.cn

Received: 24-Mar-2025, Manuscript No. JBP-25-29943; Editor assigned: 26-Mar-2025, Pre QC No. JBP-25-29943 (PQ); Reviewed: 09-Apr-2025, QC No. JBP-25-29943; Revised: 16-Apr-2025, Manuscript No. JBP-25-29943 (R); Published: 23-Apr-2025, DOI: 10.35248/2155-9597.25.16.537

Citation: Huang E (2025). Antibiotic Resistance in Bacterial Pathogens: Evolution, Spread, and Solutions, Treatment. J Bacteriol Parasitol. 16:537.

Copyright: © 2025 Huang E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.