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ABSTRACT
 Multiple lines of evidence currently indicate that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

gains entry into human host cells via a high-affinity interaction with the angiotensin-converting enzyme 2 (ACE2)

transmembrane receptor. Research has further shown the widespread expression of the ACE2 receptor on the surface

of many different immune, non-immune and neural host cell types, and that SARS-CoV-2 has the remarkable

capability to attack many different types of human-host cells simultaneously. One principal neuroanatomical region

for high ACE2 expression patterns occurs in the brainstem, an area of the brain containing regulatory centers for

respiration, and this may in part explain the predisposition of many COVID-19 patients to respiratory distress. Early

studies also indicated extensive ACE2 expression in the whole eye and the brain’s visual circuitry in aged humans. In

this study we analyzed ACE2 receptor expression at the mRNA and protein level in multiple cell types involved in

human vision, including cell types of the external eye and several deep brain regions known to be involved in the

receptor expression in different ocular cell types and visual processing centers of the brain provide multiple

surface of the eye to the visual signal processing areas of the occipital lobe and the primary visual neocortex. A

gradient of ACE2 expression from the eye surface to the occipital lobe may provide the SARS-CoV-2 virus a novel

pathway from the outer eye into deeper anatomical regions of the brain involved in vision. These findings may

explain, in part, the many recently reported neuro-ophthalmic manifestations of SARS-CoV-2 infection in COVID-19

affected patients.
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INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic originated
late in the year 2019 in an open air market in the city of Wuhan

in China's Hubei province. Early reports suggested that the
emergence of SARS-CoV-2 may have occurred via ‘zoonotic
spillover’ from the fruit bat (Pteropus scapulatus) and/or other
mammalian and/or avian vectors and an interspecies viral
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processing  of  visual  signals.  Here  we provide evidence: (i) that  many  different optical  and neural cell  types of the

human  visual  system  provide  receptors  essential  for SARS-CoV-2 invasion; (ii) of the remarkable ubiquity of ACE2

presence  in  cells  of the eye  and anatomical regions  of the brain involved in visual signal processing; (iii) that ACE2

compartments  for  SARS-CoV-2  infiltration; and (iv) of a gradient of  increasing ACE2 expression from the anterior



transmission [1-6]. Three key findings on the mechanism of
SARS-CoV-2 infection were that: (i) direct contact of the novel
enveloped, positive single-stranded RNA (ssRNA) SARS-CoV-2
beta coronavirus that causes COVID-19 with host cell surface
receptors is the primary suspected route of transmission; (ii) the
SARS-CoV-2 virus, via its surface spike (S1) protein requires the
single-pass angiotensin-converting enzyme 2 (ACE2)
transmembrane receptor to gain entry into human host cells;
and (iii) that ACE2, a zinc containing surface receptor protein
and metallo-carboxypeptidase (EC 3.4.17.23) normally involved
as a key component of the renin-angiotension system (RAS), is
ubiquitously expressed in many different human cell types.
Immuno-histochemical analysis has recently confirmed
expression of ACE2 at the protein level in alveolar and epithelial
cells of the respiratory system, enterocytes and intestinal
epithelial and endothelial cells, kidney cells of the renal tubule
and immune cells, such as alveolar monocytes and macrophages,
and many different cell types of the CNS including those of the
cerebral cortex, brainstem, the conjunctival epithelium of the
eye, the optic nerve, cornea, the corneal epithelial surface and
multiple cell types of the brain involved in vision and visual
signal processing [5-12]. This may in part explain SARS-CoV-2-
mediated invasion of a very wide spectrum of different host cell
types including sensory and support cells of the eye and specific
anatomical regions of the brain. This viral-mediated elicitation
of a multipronged attack underscores the ubiquity, severity and
extensive variety of signs and symptoms observed in COVID-19
patients.

Most recently emerging observations indicate widespread neuro-
ophthalmic disruptions in COVID-19 infected patients [13-26].
Coronaviruses are known for their neurotropism towards brain
cells and cells of the visual system, and COVID-19 infection is
currently positively associated with ocular abnormalities
including blurred vision, kerato-conjunctivitis (an inflammation
of the conjunctiva), conjunctival hyperemia, chemosis (a swelling
of the conjunctiva) [13-16], epiphora (increased tear secretions),
anosmia, diplopia (monocular or binocular), acute-onset vision
loss, acquired cortical blindness caused by damage to the brain's
occipital cortex in both primary and secondary brain visual
processing centers [15-18], progressive monocular and
binocular/bilateral blindness, eye pain with photophobia, eye
pain with disturbances in extraocular movements and cranial
nerve involvement [17-20], decreased visual acuity, optic neuritis,
visual-associated disturbances in balance and gait issues, total or
partial loss of vision in an otherwise normal-appearing eye
[19-22], acute uveitis and other neurologic-ophthalmic symptoms
including cranial neuropathies in the visual circuitry and a
virally-induced Miller-Fisher syndrome [13-15,19-25]. COVID-19
infection is further associated: (i) with alterations in the
ganglion cell and plexiform cell layers of the retina and reduced
vessel density of the retinal capillary plexus as evidenced by
using non-invasive imaging techniques including optical
coherence tomography (OCT) angiography [15,26]; and (ii) the
observation of increased secretion of tear fluids from the eye
(epiphora) during COVID infection; ocular biofluids are known
to contain viral particles and have been implicated in the passive
transmission of COVID-19 via the nasolacrimal duct through

the nasal cavity and into susceptible ACE2 receptor-enriched
cells of the upper respiratory tract (see below) [6,20,23,24].

Because of the extraordinary and singular importance of the
ACE2 transmembrane receptor in the recognition, attachment
and entry of SARS-CoV-2 into host cells and requisite for SARS-
CoV-2 infection, in the current report we investigated the
expression of ACE2 at the messenger RNA (mRNA) and protein
level in 20 different types of cells involved in human vision,
including 11 cell types of the anterior eye and 9 brain regions
involved in the processing of visual signals employing a novel
highly sensitive radiolabel-hybridization-based detection system
using gamma 32P-adenosine tri-phosphate ([γ-32P]dATP)
radiolabeled ACE2 probes; see below [6,27,28]. In our 52 years
of experience of researching gene expression abundance,
speciation and complexity in the human brain and eye in our
hands this technique has been found to be the most accurate
and quantitative abundance-based analysis [6,27,28]. ACE2
protein levels were also assayed in 14 different eye cell types and
anatomical regions of the brain involved in visual signal
processing. As discussed more fully below, major findings
include: (i) a very strong correlation between ACE2 mRNA
abundance with ACE2 protein abundance in the eye and brain
cells studied; (ii) the observation of detectable levels of ACE2
receptor expression found throughout eye cells and anatomical
regions of the human brain involved in visual signal processing;
(iii) that many different cell and tissue types of the visual system
and brain provide multiple points of potential SARS-CoV-2 viral
entry and host cell invasion and infectivity; and (iv) that a down-
hill gradient of ACE2 receptor abundance on ocular and brain
cell membrane surfaces may, in part, favor translocation of the
SARS-CoV-2 coronavirus into deeper anatomical regions of the
visual pathways. The ubiquity, abundance and positioning of the
ACE2 receptor throughout the visual system of the eye and
brain may have implications relevant to the increasing number
of reports linking SARS-CoV-2-association with visual
disturbances and dysfunction and neuro-ophthalmic
manifestations in COVID-19 patients.

MATERIALS AND METHODS

ACE2 mRNA analysis

The entire analytical protocol has been recently reported and
updated in some detail by our laboratories [6,27,28]. Briefly,
human multiple tissue expression (MTE) array panels
(Invitrogen-Clontech, Palo Alto CA; cat no. 7775-1) or eye and
brain cells or tissues were utilized to analyze brain- or visual-
relevant expression of ACE2 receptor mRNA. The MTE arrays
utilized contain polyA+ mRNA samples (each dot-shaped sector
containing ~2.0 µg of polyA+ RNA) enriched from 9 human
brain regions with 8 independent DNA and RNA controls
where the ACE2 receptor is not expressed; polyA+ RNA samples
were further extracted from ocular cells (including epithelial,
conjunctival, keratocytes (corneal fibroblasts), iris fibroblasts,
retinal pigment epithelial (RPE) cells and trabecular meshwork
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/primary-cells/cells obtained from ScienCell (https://www.sciencellonline.com/
productsservices



human/cell-systems/ocular-cell-system.html) or were kind gifts
from Dr. PN Alexandrov (Figure 1).

Figure 1: Cell- and tissue-specific patterns of ACE2 expression
(mRNA) in human ocular cells and in selected areas of the brain
involved in visual processing. The extent of ACE2
transmembrane receptor expression in the plasma membrane is
an important indicator of ACE2 gene function, the
susceptibility to SARS-CoV-2 invasion and the development of
COVID-19. Significant ACE2 receptor expression was initially
observed in the whole brain, whole eye and whole retina and
subsequently cells and tissues involved in visual signal
acquisition and processing were analyzed for ACE2 abundance.
ACE2 acts as a receptor for the spike (S1) glycoprotein of the
human coronavirus HCoV-NL63 and the human SARS-CoV

Eye and brain tissue-sourced mRNA were obtained from pools
of aged control eye and brain tissue sources [6,27,28]. All post-
mortem tissues utilized in this study had a mean age and one
standard deviation of 68.5 +/- 12.2 yrs. RNA concentrations
were quantified using a Agilent 2100 Bioanalyzer and Agilent
test chips (ThermoFisher Scientific, Waltham MA, USA) and
~2.0 to ~5.0 µg polyA+ RNA were spotted onto HyBond N+
nylon membrane filters using the manufacturer’s protocols as
previously described (ThermoFisher Scientific) [6,27,28];

Alexandrov et al., 2012; Lukiw et al., 2020). A unique human-
specific 26 nucleotide (nt) ACE2 receptor-specific DNA probe 5'-
CTTGCAGCTACACCAGTTCCCAGGCA-3' (US NIH/NLM
Sequence ID: AY217547.1; https://blast.ncbi.nlm.nih.gov/
Blast.cgi#27978647; see also accession AB046569.1; https://
www.ncbi.nlm.nih.gov/nuccore/AB046569.1); last accessed 9
September 2021) exhibited no homology to ACE1 [6,28-30];
while other ACE2-specific probes have been used previously that
gave almost identical hybridization signals, data for the 26 nt
ACE2 DNA probe is presented in this report. The 26 nt ACE2
receptor DNA probe was designed so that the sequence crosses
two exons, thereby detecting only mature ACE2 mRNA and not
ACE2 genomic DNA or heterogeneous RNA (hnRNA)
containing the ACE2 DNA or RNA sequence. DNA probes
were used due to their stability (as compared to unprotected
RNA probes) and RNA-DNA hybrids are known to elicit a more
accurate and stable hybridization with a higher energy of
association (EA) between the ACE2 DNA probe and the
membrane-bound polyA+ mRNA target [6,31,32]; https://

experiments   ACE2   DNA   probes   were  end-labeled  by using 
[γ-32

glyceraldehyde   3-phosphate  dehydrogenase  (G3PDH)  or  beta
-actin (β-actin)   were   used  for   control   mRNA normalization
normalization (see http://www.takara.co.kr/file/manual/pdf/
PT3307-1.pdf [6,26-29,32]. To obtain maximal signal
quantitation accuracy hybridized and washed membranes were
overlaid on the previously marked MTE or polyA+ RNA spotted
HyBond N+ nylon templates, excised and each sector counted
separately in 10 ml liquid scintillation fluid (Ultima Gold,
PerkinElmer, Waltham MA) using a LS600016 LSC Liquid
Scintillation System, Beckman, Fullerton CA); relative signal
intensities were expressed by comparing the ACE2 hybridization
signal to the G3PDH and/or β-actin signal for each polyA+
mRNA on the MTE or polyA+ array [6,28-35].

ACE2 protein analysis

Protein extracts from cells and/or tissues involved in human
vision, including ocular choroidal fibroblasts, trabecular
meshwork cells, non-pigmented ciliary epithelial cells, retinal
pigment epithelial cells, corneal epithelial cells, whole retina,
whole eye and tissues from brain visual processing pathways
including the optic nerve, cerebellum, pons, temporal lobe,
occipital lobe (Brodmann Area 17, containing the primary visual
cortex), cerebral cortex and whole brain were generated using a
ProteoExtract Complete Mammalian Proteome Extraction Kit
(cat no. 539779, Calbiochem/Millipore-Sigma Burlington MA)
and were assayed for protein concentration using a Non-
Interfering Protein Assay kit (cat no. 488250, Calbiochem/
Millipore-Sigma) at 480 nm; protein samples were stored in at
-81°C according to the manufacturers protocol (Millipore-
Sigma); ACE2 protein [UniProtKB - Q9BYF1
(ACE2_HUMAN)] abundance these selective cell extracts of the
visual system and brain were analyzed using a quantitative
colorimetric (450 nm) sandwich ELISA specific for human
ACE2 using a Fluoroskan Ascent FL Microplate Fluorometer
and Luminometer (Cat no. 5200220, ThermoFisher Scientific,
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www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&
Term=59272;    last  accessed   9  September   2021).    In   these 

P]dATP  (3,000  Ci/mmol,  Amersham  RedivueTM);  either 

and SARS-CoV-2 virus that causes COVID-19 (see: 
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=Details
Search&Term=59272;  last  accessed 9 September 2021); in the 
mRNA experiments both G3PDH and β-actin DNA probes 
were used as abundance controls; in this experiment relative 
signal strength refers to control β-actin mRNA levels in the 
same tissues [6]; in this and one previous study [6] the highest 
expression of the SARS-CoV-2 ACE-2 receptor was found in 
the cerebral cortex and the occipital lobe, the pons and 
medulla oblongata of the brain and in the whole retina, the 
optic nerve and the ocular choroid and RPE cells of the eye. 
High expression of the ACE2 receptor in the eye and neural 
pathways involved in vision and visual processing may 
predispose this circuitry of the visual system to attracting 
SARSCoV-2 and viral invasion. A vertical dashed line at 1.0 is 
included for ease of comparison; a minimum of N=3 HyBond 
N+ or MTE filters were used for each tissue determination; 
*p<0.05; **p<0.01 (ANOVA); error bars represent one 
standard deviation of the mean. 



Waltham MA; sensitivity 1052 pg/ml; detection range 1.5 ng/ml
- 255 ng/ml (Human ACE2 ELISA Kit ab235649; Abcam
Cambridge MA, USA); human recombinant ACE2 protein
(Abcam ab151852) and human beta-actin (β-actin; anti-beta
actin antibody (Abcam ab8227) were used as internal controls to
quantify relative ACE2 and β-actin protein abundance in each
sample according to the manufacturer’s instructions (Figure 2);
concentrations of ACE2 were measured in triplicate and
interpolated from the ACE2 standard curve and corrected for
sample dilution as according to manufacturer’s protocol; human
ACE2 was expressed as ng/ml (Abcam; https://
www.abcam.com/human-ace2-elisa-kit-ab235649.html; last
accessed 9 September 2021; see Supplementary file 1).

Figure 2: Cell- and tissue-specific patterns of ACE2 expression
at the protein level in selected human ocular cells and in
anatomical areas of the brain involved in visual processing; bar
graph of ELISA analysis (see Supplementary File 1); we observed
a very strong correlation between ACE2 mRNA abundance
(Figure 1) with ACE2 protein abundance (Figure 2); the highest
expression of the SARS-CoV-2 receptor ACE-2 protein was
found in RPE cells, the whole retina, optic nerve, the pons and
the occipital lobe that contains the primary visual cortex and
main  visual processing  area (Brodmann  Area17); relative signal
strength refers to control β-actin protein levels in the same
tissues; see text for further details; a vertical dashed line at 1.0 is
included for ease of comparison; a minimum of N=3 ELISA
analyses were performed for each protein determination in cells
or tissues; *p<0.05; **p<0.01 (ANOVA); error bars represent one
standard deviation of the mean.

Statistical significance

The analysis of statistical significance was evaluated using a two-
way factorial analysis of variance (p, ANOVA; SAS Institute,
Cary NC, USA). A p<0.05 (ANOVA) was deemed as statistically
significant; a p<0.01 (ANOVA) was deemed as very highly
significant; experimental values were expressed as the means ±
one standard deviation (SD) of that mean (Figures 1 and 2).

RESULTS
In the current study all ocular and brain cell types and tissues
exhibited easily detectable ACE2 receptor signals, and in

agreement with previous reports underscore the ubiquitous
nature of ACE2 receptor expression throughout the human
visual system and CNS (Figures 1 and 2) [5,6,24]. Importantly,
and as indicated in previous studies, negative controls, yeast and
microbial RNA controls, synthetic homo-ribonucleotide
polymers and random oligonucleotides showed no expression of
the ACE2 receptor mRNA [6]. The highest expression of ACE2
mRNA in the brain was found in the brainstem region known
as the pons, situated anterior to the cerebellum between the
midbrain and medulla oblongata, and an important relay center
known to conduct signals from the cerebrum, through to the
cerebellum and medulla oblongata, including fiber tracts that
involve the transmission of visual sensory signals into the
thalamus [36,37]. The pons is known to contain neural circuits
that deal primarily with the regulation of respiration, taste
(aguesia), audition, saccadic eye movement, facial sensation and
expression and equilibrium, all of which are known to be
affected or disrupted in COVID-19 disease [7,17,24,25,36-38].
The respiratory tract connects to the brain without the
protection of a blood–brain barrier, and that SARS-CoV-2
might in the early invasive phase attack the cardiorespiratory
regulatory nodes located in the pons and medulla oblongata,
giving rise to both respiratory and cardiac disruption, as is also
commonly observed in COVID-19 patients [25,38-39]. The
highest expression of the ACE2 receptor protein in the ocular
cells and brain tissues involved in visual signaling and examined
in this study were found in ocular choroid fibroblasts and retinal
pigment epithelial (RPE) cells, a monolayer of pigmented cells of
neuro-ectodermal origin situated between the neurosensory
retina and the choroid that nourishes the visual photoreceptor
cells.

We further note the relatively high expression of the ACE2
receptor mRNA and protein throughout the association
neocortex and especially the occipital lobe of the brain that
contains the primary visual processing areas. Interestingly ACE2
receptor expression at the protein level was in the order of the
corneal epithelial cells < trabecular meshwork cells << non-
pigmented ciliary epithelial cells < ocular choroid fibroblasts <
whole retina << optic nerve << occipital lobe <<<pons,
indicating an increasing ACE2 expression gradient along a
pathway from the exterior of the eye (i.e. the anterior sensory
aspect of the human visual system) that is exposed to the
environment into to deeper vision-relevant regions of the
association neocortex located in the occipital lobe (Brodmann
area 17; the primary visual cortex).

DISCUSSION
At 29,811 nucleotides the unusually large SARS-CoV-2 virus
possesses an enveloped, positive-stranded ssRNA genome that
shares significant homology to previously described SARS-CoV
and the middle east respiratory syndrome coronavirus (MERS-
CoV) [40-42]. SARS-CoV-2 has an extremely high binding
affinity for a ubiquitous 92.5 kDa, zinc-containing, membrane-
integral ACE2 cell surface receptor (EC 3.4.17.23). SARS-CoV-2-
ACE2 binding results in the endocytosis and translocation of
both SARS-CoV-2 and the ACE2 receptor into the endosomes
of infected cells [5,7,9,22,43-47]. Other ACE2-associated
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proteins such as the serine protease 2 TMPRSS2 (epitheliasin;
EC 3.4.21.109) may facilitate SARS-CoV-2 entry [11,43,48].
Importantly, ACE2 receptor gene expression, both at the level of
mRNA and protein is detectable in all eye and brain cells and
tissues so far examined and underscores the potential for SARS-
CoV-2 entry and infectivity into a remarkably wide variety of
host cells populating the human visual and central nervous
systems.

Many neurotropic viruses that exhibit ocular tropism, such as
the double-stranded DNA (dsDNA) virus herpes simplex 1
(HSV-1) and the ssRNA virus SARS-CoV-2, are also abundant in
shed tears and ocular secretions from infected persons
[23,24,49-55]. Vital for the health of the outer eye, tear
production and drainage via the nasolacrimal duct may provide
another novel conduit for SARS-CoV-2 translocation from the
eye to the nasal cavity and into the upper respiratory tract that is
enriched in ACE2 receptors [23,24,55]. As suggested by the
current data another available route of SARS-CoV-2 entry and
proliferation in the eye and brain may be via structural support
and sensory cells of the eye, through the optic nerve across the
optic chiasm to the lateral geniculate nucleus (LGN) and via
optic radiations on into the primary visual cortex located in the
occipital lobe (Brodmann area 17) of the brain (Figures 1 and 2).

Currently the pathophysiology and ocular pathomechanism for
the transmission of SARS-CoV-2 remains an understudied area
of viral and retinal neurobiology, and even basic questions, like
the initial incapacitating effects of the potent glycoside hydrolase
lysozyme (EC 3.2.1.17), a major component of the tear biofluid,
on SARS-CoV-2 viability and infectivity are not well understood.
Interestingly, ACE2 receptor abundance has been shown to be
altered in progressive neurological disorders that include
Alzheimer’s disease (AD), but whether or not AD patients have
altered susceptibility to SARS-CoV-2 infectivity is another
understudied research area [54,55]. Fortunately, the human eye
has developed a wide array of defense mechanisms against
microbial infection and has evolved a number of anti-microbial
(both anti-bacterial and anti-viral) strategies to protect and
preserve ocular surfaces and visual system structure and
function. Firstly, the surface of the eye is directly exposed to the
external environment and hence is susceptible to airborne
microbial contamination from potentially pathogenic microbes
including viruses, bacteria, fungi and parasites and their
pathogen-associated molecules. Airborne contamination
includes SARS-CoV-2, often as an aerosolized spray of micro-
droplets, and is the major known form of a highly infective
SARS-CoV-2 viral transmission [24,51,53,56]. Besides different
protective anti-microbial substances in the tear fluid such as
mucins and globular glycoproteins such as lactoferrin, the tear
mucosal film which coats the cornea and conjunctiva contains
multiple anti-microbial components including lysozyme (also
known as muramidase or N-acetylmuramide glycan-hydrolase),
cationic anti-microbial peptides, surfactant protein-D, several
RNAse enzymes, S100A peptides such as psoriasin (S100A7)
and others, and these are important components of the innate-
immune defense system of the eye providing protection against a
wide range of potential airborne ocular pathogens [57,58;
unpublished observations]. Interestingly, there is recent evidence
that the ocular surface microbiota, the resident non-pathogenic

symbiotic microorganisms that colonize the conjunctiva and
cornea, and the microbiota of other areas of the body, such as
the gastrointestinal (GI) tract and oral microbiome are involved
in the development and pathophysiology of several ophthalmic
diseases including the susceptibility to microbial, and in
particular, viral transmission and infection [49-53,59]. Of
further emerging interest are the effects of SARS-CoV-2 invasion
on the biochemistry, molecular genetics and innate-immunity of
neural and ocular host cells and the viral-mediated induction of
post-transcriptional and pro-inflammatory signaling factors
including certain microRNAs (miRNAs) that modulate the
expression of genes involved in viral replication, neuro-
inflammation, innate-immune signaling and progressive and age-
related aspects of inflammatory neurodegeneration [50-53,59].

SUMMARY
Our scientific understanding of the factors involved in SARS-
CoV-2 viral transmission and affinity for multiple human host
cell targets continues to evolve. There is now an expanding list
of documented impairments of the human visual system and
multiple types of visual dysfunction and/or vision deficiency
associated with COVID-19 infection [15-25,46,51-53,60-64]. The
current study provides new insight into the distribution of the
ACE2 receptor in eye and brain cells and tissues involved in
visual signal processing. The ACE2 receptor is acknowledged as
the major molecular receptor for SARS-CoV-2, and specific
anatomical regions of the eye and the visual circuitry of the
brain contain abundantly detectable ACE2 receptor mRNA and
protein. If the abundance of the ACE2 receptor has any bearing
on the ability of attracting and binding SARS-CoV-2, allowing
viral entry into human host cells, high ACE2 receptor
expression along a gradient from the most exterior surface of the
eye via multiple visual processing centers to the primary visual
cortex in the occipital lobe provides another novel route for
SARS-CoV-2 viral transmission and potential translocation into
deeper anatomical regions of the visual brain [64].

In summary the remarkable ubiquity of ACE2 receptor
expression in the trabecular meshwork and ocular choroid cells
of the outer eye, RPE cells, the optic nerve and optic radiations
to the occipital cortex suggests: (i) that multiple cell types of the
visual system provide multiple potential entry points for SARS-
CoV-2 invasion; (ii) that this broad spectrum of cell types
involved in vision and potentially susceptible to SARS-CoV-2
infection reflects on the equally wide range of visual functions
that may be impacted by this lethal virus; (iii) that a gradient of
increasing abundance of ACE2 receptor expression in several
different ocular cell types along the visual processing pathways
of the brain provides SARS-CoV-2 access to anatomical regions
of the brain involved in visual processing functions; and (iv) that
as reflected by ACE2 abundance there are multiple potential
compartments that support SARS-CoV-2 accessibility and
infiltration in the human visual system. These results further
indicate that under certain circumstances that eyeglasses or face-
shields may be as important as face-masks in reducing the
transmission and spread of the SARS-CoV-2 virus, and that
COVID-19 healthcare workers and ophthalmologists may need
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to take additional care when dealing with both SARS-CoV-2
carriers and COVID-19 patients.
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Cambridge MA, USA; ELISA assay sensitivity is ~1052 pg/ml;
range: 1.5 ng/ml - 255 ng/ml); based on the standard curve,
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www.abcam.com/human-ace2-elisa-kit-ab235649.html.
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