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DESCRIPTION

and assumptions; many variations of the basic template are
possible.

1. Individuals are distinguished by their type T ∈ [M]:={1,2...,M} and 
by their disease status. As in conventional SIR ordinary differential 
equation (SIR-ODE) models, disease status is represented by 
compartments including “susceptible (S)”, “infective (I)” and 
others. The framework focusses on tracking the random subset 
S(t|T) of type T susceptible individuals at the end of day t, and 
similarly I(t|T),...,etc.

2. An individual v ∈ S (t-1|T) will become infected (or “exposed”) 
by the end of day t (i.e. v ∉ S (t |T )) if the threshold condition 

(t) (t)
v vTVL∆ ≤  holds, where ( )t

v∆ , ( )t
vTVL are the immune buffer of v 

and the total viral load accumulated by v from all social encounters 
with infectives on day t. Between-compartment transmission 
follows a discrete-time analogue of usual assumptions made in SIR-
ODE models.

3. The social network structure on the population is assumed to 
be an inhomogeneous random graph that is fixed over time, with 
connection probabilities calibrated to existing demographic data. 
A person’s Total Viral Load (TVL) each day is the sum of random 
viral doses received through their infectious contacts, which are a 
random subset of their social contacts.

4. Random elements are updated daily, and include immune 
buffers, daily social encounters, viral doses exchanged during 

infectious contacts. Agent-based methods are used to motivate 
the specific IRSN rules that determine their joint probability 
distributions over time.

The key element of the IRSN is the threshold infection assumption, 
which encodes a dose-response mechanism. The main technical 
result of the IRSN model, called the mixed infection cascade 
mapping, provides recursive equations for the various compartment 
probabilities ( | ) : ( ( | )), ( | T) : P(v I(t | T))s t T P v S t T i t= ∈ = ∈  
etc. proved under a certain large N or “mean-field” type 
approximation. At its core is a formula for the conditional 
exposure probability ( | ) : ( ( | ) | v S(t 1| T)) :EP t T P v S t T= ∉ ∈ −   
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( | )F x T∆  is the prescribed distribution function of a type T 

buffer; the density of TVL is given by an inverse Fourier transform 
1)(t (ˆ[ (. | T)](. | ) t

TVT LVL fTρ − = F  where
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Here R is a constant [M, M] matrix-valued function that encodes 
average total viral load encountered by type T susceptibles per type 
T’ infective. Validating the threshold infection assumption requires 
investigating models of in-host viral dynamics as reviewed in Perelson 
and Ke, an active area of immunology [2]. A consequence of (1) is 
that in the specific setting where immune buffers are exponentially 
distributed random variables, the IRSN model becomes a discrete 
time approximation of the analogous continuous time ODE model 
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datum of experience.'' It  adopts an agent-based perspective with a sample population of size N of individuals 

− −1) 1

[1]. Thus the IRSN framework provides a direct derivation of any 

[1]The IRSN framework of Hurd  has the following basic elements
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SIR-ODE model from a more fundamental agent-based model. 
However, immune buffers may take other distributions, in some 
cases leading to discernible deviations from SIR-ODE models. 
In a typical computer implementation using the discrete Fourier 
transform with grid size Nfft ∼28, computational time of the mixed 
infection cascade mapping is dominated by computing (1). This 
amounts to O ( Nfft × M2) flops and O ( Nfft × M) exponentiations 
per discrete time step, which is in practice similar to the speed of 
the comparable SIR-ODE model. 

Several important contagion effects are characteristic of real 
epidemics and agent-based models such as the IRSN, but do not fit 
easily into conventional well-mixed SIR-ODE models. The so-called 
frailty bias or susceptibility bias refers to the fact that during an 
outbreak, the average characteristics of the susceptible population 
evolve, because frail individuals are likely to succumb to the disease 
before robust individuals. The effect of social bubbles, where 
people seek to reduce their exposure probability by restricting their 
daily contacts to a small group, is similarly captured easily in agent-
based models such as the IRSN, but not in ODE models. 

Incorporating more refined data into IRSN models is facilitated by 
two operations that increase the resolving power of the framework. 
Disaggregation, that is, building a model that splits types into 
subtypes with the aim to resolve finer features, is desirable when 
data indicates that these variations are significant, and can lead 
to better predictions of focussed policy interventions. Aggregation 
creates a new model by combining two or more submodels, for 
example, building a model for Canada by merging models for each 
of its provinces and territories. This requires only the additional 
information of the cross-border traffic. Both ways to extend models 
are compatible with the architecture of the IRSN framework. If we 

consider IRSNs as multilayer networks, as reviewed in Kivelä et al. 
by allowing edge variables to become multidimensional, the key 
elements still fit together, and in particular equations similar to 
(1), (2) continue to hold [3]. The extra dimensions may represent a 
diversity of features, such as different viral strains, the tissue within 
the host where infection occurs, or the different settings such as 
schools, workspaces and households where infectious contacts may 
occur. 

The IRSN framework provides a concise and flexible microscopic 
foundation that underpins, explains and can replace, SIR-ODE 
models. Designing IRSN models requires one to adopt the 
viewpoints of different types of people, as in agent-based modelling. 
They can be built starting from any SIR template for disease status 
compartments, then combined with behavioural assumptions for 
individuals that can be validated by similar criteria used for agent-
based models. In versions of the IRSN model where the large N 
approximation is valid, the resultant mixed infection cascade 
mapping is easy to program, fast to compute even with thousands 
of types, providing a bridge in complexity between microscopic 
agent-based models and macroscopic SIR-ODE models.
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