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Introduction
Diabetes mellitus is a metabolic disorder, characterized by defective 

or deficient insulin secretory process, glucose underutilization and 
increased blood sugar. It is congenital or acquired inability to transport 
sugar from blood stream into the cells. Multiple etiologies have been 
found which segregates diabetes into two major forms: Type I or 
insulin dependent diabetes mellitus (IDDM) and Type II or non-
insulin dependent diabetes mellitus (NIDDM) [1]. Type I diabetes is 
an autoimmune disease in which patient’s immune system react against 
islet antigens and destroy the beta cell. Type II diabetes is a polygenic 
syndrome characterized by insulin resistance with more severe β-cell 
deficiency [1]. Both the types are associated with characteristic long 
term complications. The number of people with diabetes is increasing 
rapidly due to aging population, growth of population size, urbanization 
and high prevalence of obesity and sedentary lifestyle [2]. As per 
International Diabetes Federation, about 365 million people suffered 
from diabetes in 2011 and this number is expected to rise upto 552 
million by 2030 [3]. 

Diabetic vascular diseases (DVD) are the most serious 
microvascular and macrovascular complications of diabetes. Vascular 
complications in diabetes include accelerated forms of atherosclerosis 
due to endothelial dysfunction and microangiopathy of retinal vessels. 
The underlying molecular mechanisms for DVD are still debatable 
but hyperglycaemia-induced oxidative stress has been proposed as the 
major precipitating factor in various studies [4-6]. 

This review article highlights the molecular mechanisms behind 
the development of vascular complications in diabetes with main focus 
on the role of oxidative stress as well as the implication of antioxidants 
for the prevention of DVD. 

Metabolic Status in Diabetes
The metabolic effects of insulin is closely related to its effect on 

Abstract
The profound effects of hyperglycaemia on the vascular tree are the major causes of morbidity and mortality 

among patients suffering from diabetes. Diabetic Vascular Diseases (DVD) includes accelerated forms of 
atherosclerosis due to endothelial dysfunction and microangiopathy of retinal vessels. A host of several studies 
indicate that increased oxidative stress play a pivotal role in the development and progression of diabetic vascular 
diseases. The metabolic abnormalities due to oxidative stress are linked to the structural and functional changes 
in the vasculature, consequently resulting in atherosclerosis and diabetic retinopathy. Oxidative stress brings 
alterations in downstream transcription factors which result in changes in gene expression, myocardial substrate 
utilization, myocyte growth, endothelial function and myocardial compliance. Based on this, an approach towards 
investigating new and effective antioxidant therapies could serve as potential therapeutic implications in preventing 
the deleterious effects of oxidative stress on vasculature. 

This review aims to understand the underlying mechanisms involved in the pathogenesis of vascular complications 
in diabetes with special emphasis on the role of oxidative stress towards development of these complications and 
also describe the role of antioxidants as therapeutic interventions for DVD.

the vascular system, such that the effect of insulin on the endothelium 
augments its metabolic effect [7]. The major role of insulin in the 
vascular system is to stimulate the production of endothelial derived 
Nitric Oxide (NO) which mediates vasodilation [8]. In normal 
circumstances, insulin mediated activation of insulin receptors in the 
endothelium and glucose processing organs such as adipose tissue and 
skeletal muscle, leads to a activation of downstream signaling pathways.

Initially phosphorylation of Insulin Receptor Substrate (IRS) 
activates phosphotidylinositol-3-kinase (PI3K) [9], which then 
generates phosphotidylinositol-3,4,5-triphosphate (PIP3). PIP3 
becomes phosphorylated to activate a serine kinase phosphoinositide-
dependent kinase (PDK) which ultimately activates Akt, a serine/ 
threonine protein kinase. Akt directly phosphorylate endothelial NO 
synthase (eNOS) in the endothelium and GLUT-4 translocation in 
glucose processing organs [10], leading to vasodilation which facilitates 
the glucose uptake. Alteration in insulin signaling along with other 
metabolic disturbances such as increase in the levels of free fatty acids 
(FFA) causes inhibition of IRS phosphorylation, thereby inhibiting the 
downstream signaling and ultimately causing endothelial dysfunction 
and insulin resistance, as shown in Figure 1 [11].
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Complications in Diabetes
In chronic hyperglycaemia, the sugar that normally serves as 

substrate, fuel and signal takes on the darker role of toxin [12] and is 
the major cause of the harmful effects of diabetes on various tissues of 
body [13]. The deleterious effects include macrovascular complications 
such as coronary artery disease, stroke and peripheral artery disease 
and microvascular complications such as retinopathy, nephropathy and 
neuropathy [14,15].

Vascular Complications in Diabetes
Among the several listed complications, effects of diabetes on 

the vascular tree are the major causes of mortality and morbidity in 
both types of diabetes. In light of this fact, it becomes more important 
to understand the relation between diabetes and vascular diseases. 
The vascular complications of diabetes include accelerated forms of 
atherosclerosis, increased risk of myocardial infarction, stroke and 
microangiopathy of renal and retinal vessels [16].

The central pathogenic mechanism for the vascular complications 
is the process of atherosclerosis which serves as a major risk factor for 
myocardial infarction, ischemic heart disease and stroke. Diabetes, as 
a metabolic syndrome, leads to abdominal obesity and hyperlipidemia 
which in turn promote vascular complications independent of 
atherosclerosis [17]. Finally, high glucose in diabetes can itself directly 
affect the myocardium and hence an independent cause of heart failure 
[18,19]. Recent clinical studies demonstrated that the risk of myocardial 
infarction (MI) in people with diabetes is equivalent to risk in non-
diabetics with a previous history of MI [20]. In view of such facts 
American Heart Association and American Diabetes Association has 
recommended that diabetes should be considered as coronary artery 
disease risk equivalent rather than a risk factor [21].

Risk of stroke related dementia and stroke related mortality is also 
elevated in diabetic patients [22]. The DCCT trial demonstrated 42% 
risk reduction in all cardiovascular events and 57% reduction in stroke 

and death from CVD following intensive treatment of Type I diabetic 
patients [23].

Besides these macrovascualr complications, microvascualr 
complications involving smaller blood vessels like renal and retinal 
vasculature result in equally devastating consequences. Retinal 
complications termed as retinopathy, eventually leading to blindness, 
and begins to develop as early as seven years before the clinical 
diagnosis of diabetes and thus is the earliest complication of diabetes 
[24]. Evidences suggest that incidence of diabetic retinopathy can be 
reduced in 90% of the cases with early treatment [25]. 

Cardiovascular Complications in Diabetes
Cardiovascular diseases accounts for upto 80% of premature 

mortality in diabetic patients [26]. The major cardiovascular diseases 
related to diabetes include atherosclerosis which is a major risk factor 
for Coronary Artery Disease (CAD) [27]. Enhanced myocardial 
dysfunction in diabetes leads to accelerated heart failure independent 
of CAD and is more specifically termed as diabetic cardiomyopathy 
[28]. In addition prolonged hypertension, chronic uncontrolled 
hyperglycemia, microvascular diseases, glycosylation of myocardial 
protein and autonomic neuropathy aggravate the development of 
congestive heart failure in diabetic heart [29].

The cardiovascular complications of diabetes were earlier 
considered to be caused by slowly progressing structural changes. 
But with the emergence of modern techniques, it is now clear that 
cardiac dysfunction occurs soon after the development of metabolic 
abnormalities and much before the development of any structural 
changes. This suggest that complex events occurring at cellular and 
molecular level plays a major role in the development of cardiovascular 
dysfunction in diabetes [30,31].

Retinal Complications in Diabetes
Diabetic retinopathy is the most common and tissue specific 

Figure 1: Altered metabolic status and endothelial dysfunction in diabetes. 
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microvascular complication of diabetes. Its effect as impairment of vision 
is well established but its importance beyond visual impairment remains 
to be explored. Studies reveal that people with diabetic retinopathy 
have high risk of developing systemic vascular complications like CAD, 
heart failure and nephropathy which is attributed to a common genetic 
link between retinopathy and other systemic vascular complications 
[32-34].

Vascular and neuronal degeneration are the prime changes that 
manifest themselves as diabetic retinopathy [35,36]. The features 
of diabetic retinopathy include increase in vascular permeability, 
neovascularisation, retinal cell apoptosis and leukocyte adhesion 
[37,38].

Several factors like accumulation of advanced glycation end 
products (AGE), polyol pathway, Protein kinase C activation, increased 
expression of growth factors and oxidative stress have been implicated 
in the pathogenesis of diabetic retinopathy [24]. Out of these, oxidative 
stress plays a crucial role in mediating the vascular dysfunction 
associated with diabetic retinal changes [39,40].

9. Role of Oxidative Stress in Diabetic Vascular Complications 

Oxidative stress is defined as excess formation or insufficient 
removal of highly reactive molecules such as reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) which includes free radicals 
such as superoxide (O2-), hydroxyl (OH•), peroxyl (•RO2), hydroperoxyl 
(•HRO2-) as well as non-radical species such as hydrogen peroxide 
(H2O2) and hypochlorous acid (HOCl) [41]. ROS generated under 
physiological conditions is required for cell signalling and defence 
mechanisms but excess generation of ROS play an important role in 
the pathological event. In diabetes, ROS is the major determinant 
for the poor prognosis of vascular complications [42]. The molecular 
alterations leading to increased ROS/RNS production include increased 
expression of NADPH oxidase, formation of advanced glycation end 
products (AGEs) and activation of protein kinase-C, endothelial 
nitric oxide synthase uncoupling (eNOS) and polyol pathway [42,43]. 
Overproduction of ROS/RNS cause damage to cell structures, nucleic 
acid, lipids and proteins [44,45]. Oxidative stress can also result 
in damage to protein transporters, increase the concentration of 
intracellular calcium and lipid peroxidation [46]. These events lead to 
activation of stress sensitive pathways like NF-кB, p38-MAPK, JNK/ 
SAPK that are ultimately responsible for insulin resistance, β-cell 
dysfunction and other diabetic complications, shown in Figure 1. 
These events are further augmented by the marked reduction in the 
endogenous antioxidants systems such as SOD, glutathione (GSH) and 
catalase [47-49].

Oxidative Stress Mediated Endothelial Dysfunction
Endothelial dysfunction is the prime manifestation of vascular 

complications in diabetes [50]. It involves the loss of activity of NO, 
leading to increase in the activity of NF-кB, that causes increased 
production of chemokines and cytokines which are ultimately 
responsible for atherosclerotic changes [51]. Besides mediating 
vasodilation, NO also cause inhibition of monocyte adhesion, inhibition 
of vascular smooth muscle cell proliferation, inhibition of platelet 
adhesion and activation of intrinsic coagulation pathway [52]. All these 
factors have an important role in the pathogenesis of atherosclerosis 
[53]. Therefore, decreased production of NO in diabetes is one of the 
major molecular factor leading to vascular complications.

Diabetes induced oxidative stress further deteriorates the situation 
as excess superoxide radical react with available NO, thereby generating 

cytotoxic peroxynitrite (ONOO-) [54]. Formation of peroxynitrite 
inturn inactivates NO leading to decreased NO as explained above 
[52]. In addition to the inactivation of NO, ONOO-also alters the 
function of other biomolecules by mediating protein nitration and 
lipid peroxidation. Protein nitration inhibits potassium channels that 
normally mediate vascular relaxation [55]. ONOO-further causes 
oxidation of tetrahydrobiopterin, which is a cofactor for nitric oxide 
synthase (NOS). This leads to uncoupling of NOS which then produces 
superoxide radical instead of NO, thereby leading to increased risk 
of vascular complications [56]. In addition to superoxide radical, 
increased production of hydrogen peroxide by high glucose leads to 
apoptosis and pathological angiogenesis in endothelial cells [57]. 

Pro-atherosclerotic Effects of Oxidative Stress
Beside oxidative stress, dyslipidemia is also a common metabolic 

disturbance associated with diabetes, as 97% of diabetics are dyslipidemic 
[58-60]. Atherogenic dyslipidemia, is characterised by increased levels 
of very low density lipoprotein (VLDL), low density lipoprotein (LDL) 
and decreased high density lipoprotein (HDL) [61,62]. 

Oxidative stress due to diabetes leads to oxidation of the LDL 
particles, producing oxidized LDL which are pro-atherogenic, and 
behave as foreign particle to the immune system. It thus, produces 
abnormal biological response leading to plaque formation (Figure 
2),  in atherosclerosis and other associated vascular dysfunctions in 
diabetes [63,64]. 

Oxidation of LDL particles also leads to loss of recognition by 
cellular LDL receptors and these are preferentially taken up by vascular 
wall macrophages. As a result, the vascular cell become lipid-laden that 
leads to atherosclerotic lesions in early stage. In the later stages, the 
fatty streaks originate in the arteries and causes arterial insufficiency 
and occlusion [65]. It is well demonstrated that patients with diabetes 
have lipid rich atherosclerotic plaque that is more vulnerable to rupture 
than the plaque found in those without diabetes [66].

Oxidative stress in diabetes increases the formation of AGE (vide 
infra) [67], which in turn leads to glycation of LDL and HDL particles 
that eventually changes the half-life of LDL and HDL. Increase in half-
life of LDL increases its pro-atherogenic potential and decrease in half-
life of HDL decreases its protective effect against atherogenesis [68-70] 
(Figure 3).

Oxidative Stress in the Development of Microangiopathy 
Retinopathy is the common clinical implication due to diabetes 

induced microangiopathy. Increased production of AGE and its 
expression on its receptor RAGE in retinal microvasculature in people 
with diabetes leads to increased protein kinase C (PKC) [71,72]. This 
PKC increase the oxidative stress in retina which in turn increases the 
accumulation of AGE in retinal microvasculature [67]. This positive 
feedback system leads to consequences such as retinal cell apoptosis, 
neovascularisation, activation of NF-κB, microaneurysm and loss of 
pericytes [71,73]. Reduced histological changes of retinopathy following 
treatment with aminoguanidine, an AGE inhibitor further confirms the 
crucial role of AGE in the development of diabetic microangiopathy 
[74,75].

Activation of PKC, is one of the major pathway implicated in the 
pathogenesis of diabetic microangiopathy [76]. In addition to being 
activated by increased accumulation of AGE, PKC is also activated by 
diacyl glycerol (DAG), which has been shown to be markedly increased 
in diabetes [77,78]. Increased DAG levels activate several isoforms of 
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Figure 2: Atherogenic dyslipidemia in diabetes leading to vascular complications and involvement of oxidative stress.

Figure 3: Role of glycation of lipoproteins in the etiology of atherosclerosis and the involvement of oxidative stress.
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PKC, among which PKC-β is the major one activated in vasculature and 
retina [76]. PKC isoform regulates vascular permeability, blood flow 
and neovascularisation and increased PKC activation can therefore 
lead to changes such as increase in permeability of retinal vessel, 
neovascularisation and endothelial proliferation [79,80].

Oxidative stress also induces microangiopathy through indirect 
mechanisms like increased expression of vascular endothelial growth 
factor (VEGF), a proangiogenic factor as observed in diabetic 
retinopathy [81]. Physiologically, VEGF has a key role in embryonic 
and early postnatal vasculogenesis and angiogenesis. In adults, it occurs 
at several sites in the vascular bed and is a potent vasodilator. It has 
the capacity to promote formation of collateral vessels that has role in 
ischemic injury and wound healing [82]. In the pathological states such 
as oxidative stress, the physiological roles of VEGF take the darker side 
and its excess activation leads to consequences like hyperpermeability 
of retinal membrane, angiogenesis [83]. These changes are responsible 
for visual loss in case of diabetic retinopathy (Figure 4).

In addition to retinopathy, we recently demonstrated diabetes 
induced microangiopathy in the bone marrow due to increased 
intracellular oxidative stress [84]. Bone marrow microangiopathy 
lead to the endothelial cell dysfunction, leaky endothelial cell barrier, 
thereby affecting the survival of bone marrow stem cells. Treating the 
diabetic animals with anti-oxidant Benfotiamine markedly reduced the 
microangiopathy, thereby confirming the role of oxidative stress in the 
development of microangiopathy [84]. Further, we also demonstrated 
that diabetes induces bone marrow endothelial cells barrier dysfunction 
through activation of RhoA-Rho-assocaited kinase pathway, a potent 
activator of oxidative stress [85].

These evidences provide a clear role for oxidative stress in the 
development of diabetes induced microangiopathy, thereby suggesting 
the potential therapeutic role for anti-oxidants in people with diabetes 
to prevent or delay the development of vascular complications.

Role of Antioxidants in Preventing DVD
Diabetes has reached epidemic proportion fuelled by an aging 

population and rapidly increasing obesity. Among the varieties 
of complications associated with diabetes, vascular complications 
are the leading cause of death and disability among the people with 
diabetes [26]. While, by convention, the focus of the drug therapy in 
diabetes mellitus is on the glycaemic control, there is an urgent need 
towards addressing the associated complications due to diabetes. 
Hyperglycaemia-generated ROS appears to be an important element in 
the genesis of severe diabetic complications including atherosclerosis 

and microangiopathy. Antioxidants have emerged as an effective therapy 
in the prevention of DVD. Besides their role in inhibiting the activity 
of ROS, antioxidants have been reported to exhibit protective effects 
through various mechanisms [86]. A well-established role of oxidative 
stress is also supported by the various epidemiological, experimental as 
well as clinical studies, showing protective effects following long term 
administration of antioxidants by several mechanisms [79,87-91].

Among various antioxidants reported to exert beneficial effects 
against diabetic vascular damage, antioxidants such as vitamin 
C, vitamin E, β-carotene, α-lipoic acid, bioflavonoids, as well as 
phenolic constituents present in various medicinal plants have been 
well recognized. Lynch et al. [92] demonstrated the protective role of 
as Vitamin C in the development of atherosclerosis via inhibition of 
oxidation of LDL, in addition to its well-recognized role in neutralizing 
the ROS. Vitamin E supplementation has also been reported to possess 
beneficial role in preventing and delaying the onset of cardiovascular 
events in diabetic patients by reducing lipoproteins and reducing the 
activity of oxidative stress enzymes such as glutathione peroxidise 
GSH-Px) and glutathione S-transferase (GST) [93,94]. Another 
natural antioxidant, Rosmarinic acid, has been found to protect aortic 
endothelial function and structural alterations in diabetic rats by 
through its anti-inflammatory and antioxidant properties [95].

The antioxidant and anti-atherogenic properties of taurine have 
been known from past two decades [96,97]. A study by Wang et al. 
[98] demonstrated the protective effects of Taurine against diabetes-
mediated vascular endothelial dysfunction by downregulating the 
expression of lectin-like oxLDL receptor-1 (LOX-1) a well-known 
receptor for intercellular adhesion molecule-1 (ICAM-1) in the aorta. 
In line with these findings, the beneficial role of taurine on diabetic 
vasculature was extensively evaluated by other experimental and clinical 
studies [99,100]. Zhu et al. [101] investigated the rescue potential of 
lycopene, a potent antioxidant compound, in endothelial dysfunction 
by reducing the oxidative stress, hence indicating its use in preventing 
DVD associated with endothelial dysfunction.

Ginko biloba, known to be rich in antioxidant constituents is 
recently reported to exhibit beneficial effects in diabetic retinopathy 
by improving retinal capillary blood flow rate in type II diabetic 
individuals [102,103]. Recently, Kumar et al. [104,105] investigated 
the retinoprotective properties of Moringa oleifera in STZ-diabetic 
rats. M. oleifera exhibit its retinoprotective effect via antioxidant, anti-
inflammatory, and anti-angiogenic mechanisms, which is attributed 
to its antioxidant constituents. Similarly, another naturally occurring 
phenolic antioxidant, Resveratrol, found in wine has been demonstrated 
to decrease vascular lesions and VEGF induction in retinas of diabetic 
mice, suggesting its mitigating role in diabetic retinopathy [106]. 
Citrus fruits are rich in flavanoids that have high antioxidant potential. 
Hesperetin, a dietary flavanoid, found in many citrus fruits is reported 
to possess ameliorative effect in diabetes induced vasculopathy via 
anti-angiogenic mechanism by inhibition in the expression of VEGF 
and PKC-β [105]. In another study106 these authors also reported the 
ameliorative effect of hesperetin in diabetic retinopathy via inhibiting 
retinal oxidative stress, neovascularisation as well as apoptosis in STZ-
induced diabetic rats. 

In addition to the pharmacological management of oxidative stress 
to combat the vascular complications of diabetes, recent advances in 
the understanding of underlying molecular mechanisms has resulted 
in the development of novel therapies for the treatment of DVD. This 
includes gene therapy for modulation of pro-survival genes [107] and 
most recently the therapeutic modulation of microRNAs for the post-

 

Figure 4: Role of oxidative stress in the development of retinal complications 
in diabetes.
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transcriptional regulation of genes involved in the development of 
DVD [108]. While these studies have provided promising results in the 
pre-clinical setting, a translation research in larger diabetic population 
will be required to investigate the therapeutic outcome of these novel 
therapeutic modalities.
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