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ABSTRACT
Recently, a population-based optimization algorithm called the multitracker optimization algorithm (MTOA) was

introduced based on the tracker con- cept. This paper proposes a novel variation of the original MTOA called the

migration-based MTOA (MTOA1), which employs multiple subpopulations of trackers to achieve superior

performance. The proposed algorithm differs from the traditional MTOA in that it splits the initial population into

multiple sub- populations to enhance the search process in different areas of the search space. Furthermore,

information is exchanged among the subpopulations in an iter- ative and cyclic manner. The best global trackers in

the first subpopulation are used to update the global trackers of the second subpopulation, and this updating process

continues for all subsequent subpopulations. Exploration and exploitation are balanced in this cyclic approach for

multiple populations. The proposed MTOA1 is validated based on the CEC2017 benchmark problems, and an

improvement over the original MTOA is observed. Furthermore, MTOA1 is used to solve the classical welded beam

design problem and is compared with eight recently proposed optimization algorithms. The results confirm the supe-

riority of the proposed algorithm.

Keywords: Engineering Optimization Problems, Optimization, CEC2017 Benchmark Functions, Multitracker

Optimization Algorithm, Multiple populations.

INTRODUCTION
Many nature-inspired algorithms have been developed in the
past few years [1]. For instance, a novel swarm intelligence
optimization technique called the dragonfly algorithm (DA) was
proposed. The primary concept of the DA rule set originates
from the static and dynamic swarming behaviours of dragonflies
in nature. The important stages of optimization, exploration and
exploitation are designed based on modelling of the social
interactions of dragonflies during navigation, food location, and
swarm protection considering both dynamic and static methods
[2]. As a brand new set of rules, the firefly algorithm (FFA) is a
metaheuristic algorithm inspired by the flashing behaviour of
fireflies.[3]. A novel optimization rule set known as the sine-
cosine algorithm (SCA) was introduced in [4] for optimization
tasks. The SCA creates preliminary random candidate answers

and requires them to vary outwards or towards the optimal
solution through sine and cosine functions. One state-of-the-art
algorithm is the salp swarm algorithm (SSA)[5]. The SSA is
based on the swarming behaviour of salps while navigating and
foraging in oceans. A variation of the SSA was introduced in [6].
The whale optimization algorithm (WOA) is a brand new
approach for solving optimization problems. This algorithm
consists of three operators to simulate the following behaviours
of humpback whales: looking for prey, encircling prey, and
bubble net foraging [7]. The grey wolf optimization (GWO)
algorithm mimics the hierarchy and search mechanisms of grey
wolves in nature, and the processes of looking for prey,
encircling prey, and attacking prey are considered in the
optimization [8]. The ant lion optimizer (ALO) is the lat- est
metaheuristic approach that mathematically models the
behaviours of ants and antlions in nature. The ALO was
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developed to solve optimization problems considering the
random movements of ants, construction of traps, entrapment
of ants in traps, catching prey, and rebuilding traps [9]. The
grasshopper optimiza- tion algorithm (GOA) models and mimics
the behaviours of grasshopper swarms in nature to solve
optimization problems [10]. Recently, a population-based al-
gorithm called the multitracker optimization algorithm (MTOA)
was proposed.

This method included the term ”multitracker” because there are
two types of trackers. The first type includes trackers that
concentrate on locating the global optimum, and the second
type includes trackers that help the first type to learn its
surroundings and avoid being trapped at local optima [11]. It is
worth noting that the MTOA is not inspired by nature. This
paper proposes a novel variation of the original MTOA named
the migration-based MTOA (MTOA1), which em- ploys multiple
subpopulations of trackers to achieve superior performance. In
the proposed MTOA1 approach, some subpopulations work
independently in the area of interest of the search space to
simultaneously accelerate the search scheme and identify the
global optimal. In this scenario, the local behaviours among
subpopulations are considered, and one subpopulation can
transmit its best solution to another in a cyclic manner. The
proposed MTOA1 approach is validated based on the CEC2017
benchmark problems, and an improvement over the original
MTOA is observed. The main contributions of this paper are as
follows.

• Population diversity is maintained by cross-subpopulation
migration.

• The performance of the introduced multiple population-based
method is assessed based on the CEC2017 benchmark
problems.

• The proposed multiple population method can be adapted to
any swarm algorithm without changing its structure.

This paper is organized as follows: section 2 introduces the
MTOA; section 3 in- troduces MTOA1; section 4 presents the
simulation results; section 5 includes a case study of the welded
beam design optimization problem; and the conclusions and
future work are discussed in section 6.

Traditional multitracker optimization
algorithm (MTOA)
Unlike optimization algorithms that are inspired by nature, the
MTOA was developed to overcome the disadvantages of other
optimization algorithms and take advantage of specific features.
Similar to other algorithms, the MTOA performs exploration
and exploitation processes in the search space. To explore the
search space, a random number num of points are distributed
and called global trackers (GT ). The rank of each point i of a
GT is calculated (RKi) based on the corresponding cost value.
Rank 1 is assigned to the GTi corresponding to the lowest cost,
and the highest rank is assigned to the GTi corresponding to the
highest cost. The optimum point is selected as the global
optimum point (GOP ). To avoid local minima, each GTi is
surrounded by a number of points called local trackers (LT ) in a
specified radius Rsi. The LTs inform each GT of its

surroundings to avoid becoming trapped at local minima. After
searching using the LTs, GTs start to move and search for the
optimal point on a random motion technique. The MTOA
process can be divided into two main stages:

1.The first stage of the traditional multitracker process: The first
stage is exploration. First, num points are randomly initialized
in the search space to search the global optimum. These points
are called global track- ers (GT ). The rank of each global tracker
is calculated according to the fitness function of the problem
and whether the problem is a maximiza- tion or minimization
problem (in this context, minimization problems are assumed).
This calculation ends when the global optimum point (GOP ) is
reached according to equation 1.

GOP = arg(minimum(Rki)) (1)

where i=1,2,3,. num

2. The second stage of the traditional multitracker process: The
second stage is exploitaion. Each global tracker is informed of its
surroundings by a set of points called local trackers. The local
trackers are selectd within a certain radius (Rs) of each global
tracker point. Based on the received information, global trackers
move to better locations in the search space.

The radius around each point i in GT s is determined using
equation 2.

In equation 2, Rm and RM are two constants that present the
minimum and maximum radii, respectively; Rki is the rank of
the ith GT; and num is the total number of global trackers. Rf
varies between Rm and RM; however, if the value of (Rf ) is
greater than the distance between GTi and GOP ((Rd)), the
search radius (Rs) is set to (Rf ). Otherwise, the search radius
(Rs) is set to (Rd). Therefore, before converging to the optimum
solution, the search radii of GT s are large and overlap the GOP.
Figures 1a and 1b show the selection of Rs.

Figure 1: Selection of Rs

The cost of all local trackers surrounding GTi is calculated and
the best point (LPi) is stored to influence the random walk of
the global tracker point. The movement of each i point of the
global trackers is shown in equation 3.

GTi = ((β)(GOP − GTi) + (1 − β)(LPi − GTi)) (3)\

where β is a value between 0 and 1.

The pseudo code of the MTOA is shown in algorithm 1.
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Algorithm 1 Traditional multitracker
optimization algorithm (MTOA)
• initialization Initialize the population of Global Trackers

(GT ). The total number of (GT ) is num. Rm and RM are two
constants that represent the minimum and maximum radii,
respectively. The number of iterations is iterations and iter = 1
initially.

• while iter<iterations do
• //START: The first stage of the traditional multitracker

process
• for all point i ∈ GT do
• Determine the cost of point i.
• Determine the rank of point i (RKi)
• end for
• GOP is calculated according to equation 1
• // END: The first stage of the traditional multitracker process
• // START: The second stage of the traditional multitracker

process
• for all point i ∈ GT do
• Determine Rsi as in equation 2.
• Determine all Local Trackers (LT )’s for point i within radius

Rsi.
• for all point j ∈ LT do
• Determine the cost of point j.
• Determine the rank of point j (RKj ).
• end for
• The Local Optimum Point (LPi) = point j with minimum

(RKj ).
• Move point i according to equation 3.
• end for
• // END: The second stage of the traditional multitracker

process 22: iter=iter+1.
• end while
• Select the GOP of the problem.

The improved multitracker optimization
algorithm (MTOA1)
To address the complex task of optimization, an improved
version of the MTOA is proposed and called MTOA1, which is
based on the subpopulation concept [12]. This method was
developed to solve recent optimization problems such as the
CEC2017 problems. The aim of this improvement is to facilitate
the sharing of information, and it consequently improves the
diversity of the overall solution. Furthermore, the multiple
population concept utilizes the adaptive interactions among the
different sub populations to enhance the exploration process
compared to that of the single-population concept[13]. In the
proposed approach, the original population is first split up into
m subpopulations. Each subpopulation contains num trackers,
where num=T/m. In this case, T is the total number of trackers.
Each subpopulation works independently during the MTOA
search process, and the local behaviours of all subpopulations
are cyclic as shown in figure 2. Thus, the best tracker obtained
from the current

Figure 2: Dividing the population into m subpopulations to
exchange information

subpopulation is retained in the next subpopulation. This
process of updating the best tracker continues until the final
subpopulation is reached. By this mechanism, the best tracker
will guide the search process for all trackers in all
subpopulations. Note that each subpopulation records the
information from its best tracker when the search process begins
and compares this information with that received from the
previous subpopulation. The MTOA1 steps are as follows.

• Randomly Initialize a population containing T trackers inside
the search region.

• Split the population of trackers into m subpopulations each
with size num.

• Each subpopulation ( subpop) works independently with its
own local and global trackers. Each subpopulation identifies
its best tracker and retains it in the second subpopulation.
This process then continues in a cyclic manner as shown in
equation 4.

• If the total number of iterations is reached, then the algorithm
stops and the final results are recorded. Algorithm 2 describes
the steps of MTOA1. The flowchart of MTOA1 is shown in
figure 3.

Simulation Results
CEC2017 test suite includes 29 benchmark functions [14],
which are summa- rized in table 1. The benchmark functions
can be used to assess the strengths and weaknesses of
evolutionary algorithms. A unimodal function (from F1 to F3) is
non-separable and direction sensitive with smooth but narrow
ridge. Uni- modal problems can be suitably solved with standard
exploitation methods. In contrast to unimodal problems,
multimodal benchmark problems (from F4 to F10) have many
local optima, and the number of optima exponentially increases
with the problem dimension. Thus, such problems are
appropriate for bench- marking the exploration capability of an
approach. In a hybrid function (from F11 to F20), variables are
randomly split into subsets and some dissimilar basic functions
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[15]. Composition functions (from F21 to F29) combine the
properties of certain subfunctions and provide robustness
around global or local optima.

Parameter Setting

Most optimization algorithms have parameters that guide the
search di- rection towards the global optimal solution. These
parameters are extremely

Algorithm 2 the Improved Multitracker
Algorithm (MTOA1)
• initialization Initialize the population T . Rm and RM are two

constants that
• represent the minimum and maximum radii, respectively. The

number of subpopulations is m. The number of iterations is
iterations, and iter = 1 initially.

• while iter<iterations do
• Divide the population into m subpopulations.
• The number ofGT (num) in each subpopulation is T /m
• subpop=1.
• while subpop<m do
• start the first stage of the traditional multitracker process.
• if subpop = 1 then
• GOP= arg(minimum(Rki)i=1,2,3,. num).
• else if subpop = m then
• Use GOP of the first subpopulation
• else if Cost(GOPsubpop−1) < Cost(GOPsubpop) then //

previous GOP is better
• Use the GOPsubpop−1
• elseUse the GOPsubpop
• end if
• start the second stage of the traditional multitracker process
• subpop=subpop+1.
• end while
• Get the GOP for iteration iter.
• Gather all populations (located at new positions). 21:iter=iter

+1.
• end while
• Select the GOP of the problem.

Figure 3: MTOA1 Algorithm Flowchart

CEC 2017

Type No. Description Fi*

 1 Shifted and
Rotated Bent
Cigar Function

100

Unimodal
Function

2 Shifted and
Rotated Sum of
Different Power
Function

200

 3 Shifted and
Rotated
Zakharov
Function

300

 4 Shifted and
Rotated
Rosenbrock’s
Function

400

 5 Shifted and
Rotated
Rastrigin’s
Function

500

 6 Shifted and
Rotated
Expanded
Scaffer’s F6
Function

600
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Simple
Multimodal
Functions

7 Shifted and
Rotated
Lunacek Bi
Rastrigin
Function

700

 8 Shifted and
Rotated Non-
Continuous
Rastrigin’s

800

 Function

 9 Shifted and
Rotated Levy
Function

900

 10 Shifted and
Rotated
Schwefel’s
Function

1000

 11 Hybrid
Function 1
(N=3)

1100

 12 Hybrid
Function 2
(N=3)

1200

 13 Hybrid
Function 3
(N=3)

1300

 14 Hybrid
Function 4
(N=4)

1400

 15 Hybrid
Function 5
(N=4)

1500

 16 Hybrid
Function 6
(N=4)

1600

Hybrid
Functions

17 Hybrid
Function 6
(N=5)

1700

 18 Hybrid
Function 6
(N=5)

1800

 19 Hybrid
Function 6
(N=5)

1900

 20 Hybrid
Function 6
(N=6)

2000

 21 Composition
Function 1
(N=3)

2100

 22 Composition
Function 2
(N=3)

2200

 23 Composition
Function 2
(N=4)

2300

 24 Composition
Function 4
(N=4)

2400

 25 Composition
Function 5
(N=5)

2500

Composition
Functions

26 Composition
Function 6
(N=5)

2600

 27 Composition
Function 7
(N=6)

2700

 28 Composition
Function 8
(N=6)

2800

 29 Composition
Function 9
(N=3)

2900

Table 1: Summary of CEC 2017 expensive benckmark problems

Important and unreasonable values can result in divergence.
The parameter values are shown in table 2.

Parameter name Value

T 80

m 4

RM (2)

Rm  1E-8

num 20

iteractions  30

Table 2: List of MTOA1 parameters

Comparison between MTOA1 and Other
Algorithms

MTOA1 is compared with the FFA, GOA, WOA, DA, GWO
algorithm, ALO, SSA and SCA based on the CEC 2017
benchmark set with 10 dimensions (10D).
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Convergence Test

The experimental results show that MTOA1 produces a high-
quality so- lution, is not trapped at local minima and yields
rapid convergence. Figure 4 shows an example of the
convergence curves of ten functions, respectively. MTOA1
outperforms the other algorithms based on the benchmark
functions. The obtained solutions indicate that MTOA1 has
merit in terms of exploration and exploitation. Based on the
obtained convergence performance of MTOA1, it is concluded
that MTOA1 can reliably provide high-quality results in a rea-
sonable number of iterations, avoid premature convergence in
the search process to local optima and provide superior
exploration capabilities in the search space. MTOA1 rapidly
converges for the following reasons:

• In each iteration, MTOA1 divides the space into m
subpopulations with size num. The points in each
subpopulation move to better positions in the search space.
Each subpopulation transfers its best tracker to the next
subpopulation. Meanwhile, the subpopulation moves to the
best positions based on the movement of the previous
subpopulation. Therefore, each point i in the subpopulation
(subpop) is affected by the new positions of a number of
points x = num * (subpop - 1)+ (i-1). Some or all points x can
be selected as local trackers.

• Conversely, in each iteration, the MTOA has only one
subpopulation with size num. Each point i in the search space
is affected by the movement of the previous (i-1) points only.
Thus, the algorithm converges slowly.

• The number of updated local trackers in MTOA1 is larger
than that in the MTOA.

Figure 4: Convergence curves of functions from F1 to F10

Mean and Satandard Deviation

The mean values (the average of 30 runs) obtained are shown in
table 3. MTOA1 produces the lowest mean minimization values
in the 29 benchmark functions. Table 4 shows the standard
deviation of the solutions. The larger the standard deviation is,
the larger the fluctuations in the final solution quality. Small
standard deviation values indicate that the algorithm can
achieve consis- tent and good solutions across almost all runs.
MTOA1 achieves the lowest standard deviations for all
unimodal functions, two multimodal functions (F8 and F10), six
hybrid functions (F11, F12, F13, F14, F17 and F18) and seven
composition functions (F22, F24, F25, F26, F27, F28 and F29).
Based on the mean values, table 5 shows that MTOA1 always
ranks first among all algorithms tested. MTOA1 has the lowest
average rank among all other tested algorithms. The calculated p
values are reported as metrics of significance as well with an 5%
significance level. The main advantages of the MTOA1 can be
summarized as follows:

• The MTOA1 has a high convergence rate in comparison with
other algo- rithms based on the use of the local trackers. The
local trackers surround each global tracker and one of them is
nominated as the best local optimum point. Each global
tracker changes its location based on that best local optimum
point and other factors. Hence, Each global tracker is
informed by its surroundings and moves accordingly.
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• The MTOA1 cannot be trapped at local optima. Moreover,
the probability of reaching the global optimum is higher than
that for other algorithms.

FFA GO
A

WO
A

DA GW
O

AL
O

SSA SCA MT
OA

MT
OA
1

F1 1.12
E
+11

9.93
8E
+10

1.14
E
+11

1.01
E
+11

5.63
2E
+10

1.09
E
+11

1.21
E
+11

1.89
E
+11

6.32
8E
+10

703
3.63
49

F2 258
469.
856
1

480
631.
02

425
222.
3

253
363
0.2

432
425.
25

428
888.
3

152
326
53

139
88.8
68

139
88.8
68

139
88.8
68

F3 377
22.0
966
5

286
44.5
87

420
21.6
3

275
94.4
82

115
61.5
82

366
88.6
5

396
73.1
49

690
39.8
8

136
85.4
72

610.
779
77

F4 127
5.58
543
5

122
9.16

132
7.60
5

124
2.07
78

1128
.
403
3

123
9.83
1

126
0.27
78

150
1.87
66

1143
.
884
5

846.
127
56

F5 714.
460
686
8

715.
065
16

726.
898
8

705.
627
72

677.
845
64

698.
915
56

711.
026
37

734.
5715
2

686.
886
66

657.
950
4

F6 252
7.02
899
6

2311
.
8742

222
4.53
9

229
5.46
34

204
2.13
39

264
9.74
49

243
9.62
62

482
9.42
87

2410
.
5776

134
9.03
95

F7 156
3.14
889
3

156
8.55
28

159
5.38
4

154
4.20
76

139
4.88
4

1516
.
732
2

156
0.11
89

1766
.146

144
2.67
68

112
3.65
78

F8 537
88.7
769
9

535
34.7
53

5513
9.62

469
87.5
74

325
92.9
6

438
03.0
32

478
54.3
79

8412
8.04
7

366
77.6
46

123
65.4
28

F9 1678
9.97
325

150
18.2
92

1615
7.93

166
55.3
82

165
42.2
41

163
39.8
6

1610
7.96
3

168
42.0
39

132
85.9
67

8411
.
808
7

F10 308
45.8
043
9

572
94.0
52

339
09.8
6

4311
9.75
2

400
54.9
11

501
56.9
47

3195
0.45
4

796
19.1
36

2120
0.74
6

1467
.
970
2

F11 7816
192
995
3

3.88
4E
+10

7.3E
+10

5.6E
+10

1.19
2E
+10

6.73
5E
+10

7.26
4E
+10

7.90
6E
+10

1.14
6E
+10

292
213
28

F12 4119
520
585
1

1.35
9E
+10

2.64
E
+10

2.49
8E
+10

3.31
8E
+09

4.17
1E
+10

3.11
6E
+10

4.30
7E
+10

2.36
8E
+09

146
978.
61

F13 900
934
85

3108
926
8

609
575
31

7176
4135

1517
794
2

825
984
89

625
575
07

656
2814
3

344
726
8

1137
60.7
6

F14 800
089
369
1

2.31
7E
+09

6.31
E
+09

5.15
4E
+09

1.14
8E
+09

4.39
7E
+09

8.52
9E
+09

9.19
3E
+09

1173
4210
3

478
58.9
76

F15 104
59.0
138
2

664
2.82
59

8109
.131

807
6.81
03

492
1.60
66

9011
.
800
3

843
3.67
37

943
6.68
83

538
9.82
52

365
0.55
96

F16 133
80.1
262
8

5616
.
540
6

7681
.596

709
8.90
74

594
6.44
99

9241
.
602
5

929
3.68
58

785
10.4
85

438
6.81
58

357
3.28
25

F17 169
266
611.
4

854
524
52

2.57
E
+08

208
692
666

186
28.4
12

195
6671
74

1491
236
67

342
2414
83

4311
847
7

806
345.
15

F18 4074
360
316

422
2218
76

2.41
E
+09

1.39
7E
+09

606
378
48

884
292
05

3.38
3E
+09

5.14
5E
+09

932
392
96

463
35.3
18

F19 495
1.94
308

424
9.90
51

4615
.909

496
0.25
21

458
9.86
96

2.45
E
+09

449
8.12
95

497
1.06
63

387
3.81
37

352
2.83
52

F20 329
4.29
749
5

3169
.
838
1

324
0.67
3

3133
.
953
1

292
8.73
12

458
8.03
26

323
8.95
59

330
1.91
83

298
7.97
16

262
4.83
63

F21 185
56.8
852
1

164
05.9
95

1765
4.94

180
80.0
09

182
51.8
87

3189
.
483
8

1717
0.11
2

1871
4.91
6

1513
2.78
9

994
1.65
54

F22 5115
.
494
241

420
8.08
77

429
7.75
1

457
7.06
43

3619
.
005
7

1754
4.06

4319
.
903
6

433
1.33
13

368
2.69
33

307
0.64
39

F23 538
2.91
5711

454
9.73
15

450
0.54
4

494
5.08
88

385
3.34
53

520
3.20
09

436
9.43
92

460
2.87
73

406
3.36
22

326
9.55
2

F24 1740
0.35
891

1470
7.58
3

1681
7.85

179
91.7
89

965
2.68
77

549
4.62
03

1917
4.05
5

384
79.9
26

107
98.8
46

3116
.
8746

F25 187
38.9
186
2

184
30.8
64

196
35.3

186
34.1
64

129
93.7
22

1767
4.10
5

192
47.6
09

226
91.7
86

148
27.8
54

829
5.57
43

F26 753
9.97
644
4

578
8.29
74

608
1.98
5

6910
.
169
8

4810
.
598
1

846
6.41
6

621
5.26
24

630
6.46
02

447
8.99
38

382
7.79
39

F27 130
09.9
936
8

1231
7.72
8

133
62.1
1

124
28.1
68

8196
.
456
8

143
27.7
17

1427
3.99
9

168
47.9
71

823
3.99
19

338
1.94
61

F28 1131
17.0
522

162
87.5
08

294
13.3
1

582
87.0
09

970
7.23
32

841
54.5
22

764
51.7

586
08.1
16

922
3.42
18

5144
.172

F29 755
660

2.51
1E
+09

4.27
E
+09

3.65
6E
+09

792
075
071

6.00
9E
+09

6.03
4E
+09

8.76
7E
+09

422
804
760

124
4181
8
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Table 3: Mean test results on CEC’17 benchmark functions.

FFA GO
A

WO
A

DA GW
O

AL
O

SSA SCA MT
OA

MT
OA
1

F1 984
084
265
4

1.12
7E
+10

8.47
E
+09

9.38
5E
+09

1.72
7E
+10

1.1E
+10

1.21
8E
+10

2.17
3E
+10

8.41
1E
+09

1016
3.32
5

F2 460
71.5
998
7

1111
74.5
1

928
99.6
2

443
844
9.3

8574
6.90
9

1151
88.8
2

133
679.
47

403
6374
7

107
366.
48

7510
.
2104

F3 8183
.
949
885

9134
.
302
3

567
8.66
4

696
4.63
13

3319
.
728
4

678
6.13
75

1001
6.69
4

1811
8.08

409
3.02
67

26.7
001
02

F4 31.4
905
793
3

82.2
930
74

97.0
392
1

39.4
784
26

60.8
92

53.3
729
27

37.2
6768
4

78.2
5179
9

64.7
272
94

67.2
888
79

F5 3.98
308
0818

12.5
428
4

11.6
820
4

7.29
134
57

9.89
358
78

8.85
1478
6

6.34
253
74

11.4
150
56

9.84
7016
5

8.60
363
7

F6 195.
103
385
9

260.
493
95

163.
405
1

268.
082
88

226.
148
34

124.
267
73

205.
577
9

766.
725
82

271.
786
36

146.
263
87

F7 54.7
160
253

86.8
872
75

110.
355
2

43.2
6158
1

74.6
289
23

48.5
2776
1

46.0
488
77

88.2
0018
2

36.8
902
57

40.8
828
14

F8 684
2.74
566
9

815
8.50
66

123
61.1
6

5817
.533

9318
.
853
8

962
5.13
51

527
8.74

102
98.1
34

9918
.
1867

294
4.22
77

F9 672.
3159
677

767.
743
59

645.
578
5

635.
459
34

787.
133
08

815.
682
15

803.
3198
6

562.
159
64

685.
723
17

904.
633
06

F10 798
6.09
404
3

1518
9.70
3

148
86.6
3

142
23.0
3

123
49.3
11

2108
5.49
3

3765
.
593
8

288
63.5
02

720
4.83
3

77.4
325
79

F11 100
699
5776
7

1.57
7E
+10

1.79
E
+10

1.22
8E
+10

5.64
4E
+09

1.07
1E
+10

1.85
1E
+10

2.07
4E
+10

2.74
2E
+09

2513
782
9

F12 1021
2776
961

7.03
9E
+09

7.55
E
+09

5.90
9E
+09

3.14
4E
+09

1.12
5E
+10

8.91
8E
+09

1.17
5E
+10

1.34
3E
+09

602
86.2
1

F13 6510
1517
.62

363
542
03

606
196
04

540
4760
7

195
2143
3

750
254
75

636
930
64

267
522
54

349
870
8.5

652
20.3
91

F14 3187
270
009

1.50
1E
+09

3.8E
+09

4.06
5E
+09

1.41
8E
+09

2.27
5E
+09

4.00
7E
+09

3.65
9E
+09

958
495
02

272
77.1
52

F15 126
0.02
980
7

526.
4271
7

758.
305
7

1415
.
203
6

648.
7165
6

150
6.90
78

994.
675
09

1481
.
638
1

746.
7691
1

535.
338
31

F16 100
20.6
234
1

1376
.
207
7

178
8.69

237
3.81
46

275.
093
67

4615
.
533
6

485
2.83
19

126
470.
66

620.
1961
4

371.
0212
9

F17 750
763
02.9
8

542
496
84

1.83
E
+08

134
733
793

762
4193
7

1451
734
25

990
730
10

1476
000
76

3517
7191

473
842.
05

F18 153
455
800
9

287
297
325

1.1E
+09

1.00
3E
+09

3216
036
3

1.66
6E
+09

1.84
7E
+09

1.30
2E
+09

645
3615
6

378
05.0
16

F19 266.
647
897
7

271.
202
1

423.
307
6

331.
4148
3

259.
5168
8

265.
305
55

383.
208
48

220.
1185

291.
9718
5

374.
458
91

F20 105.
055
169

99.4
4713
9

130.
585
6

62.9
068
07

47.5
958
56

77.2
580
82

96.7
530
73

68.2
358
13

93.1
305
32

72.2
205
03

F21 308.
240
675
7

896.
383
73

740.
1124

549.
2461
5

586.
068
72

514.
360
35

684.
834
21

423.
475
2

583.
437
26

918.
272
37

F22 253.
469
364
9

251.
605
5

194.
2747

168.
459
56

90.6
7631
4

322.
534
13

174.
358
91

85.0
190
97

139.
466
24

83.8
033
86

F23 334.
442
692
4

155.
215
96

187.
813
2

262.
124
61

130.
836
08

338.
4710
4

235.
1180
5

199.
4519
2

103.
504
68

173.
6146
2

F24 288
1.88
497

298
3.75
54

1765
.087

399
3.69
75

198
2.17
9

270
6.28
61

299
4.18
34

102
91.6
34

1481
.
792
1

48.7
793
44

F25 155
5.81
952
1

115
3.79
35

202
1.36
7

240
7.57
5

134
4.95
81

130
8.63
98

1143
.
6274

2917
.
500
4

135
4.49
65

100
4.92
81

F26 675.
0174
107

575.
5184
4

788.
086
7

612.
337
09

339.
6615
1

917.
964
21

754.
2116
8

620.
873
39

292.
222
57

175.
564
62

F27 1145
.
6741
12

107
0.15
89

1318
.566

135
5.25
12

685.
163
41

1115
.
367
5

138
7.91
81

194
9.74
08

103
5.93
64

68.8
133
39

F28 205
455.
721
5

639
5.65
85

183
54.4
3

104
223.
89

1757
.
460
2

972
47.7
45

108
372.
71

7197
5.08
6

1210
.
813
6

581.
045
05

F29 259
326

1.7E
+09

1.6E
+09

2.08
1E
+09

812
2316
57

3.78
7E
+09

2.51
4E
+09

2.99
E
+09

170
590
813

5474
859.
1
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Table 4: Standard Deviation test results on CEC’17 benchmark
functions.

Rank Unimodal

 

Multimodal

 

Hybrid

 

Composition

 

 Algo., Avg.,
Rank

Algo., Avg.,
Rank

Algo., Avg.,
Rank

Algo., Avg.,
Rank

1 MTO
A1

1 MTO
A1

1 MTO
A1

1 MTO
A1

1

2 MTO
A

3.33 MTO
A

3.14 MTO
A

2.2 MTO
A

2.55

3 FFA 5.33 FFA 7.14 FFA 8.6 FFA 8.22

4 GOA 5.66 GOA 6.28 GOA 3.9 GOA 4.11

5 WOA 7.33 WOA 7 WOA 6.8 WOA 5.88

6 DA 6 DA 5.71 DA 6 DA 6.77

7 GWO 2.33 GWO 3.28 GWO 3.2 GWO 4.33

8 ALO 6.33 ALO 5.71 ALO 6.9 ALO 8

9 SSA 7.66 SSA 5.71 SSA 6.8 SSA 6.77

10 SCA 10 SCA 10 SCA 9.6 SCA 8.66

p
value

 0.002  0.002  0.002  0.002

Table 5: Average rank table and p value of MTOA1 and other
algorithms

Welded Beam Design Optimization
Problem
In this section, MTOA1 is used to solve the classical welded
beam design problem. Welded beam design problem is a
minimization problem with four variables namely the weld
thickness (h) , length of bar attached to the weld (l), bar height
(t), bar thickness (b) as shown in figure 5. The constraints
included in this problem are the bending stress (θ), beam
deflection (δ), shear stress (τ ), buckling load (P ) and other side
constraints. The mathematical formulas related to this problem
are represented as follows [16]:

Figure 5: welded beam optimization problem

Table 6 shows a comparison of all the simulation results of the
studied opti- mization algorithms for the welded beam design
problem. In terms of the best result, MTOA1 outperforms the
MTOA. Additionally, the mean obtained by MTOA1 for this
problem is better than that obtained by all other algorithms.

Algori
thm

Best, Mean Std.de
v

x1 x2 x3 x4

FFA 1.9953
5

1.38E
+19

7.53E
+19

0.1259
83

5.5598
73

9.9900
81

0.2018
8

GOA 1.8374
9

1.51E
+17

8.28E
+17

0.1294
49

5.4208
86

9.0368
15

0.2057
38
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WOA 2.0579
7

3.12E
+17

1.71E
+18

0.1479
82

4.7719
71

8.8105
31

0.2441
29

DA 1.8591
8

2.1939
58

0.2572
98

0.125 5.6409
51

9.0109
47

0.2069
15

GWO 1.7085 1.7591
06

0.0577
85

0.2007
86

3.3773
66

9.0427
06

0.2060
98

ALO 1.7124
2

2.6768
84

0.7474
85

0.1906
44

3.5410
38

9.0465
94

0.2056
8

SSA 1.8444
8

2.4032
3

0.6895
74

0.1294
94

5.4008
92

9.0979 0.2054
26

SCA 1.8730
8

2.1478
53

0.1388
32

0.1917
28

3.7163
26

9.0421
53

0.2234
57

MTO
A

1.8223
3

1.9919
07

0.1552
77

0.1380
68

5.0763
28

8.9880
62

0.2079
59

MTO
A1

1.6957
6

1.7104
95

0.0199
99

0.2051
95

3.2626
74

9.0366
25

0.2057
3

Table 6: Comparative results of welded beam design problem.

The convergence curves for the welded beam design problem are
shown in figure 6 . The performance of MTOA1 is examined
and compared to that of the other algorithms through 20
independent runs. Based on the reported perfor- mance, it is
clear that MTOA1 provides faster convergence and achieves
better outcomes than the other algorithms. In addition, the box
plots are provided in figure 7 to illustrate the stability and the
distribution of the obtained results of MTOA1 and the other
comparative algorithms over 20 independent runs. Based on the
obtained results from the box plots, it is noted that MTOA1 is
associ- ated with the smallest span among the distributions of
the solutions. This result verifies the superior performance of
MTOA1 among the compared algorithms.

Figure 6: Convergence curves of welded beam design problem

CONCLUSION AND FUTURE WORK
In this paper, an improved MTOA is developed with multiple
subpopulations to solve the CEC2017 function optimization
problem. The algorithm starts by splitting a single population
into several subpopulations. In each subpopulation, the best
tracker with the best fitness value is recorded, and this

information is transferred to the following subpopulation. All
trackers within the same subpop- ulation are updated according
to the updating formula. The simulation results show the
superiority of MTOA1 to different optimization algorithms. In
future work, the improved MTOA with multiple subpopulations
may be implemented

Figure 7: Comparative Box plots between MTOA1 and other
algorithms

To solve multi-objective optimization problems. The
multipopulation framework offered here can be extended to
other varieties of optimization algorithms, such as many-
objective optimization, large-scale optimization, and complex
system optimization.
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