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ABSTRACT

The two dimensional cellular automata (CA) picture is an alternative method to depict the nucleotide and amino acid sequences. 
Here we showed that the two dimensional CA pictures can vividly delineate the nucleotide sequences (base sequence) of the 
gene and the genomes of SARS-CoV-2, the pathogenic agent of the COVID-19 pandemic. If the genetic codon rules are strictly 
followed, the CA pictures can also depict the genetic codons and indirectly express the amino acid sequences of the proteins 
of SARS-CoV-2. CA pictures can reveal the overall and detailed differences between nucleotide or amino acid sequences and 
they are very sensitive to the sequence details, such as the cleavage recognition site of the host protease like TMPRSS2, and the 
receptor binding domain (RBD) of the spike protein of SARS-CoV-2, which are sensitive to even changes in only one amino 
acid or a nucleotide between the sequences from different strains of SARS-CoV2. We think that CA pictures can provide a 
mathematical basis for viral genetic and amino acid sequence messages or be applied to artificial intelligence when expressing 
the genetic messages of SARS-CoV2 and other viruses.
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INTRODUCTION
The ongoing COVID-19 pandemic has been traced to the 
emergence of a new species of coronavirus of the subgenus 
Sarbecovirus and genus Betacoronavirus, which originated from 
wildlife [1,2], around the end of 2019 [3]. Human-to-human 
transmission was confirmed around January 2020 [4] and has 
subsequently led to large scale global transmission. This virus has 
been officially denoted as SARS-CoV-2, and has been identified as 
an intimate relative of the original SARS virus which caused the 
first coronavirus epidemic in 2003 [5].

There are various visual representations (‘pictures’) constructed 
from cellular automata (CA) [6]. Here we proposed a new, unique 
way and insight based on CA to depict the overall genetic sequences, 
and discern minute differences in the viral gene, protein or genomic 
structures. Specifically, by encoding raw genomic information in a 
specific way, we iteratively apply simple CA update rules to genetic 
data and produce pictures unique to each gene, protein or genome. 
Those pictures are unique in the sense that any changes to the 

amino acid or the nucleotide sequence will result in a completely 
different picture. Subsequently, local variations of standard 
sequences due to obvious or tiny changes from mutations and/or 
recombination events can then be quickly identified and studied. 
This is in contrast to traditional methods such as BLAST [7] in 
terms of simplicity and elegance.

METHODS
Cellular automata 

A cellular automaton is a simple computer program which takes 
as input an N-dimensional discrete array of cells, each of which 
contains a numerical value. The computer program is uniquely 
defined by an update rule, which acts upon the input to produce 
an output that is then subject to the same update rule, in which 
the output is then again updated. This process is then carried out 
in a sequence of discrete “time” steps until some predetermined 
end time. The resulting graphical representation of this process 
could show some striking features, which we will elaborate on in 
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another section. For details on the update rule, please refer to the 
supporting information. A notable aspect of cellular automata 
generally constructed in such a manner (but perhaps obeying 
different update rules) is their property of emergence. Emergence 
in a complex system refers to the ability of the system to generate 
complex structures and correlations between its constituent parts 
even when starting from simple initial conditions. By using very 
simple update rules, it is possible to end up with very complex 
large-scale behavior.

Even starting from one of the simplest possible states, a 
‘00000000100000000’ sequence, the resulting generation is that 
of a complex picture. The emergence of these complex structures 
enables cellular automata to be used for extracting complex 
correlations in seemingly simple data. Furthermore, for a cellular 
automata generating process in genomics, even a change in one or 
several basis points in the initial input could create a butterfly effect 
that alters the characteristics of the entire sequence, including 
combinatorial features in different local regions and specific points 
on the sequence, and reveal different correlational patterns and 
aspects in the generated figure (Figure1).

Algorithm for transforming a base sequence into a picture 

To speed up the algorithm for transforming a base sequence into 
a picture, a Deep Learning Framework, TensorFlow, was used to 
build a calculation graph in a recursive way. Suppose x is a base 
sequence (Equation 1),
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Where the function vector () transforms the base sequence x into a 
vector where A 00, T11, C  01, and G  10.

The function conv () is a one-dimensional convolution operation in 
TensorFlow. Its kernel and stride were [1, 2, 4] and 1, respectively. 
The left and the right paddings were both 0. Every 3 digits was 
transformed into an octal number. The function look_up () took 
the octal numbers as the indices with which the output values were 
looked up over a rule denoted by rule_no. Suppose rule_no was 
229, or expressed as 11100101 in binary form; then the index 
(based on zero) of each digits in the binary number was used. The 
vectors in g produced the final picture where yi was its i’th row 
composed of 0’s and 1’s.

For example, suppose x was GCT and rule_no was 229; y1 was 
therefore 100111. The result of the one-dimensional convolution 
applied to 01001110 was 214673. The binary form of the rule 229 
was 11100101. For convenience, it was reversed as 10100111. The 
result of the function look_up() was 100110, which was assigned to 
y2. In the same way, y3 was 100100. Finally, we formed a picture by 
concatenating all yi, i=1, 2, ……, n.

RESULTS 
We explored all of the 256 types of CA pictures and found that the 
rule_226 CA pictures, shown below, are the suitable choices when 
describing the nucleotide sequence of the viral gene or the amino 
acid sequence of the viral proteins. The other types of CA pictures, 
including the rule_184 CA pictures, which are also shown below, 
can be used to depict the viral genome with similar effects.

In Figure 1 and Supplementary Figure S4, we showed the rule_226 
pictures of the receptor binding proteins (RBP) from 11 different 
viruses and the rule_184 pictures of the genomes from HIV, SARS-
CoV, and SARS-CoV-2. We also marked the receptor binding 
domains (RBD) of the respective viruses. It is clear that all these 
CA pictures are generally distinct and represent a visual method 

Figure 1: The Comparison of the Rule226 CA Pictures of the Receptor Binding Proteins from 11 different viruses: H1N1 high pathogenic influenza 
virus for human, H5N1 high Pathogenic influenza virus for avian animals, HIV, Chinese Swine Acute Diarrhea Syndrome Coronavirus (SADS-CoV), 
Bat Coronavirus RaTG13, Pangolin CoV (GX), Avian Infectious Bronchitis Virus （Avian IBV, human Coronavirus OC43, MERS-CoV, SARS-
CoV（Accession ID: NC_004718.3;Strain name: Tor2） and SARS-CoV-2（Accession ID: NC_045512; Strain name: Wuhan-Hu-1). Please pay 
attention to the location of the Receptor Binding Domain (RBD) labeled green. The Codon rule for expression of the amino acid was strictly abided by. 
Please check the amino acid Sequences etc. of the proteins in this figure within Figure S2. Please check the details of the viral strains in Table S1.
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of distinguishing the genetic and protein messages of the different 
viruses. 

In Figure 2, we compared the CA rule_226 pictures obtained 
from SARS-CoV and SARS-CoV-2 for their Spike (S) proteins 
[8]. Important functional regions, such as the signal peptide (SP), 
Receptor Binding Motif (RBM), Fusion Peptide (FP), Inserted 
amino acid/host protease recognition site, and cleavage site (amino 
acid PRRAR) [9] by the host protease like TMPRSS2 [10] have been 
marked on both CA pictures of the aforementioned S proteins. 
Please check Supplementary Figure S2 for the sequence and the 
phylogenetic tree background of the S proteins & S genes from 
SARS-CoV-2 and other 10 viruses, including influenza viruses, 
HIV and 8 other coronaviruses.

Figures 3 and Figures 4 showed the CA pictures obtained from 
single nucleotide polymorphisms (SNPs) in different strains of 
SARS-COV-2. Figure 3 showed the tiny graphic pattern differences 
in the CA pictures obtained from two strains of the SARS-COV-2 
virus differing by a synonymous SNP at base positions 28 or 
247 in the S protein, when compared respectively to that of the 
reference strain of SARS-CoV-2. Our alignment results on the two 
different strains of SARS-CoV virus in Fig. S3 confirm our CA 
picture results. When a nonsynonymous mutation is induced in 
the receptor binding motif (RBM) section of the SARS-COV-2 
S-protein (specifically changed the base “AAT” at location 193 of 
the RBM section to “AAC”), we showed in Figure 4 that the minute 
differences generated by the rule_226 CA pictures. It is possible to 

Figure 2: The Comparison of the Rule_226 CA Pictures between S Proteins 
of SARS-CoV-2（NC_045512）and SARS-CoV（NC_004718.3). Please 
pay attention to the labeled or enlarged sections of the signal peptide (SP), 
Receptor Binding Motif (RBM), Fusion Peptide (FP) and Inserted amino 
acid/host protease recognition site/cleavage site (amino acid PRRAR). 
PRRAR was labeled in top right CA picture (the original SARS-CoV-2 
CA picture). The codon rules for expression of the amino acid was strictly 
abided by. Please check the amino acid Sequences of the proteins in this figure 
within Figure S2. Please check the details of the viral strains in Table S1.

Figure 3: Delineating the Single Nucleotide Polymorphisms (SNPs) 
on the S proteins from different Strains of SARS-CoV-2 with Rule-
226_CA Pictures. Top: The original rule-226_CA pictures. From top 
to bottom, the 3 CA pictures are from the S proteins of NC_0045512 
(from Wuhan, China, the reference sequence of SARS-CoV-2), MT049951
（from Yunnan, China）and MT093571（from Sweden）respectively. 
Bottom: The enlarged CA pictures showing the SNP of the S proteins of 
MT049951（from Yunnan, China, the Y on the 28th amino acid replaced 
by N）, EPI_ISL_406844（from Australia, the S on the 247th amino acid 
replaced by R）. The codon rule for expression of the amino acid was 
strictly abided by. Please check the amino acid Sequences of the proteins 
in this figure within Figure S3. Please check the details of the viral strains 
in Table S1.

Figure 4: The Rule_226 CA Pictures Showing the Nonsynonymous 
Mutation in the Receptor Binding Motif (RBM) Section of the SARS-
COV-2 S-protein
Top: We specifically changed the base “AAT” at location 193 of the RBM’s 
coding sequence (CDS) into “AAC”. The amino acid positions of the 
RBM in the S protein of SARS-CoV-2 (NC_045512) is from amino acid 
437 to amino acid 508 [12, 13]. Please pay attention to the single string 
before the mutation (the left CA picture) and the double string after the 
mutation (the right CA picture).
Bottom: The nucleotide sequence and the position showing the RBM’s 
coding sequence (CDS) and the positions within the S gene of SARS-
CoV-2 (NC_045512). 
The codon rules for expression of the amino acid were strictly abided by. 
Please check the details of the viral strain in Table S1.
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encode the initial protein at the level of amino acids and obtain 
similar information by taking codon biases into account [11]. It 
is also reasonable to consider that the CA pictures can reflect the 
implications of the codon bias.

The codon rule for expression of the amino acid was strictly abided 
by. Please check the amino acid Sequences of the proteins in this 
figure within Figure S3. Please check the details of the viral strains 
in Table S1.

The codon rules for expression of the amino acid was strictly 
abided by. Please check the details of the viral strain in Table S1.

DISCUSSION
In general, a CA representation is able to provide information 
about amino acid and base sequences due to the one-to-one 
transformations used to map between genomic and binary 
information. Specifically, the mapping ensures that every gene or 
genome is represented by only one unique two-dimensional CA, 
thus enabling genetic identification. 

In the case when the usual open frame rules (the genetic codon rules) 
have been obeyed, the CA is also able to uniquely identify amino 
acid sequences. The important protein landmarks responsible for 
the transmissibility of the SARS-CoV-2 virus such as the RBD, and 
RBM within the RBD of the S protein that directly contacts the 
host receptor (ACE2) [9]. The aforementioned functional sections 
of SARS-Cov-2 can be depicted vividly through CA pictures.

Apart from visualizing stable genic, protein, or genomic 
configurations, CAs are also very sensitive to mutations [14] of the 
nucleotide and amino acidic sequences. Such variations on the 
basic configuration of a genic sequence can be easily identified by 
comparing the different CA representations generated when a locus 
on the nucleotide sequence or a complete amino acid sequence is 
modified. In the case of the SARS-CoV-2 virus, this method of CA 
comparison can be employed for the identification of the function 
sites, such as the recognition site of the host protease TMPRSST2 [10]. 

In addition, since the CAs are already sensitive to changes at 
the nucleotide sequence level, they are particularly useful for 
delineating the effects of codon biases between genic or genomic 
sequences from different species. So the CA method can be used 
to predict species’ preference for specific genetic configurations. 
This feature could also be used to account for synonymous and 
nonsynonymous mutations. We believe that maybe this is a unique 
method among conventional bioinformatics tools in that it relies 
on the principle of sequence entropy maximization.

Cellular automata were originally introduced as a discrete model of 
dynamical systems [14] that show complex emergent phenomena 
starting from simple update rules. Due to its simplicity it has been 
used in many fields, mostly as simple toy models in the study of 
nonlinear complex systems [15]. In biology it represents a novel 
method of encoding genic or genomic information [16,17]. Since 
the update rules of CAs can be easily applied to binary-encoded 
genic sequences, the resulting CA pictures often contain valuable 
information on important regions of a gene (a protein) due to its 
sensitivity to the changes of the genetic message, such as genic 
mutations or genic recombination [18]. CAs have been applied to 
biological processes in various contexts, such as the identification 
of promoter sites and improving cancer therapy [19], modeling 
microfluidic dynamics [20], modeling of biochemical and 
multicellular systems [21,22], and applications in neuroscience. 
One of the authors of this paper also previously published a paper 

which applied CA methods in the description of the genes and 
genome of SARS-CoV [23-27].

CONCLUSION
In addition to the specificity of CAs in delineating and identifying 
important genic or protein’s regions, they also represent an 
interesting path towards the integration of biological information 
with methodologies in machine learning and artificial intelligence. 
The update rules of CAs represent a unique way to quantify genic, 
protein’s or genomic information on length scales from a section 
of a gene or protein to the entire genome since it is able to correlate 
local information from different gene regions and is thus able 
to offer a unified view of the full sequence instead of only local 
characteristics currently achievable by using traditional methods 
such as BLAST. Also worth mentioning is that other existing 
bioinformatic methods which uses visual representations include 
the Deepvariant and Haploview methods, which are different with 
CA .
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