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Introduction 
Candesartan cilexetil (CC) is a long acting nonpeptide prodrug 

which selectively inhibits Angiotensin II Receptor type 1 causing 
reduction in blood pressure without altering the heart rate. Hence, it 
is therapeutically indicated in the chronic treatment of hypertension 
[1,2]. Further, it is effective and well tolerated when used either as 
monotherapy or in combination with other antihypertensive agents 
in patients with mild, moderate or severe hypertension [3,4]. It was 
approved by USFDA in September 2000 and presently marketed by 
AstraZeneca  and  Takeda Pharmaceuticals. Recent reports indicated 
its increased use with the published data signifying its benefit in the 
treatment of stroke, heart failure, diabetic renal disease and diabetic 
retinopathy [5]. Being a highly lipophilic drug (Log P = 6.1) with low 
aqueous solubility of 5×10-5 g.L-1, the drug is classified as BCS class II 
drug [6-8].

Clinical Background 
The absolute oral bioavailability of CC is variable and reported to 

be about 15% and 42% due to incomplete absorption [8-10]. Also, the 
relative bioavailability of CC (8 mg tablet) was found to be 34% when 
compared to oral solution (8 mg). This low bioavailability is due to poor 
aqueous solubility leading to slow rate of absorption construing that 
dissolution is the limiting step for the rate and extent of absorption. 
In a study with single and repeated once-daily doses of CC in the dose 
range of 2-16 mg carried out in both younger (19-40 years) and elderly 
(65-78 years) healthy volunteers various pharmacokinetics parameters 
were determined. It was observed that AUC and Cmax showed dose-
proportional increment in the dose range of 2-16 mg indicating linear 
pharmacokinetics. Non-compartmental models do not appear to be 
appropriate for the analysis of candesartan pharmacokinetics. The 
terminal elimination half-life of CC was estimated in the range of 4 to 9 
h. The time to reach peak candesartan concentrations (Tmax) following
tablet intake was approximately 4 h at all dose levels. Also, the plasma
protein binding in humans was quite high (>99%) with relatively
low volume of distribution in healthy subjects (i.e., 0.13 L.kg-1). After

reaching systemic circulation candesartan is cleared mainly by kidneys 
and to a smaller extent by biliary or intestinal routes. Clinically effective 
doses of CC ranged between 8 and 32 mg. The antihypertensive effect 
with CC monotherapy increases with the dose but never exceeds 
60% at a daily dose of 16 mg. However, at doses up to 32 mg day, 
antihypertensive effect did not increase further [9,11-14].

Physicochemical Properties
Prior to the initiation of CC analysis, it is imperative to have a 

holistic knowledge of its structure as well as other physicochemical 
characteristics. CC is a tetrazole derivative and chemically is 
(+)-1-(cyclohexyloxycarbonyloxy) ethyl 2-ethoxy-1-[[2'-(1H-
tetrazol-5-yl)biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylate 
(Figure 1) [15,16]. The chemical structure consists of a lipophilic 
substituent, i.e., tetrazolyl biphenylmethyl moiety and a carboxyl 
group  [17]. Its molecular weight is 610.66 g.mol-1 with empirical 
formula C33H34N6O6. It is a white to off-white powder which is highly 
soluble in dimethylsulfoxide; sparingly soluble in methanol, ethanol 
or physiological saline solution and practically insoluble in water. The 
partition coefficient (Coctanol/Caqueous) at pH 1.1, 6.9 and 8.9 is >1000 
indicating high lipophilicity character [18]. The prodrug is a racemic 
mixture containing one chiral center at the cyclohexyloxycarbonyloxy 
ethyl ester group. Following oral administration, CC undergoes 
hydrolysis at the ester link to form the active drug, candesartan, which 
is achiral [19,20]. Candesartan in turns is converted to one inactive 
metabolite [13].
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Quantification Methods
The pKa value of a drug is important as it is associated with the 

various biological processes such as body absorption, tissue distribution 
and elimination. Besides, the information about dissociation constants 
is also necessary to choose the optimal conditions for the extraction 
of these drugs from body fluids, which is an essential step to develop 
analytical methods for their determination [21]. As such a good 
correlation could be established by knowing the structure and the 
different acid–base species which in turn affects the absorption rate, 
the distribution profile and the excretion percentage. CC contains two 
acidic functional groups: a carboxyl and tetrazole moieties with their 
respective pKa values were calculated to be 6.0 [22]. In another citation 
the pKa values for carboxyl and tetrazole moieties were reported to be 
5.3 [12]. 

Till date, many analytical methods have been developed for the 
quantification and determination of candesartan in biological fluids 
and pharmaceutical dosage form. In most of the cases, the analysis 
in biological fluids were carried our employing HPLC or LC-MS/MS 
techniques. However, there are a few reports wherein CC has been 
determined using UV spectrophotometry and voltametric methods. 

In one of the UV spectrophotometric methods, CC was assayed 
by first derivative and ratio derivative spectrophotometry in a mixture 
containing hydrochlorothiazide. Calibration curves were established in 
the range of 6.0-38.0 µg.mL-1 for CC and the method was found to be 
linear, precise and selective. The method was subsequently successfully 
applied to the pharmaceutical dosage form containing the above-
mentioned drug combination which also showed non-interference 
by the excipients [23]. Another UV spectrophotometric method was 
developed for CC estimation in bulk and formulations. Linearity of the 
method was validated in the range of 10.0-90.0 µg.mL-1. The stability 
of CC was analyzed under various forced degradation conditions like, 
acid, alkali and neutral hydrolysis, oxidation, dry heat, UV  light and 
photolytic degradation Subsequently, the method was found to be 
simple, sensitive and reliable with good precision and accuracy [24]. 
Another method focused on first derivative UV quantitative analysis 

in tablet dosage forms during in vitro dissolution testing. The highlight 
of the method was that the LOQ was 3.06 µg.ml-1 when analyzed in the 
concentration range of 6.00–32.00 µg ml-1. Also, the percent recovery 
was also high concluding that the method passed all the parameters of 
quality control, i.e., accuracy, precision, sensitivity and selectivity [25]. 

Voltammetry  is basically an electroanalytical method  which is 
used to analyze an  analyte  by measuring the current with varying 
potential [26]. The reported methods utilized phosphate buffer as 
the supporting electrolyte. In the first reported method, CC was 
analyzed with different types of voltammetric techniques viz. cyclic, 
linear sweep, differential pulse, adsorptive stripping differential pulse, 
square wave and adsorptive stripping square wave. The analysis was 
carried out in the pH range 1.5-11.00. Further, differential pulse and 
square wave voltammetry techniques were studied to obtain a good 
sensitivity of the method. Finally, the method was validated and 
successfully applied for the analysis of CC tablets [27]. A simple and 
sensitive rapid adsorptive stripping voltammetric method was also 
developed for estimation of CC in pharmaceutical  formulations. The 
linearity was observed between 0.25 and 1.34 µg mL−1. The method 
was finally validated for linearity, precision, accuracy and recovery 
[28]. However in another method, the authors used only square-
wave adsorptive stripping square method for determination of CC 
in bulk and pharmaceutical  formulations. The method involved 
a modification wherein CC was complexed  with  copper, Cu (II). 
Various experimental and instrumental parameters were investigated 
and optimized. Subsequently, the method was validated in terms 
of linearity, sensitivity, precision, accuracy, recovery, selectivity, 
robustness, and ruggedness [29]. Recently, a newly modified method 
based on continuous coulometric fast fourier transformation cyclic 
voltammetry was developed for CC determination. In this technique, 
a new sensor was designed based on silicon carbide nanoparticles 
and graphene nanosheets hybrid mixed with ionic liquid (1-Butyl-
3-methylimidazolium hexa fluorophosphate ([bmim][PF6]) on a 
glassy carbon electrode. The sensor exhibited good accuracy with high 
sensitivity and repeatability. Even, it had 55 days of long term stability 
with a decrease of 2.3% in the response. Scanning electron microscopy 
and impedance spectroscopy was used to characterize the electrode 
surface [30]. 

Capillary electrophoresis, also known as capillary zone 
electrophoresis separates the ionic species based on their charge, 
frictional forces and hydrodynamic radius [31]. Similar to voltammetry 
technique, phosphate buffer have been used as running electrolyte in 
all the reported capillary electrophoresis methods. Also, the detection 
of the ionic samples has been set at 214 nm using UV detector. Except 
one method, in all the other methods, a constant volateg of 25 kV 
have been applied. To identity the sample components the instrument 
can be coupled with mass spectrometers or  surface-enhanced raman 
spectroscopy. Finally, the reported methods have been validated 
for linearity of response, precision, reproducibility, and accuracy. 
Table 1 illustrates the four methods employed along with the various 
experimental conditions. Additionally, the technique is optimized 
using experimental design methodologies by applying three-level and 
four-factor full-factorial design in two cases and three-level and three-
factor face-centred central composite design  in one analysis [32-34]. 
Also, CC was determined, both qualitatively and quantitatively, using 
micellar electrokinetic capillary chromatographic [34,35].

Although, the main advantages of previous mentioned methods 
are shorter analysis time, lesser solvents, low cost of analysis and 
widespread availability of the apparatus yet they cannot be applied 

N

N

N
N

N

HN

O

O

O

O

O

O

CH3

CH3

Figure 1: Chemical structure of candesartan cilexetil. 
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for analysis in biological samples. Hence, in order to estimate CC in 
biological systems, it was imperative to develop HPLC and LC-MS/MS 
methods. 

In the following discussions, different HPLC based analytical 
techniques were elaborated for the determination of CC in the 
biological fluids and dosage forms. Table 2 enumerates the various 
HPLC methods employed for CC estimation, till date. 

CC was estimated employing column-switching HPLC wherein the 
zone of analyte’s retention obtained from earlier column is transferred 
to another column by increasing the pH of the mobile phase. The 
method was used for determination CC and its metabolites in human 
serum and urine with good linearity, precision, accuracy and low LOQ. 
The versatility of method was further established from the results of 
stability studies [36]. In another column-switching method, using 
an FCV-2AH six-port valve, CC along with its two metabolites was 
analyzed in human serum. The metabolites were also analyzed in urine 
by gradient elution mode HPLC. The method were later on applied for 
conducting the clinical trials of CC [37].

A placebo-controlled, double-blind, four way crossover design 
for oral doses of 4, 8 and 16 mg of CC was carried out in healthy 
human volunteers. Following this blood samples were withdrawn 
periodically and various pharmacokinetic parameters were calculated. 
The study indicated that CC shows dose-dependent behavior in 
pharmacokinetic responses [38]. In another double-blind, crossover 
study, 12 healthy male volunteers received daily oral doses of 8 mg CC. 
A liquid chromatography assay was employed to determine the plasma 
concentrations of CC and subsequent pharmacokinetic parameters 
[39].

Owing to extensive pharmacokinetic and clinical studies, a fast 
and easy HPLC method was reported for determination of CC in 
biological fluids. In one of the assays liquid-liquid extraction was 
carried out with dichloromethane-diethyl ether (1:4, v/v) and analyzed 
with fluorometric detection. The method was applied to human plasma 
and urine samples which were further used for biopharmaceutical 
and clinical studies in man. For efficient extraction of samples, a 
guard column was also utilized. The method was quantified with high 
precision and strikingly, LOQ was found to be quite low. Also, the CC 
samples were stable under different storage conditions [40]. 

CC was also analyzed under acidic conditions wherein the analyte 
was extracted from plasma by means of solid-phase extraction using 
C8 cartridges. This assay was successfully applied to plasma samples 
obtained from hypertensive patients [41]. In a modified solid-phase 
extraction, a poly (methacrylic acid-ethylene glycol dimethacrylate, 
MAA-EGDMA) monolithic capillary was used for extraction of CC 
from human plasma and urine. The method was demonstrated to 
be robust and biocompatible by using direct injections of biological 
samples [42]. 

In order to enhance the oral bioavailability of CC, a solid self-
microemulsifying formulation was prepared. Initially, a liquid system 
was formulated using various combinations of lipid, emulgents and co-
solvents. The liquid emulsifying system was then converted into free 
flowing powder by adsorption on solid carriers, i.e., microcrystalline 
cellulose and colloidal silicon dioxide. Finally in order to estimate 
the amount drug released during in vitro dissolution studies, a HPLC 
method was employed [43].

A HPLC method was employed for assessing the stability of CC 
in various types of cyclodextrin based formulations. It was found that 

CC was stable at ambient conditions for 3 years as well as when stored 
in open containers at 40°C/75% RH and 50°C/75% RH for 3 months 
and 1 month, respectively. Also, Exposure to sunlight and UV light 
for 1 month similarly showed no loss in potency and absence of any 
degradation product [44]. 

In order to analyze the CC content in bulk substances and tablets, 
a gradient based HPLC method in isocratic mode was developed. 
During this process, 100.40% of CC was recovered from simulated 
tablets [45]. There are reports of two other simple and sensitive 
HPLC methods being developed and validated for determining CC in 
pharmaceutical dosage forms. Like the previous one, these methods 
were also run on isocratic mode [46,47]. A HPLC method was also 
applied for estimating the CC content during everted gut sac technique 
[48]. 

Over the years, many methods have been developed for the 
determination of CC in biological samples and pharmaceutical dosage 
forms based on LC-MS/MS method. It is a technique that combines the 
physical separation capabilities of  liquid chromatography (or HPLC) 
with the mass analysis capabilities of  mass spectrometry. Generally 
its application is focused on the general detection and potential 
identification of molecules or derivatives in a complex mixture [49-51]. 
Table 3 provides an account of various methods for the estimation of 
CC using LC-MS/MS method.

A combined electrospray and tandem mass spectrometry were 
used to characterize the conjugated metabolites (glucuronides) of CC 
in the plasma and bile of rats. This analysis was conducted to indentify 
the positional isomers with respect to the binding site of glucuronic 
acid. Thus, the simple chemical derivatization indicated the detailed 
structure of conjugated metabolite [52]. This combined spectrometry 
was also used to develop a method in human plasma with respect to 
simple sample clean-up and investigation of ion suppression effects. 
The developed method showed good precision and accuracy at different 
concentrations. The calculated LOD was quite low and CC was stable 
during the analytical process [53].

A high-throughput bioanalytical method for the analysis of CC 
in human plasma was developed and validated according to US FDA 
guidelines. The method was subsequently validated for precision and 
was stable under standard conditions with its ability to be applied 
successfully to oral pharmacokinetic study in humans [54].

During the development of a solid phase extraction procedure for the 
chromatographic determination, lack of linearity and reproducibility 
was observed for CC. As such a stability study was performed and 
it was found that lack of linearity and reproducibility was based on 
hydrolysis and trans-esterification processes. Subsequently, a detailed 
study was performed to assure that labile drugs containing ester groups 
remain unaffected [55].

In a study to evaluate the impact of high pH modifiers on the 
sensitivity of CC, LC-MS/MS under positive ESI (ESI+) was employed. 
The signal enhancement was two-fold compared with acidic modifiers 
and thus facilitated the development of a bioassay for the quantification 
of CC [56]. 

A method based on LC–MS/MS was developed to investigate 
the intravitreal toxicity and pharmacokinetics of candesartan and 
subsequent calculation of CC concentration in rabbit eyes [57].

A detailed stress degradation studies was conducted as per the 
ICH conditions of hydrolysis (acidic, basic and neutral), photolysis, 
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Table 1: An updated account on various Capillary Electrophoresis methods employed for the estimation of Candesartan cilexetil.

S. No. Running Electrolyte Solvent Capillary Voltage Instrument Detector Reference
1. 50 mM potassium dihydrogen phosphate:boric acid (25:75 v/v, pH 5.5) 

and at a 5% methanol Methanol Fused silica +25 kV Waters Quanta 
4000 UV (214 nm) [32]

2. 60 mM sodium phosphate buffer (pH 2.5) 1 M HCl Fused silica 25 kV Crystal CE UV (214 nm) [33]
3. 10–40 mM of mixture of a disodium hydrogenphosphate solution and a 

sodium dihydrogenphosphate solution (pH range 6.0–7.5) 0.1 M NaOH Fused silica 10 kV Waters Quanta 
4000 UV (214 nm) [34]

4. CZE Method: 60 mM sodium phosphate buffer (pH 2.5) 1 M HCl
Fused silica 25 kV Crystal CE UV (214 nm) [35]

MEKC Method: 55 mM sodium phosphate buffer (pH 6.5) 0.1 M NaOH

Table 2: An updated account on various HPLC analysis employed for the estimation of Candesartan cilexetil.

  S. 
No. Type of Media Column Mobile Phase Detector Chromatographic 

conditions Reference 

1. Human serum

YMC ODS (23 × 4.0 
mm)
YMC ODS (150 × 4.6 
mm)

Phase A: Acetonitrile and potassium 
dihydrogen phosphate (20 mM) in ratio of 
60:40, pH 4.0
Phase B: Acetonitrile and dihydrogen 
phosphate (20 mM) in ratio of 60:40, pH 6.0   

UV (229 nm) Flow rate: 1.0 mL.min-1 

Temperature: 40°C [36]

2. Human serum 
and urine

Inertsil ODS-2 ( 150 × 
4.6 mm, 5µm)

First column: 0.02 M potassium  dihydrogen 
phosphate Acetonitrile (40:60) adjusted to 
pH 4.0 with 85% orthophosphoric acid
Second column: 0.02 M potassium  
dihydrogen phosphate Acetonitrile (40:60) 
adjusted to pH 6.0 with 1M NaOH

Fluorescence detector 
(Excitation and Emission 
wavelengths set at 270 and 
390 nm)

Flow rate: 1.0 mL.min-1 

Temperature: 40°C [37]

3. Human plasma 
and urine

Spherisorb S3P 
(100 × 4.6 mm, 3 µm 
Hichrom)

Candesartan (Plasma):
100 ml citrate buffer (pH 3.1, I=0.5 
containing 50 mM TBA), 185 ml acetonitrile, 
180 ml methanol and diluting to 1000 ml 
with water

Fluorescence detector 
(Excitation and Emission 
wavelengths set at 265 and 
395 nm)

Flow rate: 0.9 mL.min-1 
Temperature: room

[40]

Candesartan cilexetil (Plasma & urine):
200 ml phosphate buffer (pH 2.8, I=0.1 
containing 12.5 mM TBA), 420 ml 
acetonitrile and diluting to 1000 ml with 
water

Flow rate: 1.0 mL.min-1 
Temperature: room

Candesartan (Urine):
Phase A: 200 ml phosphate buffer (pH 
2.8, I=0.1 containing 12.5 mM TBA), 200 
ml acetonitrile and diluting to 1000 ml with 
water
Phase B: 200 ml phosphate buffer (pH 
2.8, I=0.1 containing 12.5 mM TBA), 600 
ml acetonitrile and diluting to 1000 ml with 
water

Flow rate: 1.0 mL.min-1 
Temperature: room

4. Human plasma

Novapak guard 
column (20 × 39 mm, 
4 µm)
muBondapak  (300 × 
3.9 mm, 10 µm)

Acetonitrile (5 mM) acetate buffer (pH 4)

Fluorescence detector 
(Excitation and Emission 
wavelengths set at 250 and 
375 nm)

Flow rate: 1.0 to 1.2 
mL.min-1 Temperature: 
room

[41]

5. Human plasma 
and urine

Betasil (250mm × 
4.6mm, 5µm)

Acetonitrile and  Sodium acetate buffer 
solution (5mM, pH 3.5) in the ratio of 40:60)

PDA (250 nm) and 
fluorescence  (Excitation and 
Emission wavelengths set at 
250 and 380 nm)

Flow rate: 1.0 mL.min-1 [42]

6. In vitro 
dissolution 

Inertsil ODS-3 (250 × 
4.6-mm, 5 μm)

0.02 M monobasic potassium phosphate, 
acetonitrile, and triethylamine in the ratio 
of 40:60:0.2 (pH adjusted to 6.0 using 
phosphoric acid)

UV (254 nm) Flow rate: 2.0 mL.min-1 
Temperature: 25°C [43]

7. Stability studies Hypersil ODS (250 × 
4.6 mm, 5 µm)

0.02M Potassium dihydrogen phosphate 
solution and acetonitrile (2:8), pH 4.0 was 
adjusted with 85% phosphoric acid 

UV (254 nm) Flow rate: 1.0 mL.min-1 
Temperature: ambient [44]

8. Drug analysis Zorbax SB-Phenyl
0.1 mol.L-1 sodium acetate (pH 5.5), 
acetonitrile and methanol in 10:9:6 v/v/v 
ratio

UV (230 nm) [45]

9. Drug analysis Hypersil ODS (250 × 
4.6 mm, 5 μm)

Tetra butyl ammonium hydrogen sulphate 
10 mM (pH 3.37): methanol (15:85) UV (270 nm) Flow rate: 1.0 mL.min-1 

Temperature: ambient [46]

10. Drug analysis Hypersil Phenyl 2 
(250 × 4.6 mm, 5 μm)

0.02 M potassium dihydrogen phosphate, 
methanol, and triethylamine (25:75:0.2 v/v), 
pH 6.0 ± 0.1 was adjusted by addition of 
10% orthophosphoric acid

UV (271 nm) Flow rate: 1.0 mL.min-1 
Temperature: room [47]

11. Everted gut sac 
(Rat)

Shim-pack VP-ODS
(150 × 4.6 mm, 5 μm)

Acetonitrile: Methanol : water : glacial acetic 
acid (40:35:25:0.1 v/v), pH 6.8 UV (255 nm) Flow rate: 1.0 mL.min-1 

Temperature: ambient [48]
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Q: Single quadrupole, QqQ: Triple quadrupole, IT: Ion trap, TOF: Time of flight, Q-TOF: quadrupole-time of flight 

Table 3: An updated account on various LC-MS/MS analysis employed for the estimation of Candesartan cilexetil.

S. No. Type of Media HPLC Column HPLC Mobile Phase Mass Analyzer Chromatographic conditions Reference

1. Rat plasma and 
bile

AM-312 (ODS, 150 × 6 
mm, 5µm)

Water-acetonitrile-trifluoroacetic 
acid (70 : 30 : 0.1v/v) Finnigan MAT (QqQ) Flow rate: 1.0 mL.min-1 

Temperature: ambient [52]

2. Rat plasma ACE C18 column (50 × 
4.6 mm, 5 μm)

10 mM ammonium 
acetate:acetonitrile (20:80, v/v)

MDS Sciex API 4000 
(Q)

Flow rate: 0.5 mL.min-1 
Temperature: 40 ± 2°C 
Detection: PDA (254 nm)

[54]

3. Human plasma Synergy Polar RP (150 × 
2 mm, 4µm)

Solvent A: 0.1% formic acid 
(v/v) with 1 mmol/L ammonium 
formate Solvent B: acetonitrile: 
0.1% formic acid 95:5 (v/v) with 1 
mmol/L ammonium formate

API 365 (QqQ) Flow rate: 0.25 mL.min-1 
Temperature: 40°C [55]

4. Rabbit eyes Capcell Pak (4.6 × 250 
mm, 5 µm)

Acetonitrile and water (0.1% 
formic acid) 6410 (QqQ) Flow rate: 1.0 mL.min-1 

Temperature: room [57]

5. Stability studies Luna C18 (150 × 4.6 mm, 
5 µm)

Acetonitrile and potassium 
dihydrogen orthophosphate buffer 
(pH 2.8; 0.01M) in a gradient 
mode

MicrOTOF-Q (TOF)
Flow rate: 1.0 mL.min-1 
Temperature: room Detection: 
PDA (254 nm)

[58]

6. Impurity profile Kromasil cyano column 
(250 × 4.6 mm, 5 µm)

Water adjusted to pH 3.0 with 
TFA (A) and acetonitrile (B) in a 
gradient mode

PolarisQ (IT)
Flow rate: 1.0 mL.min-1 
Temperature: room Detection: 
PDA (210 nm)

[59]

7. Human plasma
BEH C18, 1.7 μm column 
(analysis performed with 
Acquity UPLC)

0.1%(v/v) formic acid in Distilled 
water and 0.1%(v/v) formic acid in 
acetonitrile (60: 40, v/v)

Micromass Quattro 
Premier XE

Flow rate: 0.4 mL.min-1 
Temperature: room [60]

8. Rat plasma

Zorbax SB-C18 (150 
× 4.6 mm) with a C18 
guard column (4 × 3.0 
mm, Phenomenex)

Methanol and 5 mM ammonium 
acetate (50:50 v/v) MDS Sciex API 4000

Flow rate: 0.6 mL.min-1 
Temperature: room Detection: 
PDA (254 nm)

[61]

oxidation and thermal stress. During the study, maximum degradation 
was observed on hydrolysis, especially in the neutral condition, 
followed by significant photolytic degradation. However, it was stable 
to oxidative and thermal stress. The method was able to provide an 
updated and comprehensive fragmentation behavior and degradation 
profile of CC [58].

During the impurity profiling in bulk drug samples, four impurities 
were detected in CC by HPLC and LC/MS. An optimized method using 
liquid chromatography coupled with electrospray ionization ion trap 
mass spectrometry was developed to elucidate the structures of these 
unknown impurities. The plausible mechanism for the formation of 
impurities was also discussed [59].

In an open-labeled, randomized, single dose, crossover 
design involving 40 healthy volunteers, various parameters of 
pharmacokinetics were determined. Also, the bioequivalence of two CC 
16 mg formulations were evaluated. The single dose study concluded 
that the test and reference products met the regulatory criteria for 
bioequivalence in the health volunteers [60]. 

Owing to poor aqueous solubility, CC undergoes incomplete 
intestinal absorption leading to low oral bioavailability. A novel 
CC loaded nanoemulsion was designed to improve the intestinal 
absorption. The concentration of active candesartan in rat plasma was 
determined by LC–MS/MS method. The experimental results showed 
an overall 10-fold improvement in oral absorption of insoluble CC and 
thus proving its potential for clinical applications [61]. 

Conclusion
Overall, various techniques were employed for the estimation of 

CC. Although the techniques viz. UV spectrophotometry, voltammetry 
and capillary electrophoresis are simpler and easier to apply yet they 
could not be applied for estimation in biological matrixes. HPLC 
method is an usual tool for the researcher, being mostly employed for 
routine analysis purpose. LC-MS/MS is used due to its high sensitivity 

and exceptional specificity compared to other method esp. when the 
sample is ionized and require shorter analysis time. Also, the optimum 
concentrations for therapeutic efficacy of many drug(s) range from a 
few nanograms to hundreds of nanograms per milliliter. In such cases, 
LC-MS/MS method provides a quality standard as per USFDA for 
therapeutic drug monitoring, clinical and forensic toxicology of drugs. 
Conclusively, modern instruments like, HPLC and LC-MS provides 
a simple, rapid and reliable method for quantification of candesartan 
and/or its metabolites which ultimately facilitate the in vitro and in vivo 
evaluations of candesartan. 
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