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INTRODUCTION

With the heavy development in the Artificial Intelligence area such 
as deep learning, Swarm Intelligence is also attracting more and 
more attention in the research community around the world [1]. 
In particular, there are various activities in autonomous vehicle 
applications ranging from daily transportation to the first responder 
[2]. Examples are airport bird watching [3] or search and rescue 
operations [4]. One interesting research area is to find a simple 
algorithm to control the movement of autonomous robots that 
can be automobiles, boats, airplanes and other moving platforms 
with a degree of intelligence in order to respond to command and 
changes in statistical sense [5].

The DWA (Dynamic Window Approach) is a collision avoidance 
strategy for mobile robots, and there are different algorithms. In 
the original algorithm developed by Fox, [6], their algorithm was 
designed for the dynamics of a wheel-based robot to move around 
while keeping a maximum clearance from any obstacles. It has 
two components: (1) a method to generate a valid search space 
of circular trajectories that are collision-free while reaching the 
destination safely within a short time interval; (2) an optimization 
process to obtain an optimal solution in the search space with an 

objective is to select a heading direction and a velocity for the robot 
to reach the target. The original DWA algorithm can provide a fast 
navigation for a robot in an unknown environment, but it lacks a 
guarantee to converge [7], and therefore reaching its goal correctly. 
Also its speed converging speed can increase dramatically in some 
cases [8].

There have been many improvements. An algorithm using motion 
planning [9] is proposed to decline the speed of a robot effectively 
before encountering an obstacle. Further improvement is made 
by using local information to provide a computationally efficient 
optimization. The resultant efficient DWA algorithm has been 
integrated into a popular ROS (Robot Operating System) package 
called the “local planner” since 2009 [10]. ROS is still used today in 
design of autonomous cars. However, the robot is known to get stuck 
in local minima easily. It has been proven that if the motion cost in 
the optimization is based on a navigation function, the DWA can 
provide convergence guarantees but at the expense of additional 
computation efforts. Later, Ogren and Leonard had proposed a 
modified algorithm [11] to guarantee convergence. The dual-mode 
MPC (Model Predictive Control) [12] construction was introduced 
for further enhancement and was proved mathematically to be 
stable [13]. MPC is used today in most autonomous buses. Seder 
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and Petrovic had proposed a method [14] to combine global and 
local path planning in order to have a safer stratagem to achieve 
collision-free. This method turns out to be efficient but not for 
large outdoor area. Instead of using circle curves, [15] improved the 
original algorithm by applying clothoid curves to obtain a trajectory 
that is closer to the global path and the goal of motion planning. 
It is not just good for wheel-based robots, but also for airplane or 
ship motion planning. The traditional DWA algorithms are mainly 
designed for single robot applications, which do not be considered 
coordination among a swarm of robots. In order to have a more 
efficient path planning ability of swarm robotics, we present a new 
DWA algorithm in this paper.

Many robotic applications are using algorithms based on DWA 
nowadays, especially in the navigation and rescue areas. Initial 
applications are mainly found in robots doing individual jobs 
inside an office building [14]. A robot was used to explore a 
museum in order to conduct various excursions for visitors. Higher 
level applications can be found in synchro-drive robots that have 
integrated DWA algorithm to synchronize with each other to 
perform one task, For example, Brock and Khatib [15] had applied 
this synchro-drive approach to holonomic robots for local path 
planning. Unfortunately, it also needs lots of computations.

Robots working in groups have in fact found many interesting 
applications in recent years, e.g. autonomous underwater vehicles 
[16], but the number of vehicles involved is still small. One 
important aspect to form a large group (called swarm robots) is 
the development of collective decision strategies by assuming the 
actual motion planning has been done by low-level algorithms. The 
MIT and Harvard team has used very simple edge-following rules 
in making collective decision to attract one thousand robots (called 
Kilobots) towards some fixed-speed robots to form a specific shape 
[17]. Since the collective decision among the fixed-speed robots, 
called the swarm, does not have moving speed control, the swarm 
formation may take unpredictably long time to settle down to a 
desired shape.

A survey was done to cover almost every discrete and continuous 
consensus strategies for swarm robots, but it had no review of 
motion control of individual robots. Some artificial “potential 
methods” [18] can influence both the collective decision (such as 
the group moving direction) and the individual behavior (such 
as the moving speed). However, these methods would only exert 
the same “force” to every robot at the same location. In order for 
each robot to have its own “personality” (i.e., react differently to 
the same force/influence) one needs to design a push-and-pull 
potential function for each robot at each location, which is nearly 
impossible due to the huge number of combinations for a large 
number of robots under many different locations.

It is interesting at this point to make an observation and comparison 
with the world of nature. In the animal world, it is found that there 
are simple behavior rules that bound animal swarms (bird flock, 
fish school, or wild animal herd) into certain shapes. These natural 
behaviors appear to achieve dynamic optimizations under certain 
phenomena. For examples, swans are able to form a collaboration 
cluster (a sub-group usually in line-shape) to force/chase/expel a 
“geese” (a type of bird smaller than swan who cannot fight for the 
same food as swans,) to move in the direction they collectively wish. 
Since every goose may escape in a random pattern and speed, the 
swans have to adjust their shape dynamically in order to expel geese 
from their territory or their flight path. No single swan dominates. 
Every swan is making its contribution according to its own strength. 

This phenomenon of collaborated but distributed best-effort 
optimization according to different levels of contribution from 
each bird plays an essential role to achieve the final success [19].

The analogy can be found in unmanned vehicle (robots) moving on 
the ground, running underground, swimming in the sea, or flying 
in the sky. Whatever the situation, their underlying formation 
has to share some common control strategy [20] especially when 
a swarm becomes large. Furthermore, without dynamic and local 
optimization the swarm shape could be very slow to form, as seen 
in the Kilobots project [21] which took 12 hours to just form a 
simple wrench shape. As such, we shall take another approach 
here: instead of setting up rules, we simply change the observation 
measurement, like using the fish eye to perceive threats from the 
distance, either shore or air.

The Finsler measure [22] used in our optimization has an origin 
from the mass-luminosity relationship for stars larger than our sun, 
where space time are distorted like fish eye view. It is also related to 
the congruence number [23], defined as arithmetic square number, 
that is the rational or equivalently the integer number falling on 
diagonal saddle line. This also explains how distance is actually 
observed/distorted in different way under different situations. As 
far as these authors are aware, Finsler measure is the first time used 
in robotic swarm formation.

The general problem we are trying to solve is how to form a self-
organized pattern/formation for a swarm (a large number) of 
moving platforms around a given number of moving targets in the 
presence of some relatively slow moving [24] or fixed obstacles. 
Specifically, we are interested in a distributed algorithm for a 
swarm of moving robots to form a given shape in order to expel 
some live targets within a territory, with the possibility of obstacles 
along their moving path.

Although there are many algorithms and applications of the DWA, 
there does not appear any work that specifically address our swarm 
formation needs such as [7,14] therefore, we shall propose a variation 
of the original DWA to overcome some of their disadvantages 
such as the converging speed reviewed above. We shall combine 
the collective decision-making with the motion control so that the 
swarm cluster can be achieved in a shorter time. We shall design a 
swarm controller using the idea of geese for neighbor collaboration 
within a local cluster. We shall use the Finsler measure formula 
to measure the level of collaboration within a coverage territory 
so that the best path can be chosen in real-time, but without the 
complexity (of having to examine all paths in order to select the 
best) found in other algorithms. To demonstrate the validity of 
our algorithm using the Finsler measure for distance, we have 
conducted large scale simulations of using artificial swans to expel 
geese. We shall use the original Player/Stage simulator [25] because 
most of the robot simulators (including the ROS-based simulators) 
[11] cannot simulate a large number of robots.

The contributions of our paper are the following:

1. Formulating a variation of existing DWA algorithm that can 
support a large robot statistical formation in real-time.

2. Using the Finsler measure in the optimization process. As far 
as these authors are aware, this measure is the first time used in 
robotic formation. We also use a number of theorems to prove the 
Finsler measure is better than the Euclidean measure which allows 
us to eliminate the complicated push-and-pull functions used in 
the traditional formation control algorithms.
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3. Using simulations to demonstrate the validity and efficiency of 
our algorithm for the statistical control of the swarm.

The paper is organized as follows: next section describes the 
modified dynamic window approach control with details in the 
optimization process. An example section is given, followed by 
proof section proves that Finsler measure is a better measure and 
how it is used in the collaboration of swarm. Simulation section 
provides performance evaluation results of our algorithm on the 
given example to demonstrate the efficiency of our algorithm. 
Conclusion is offered in last section with potential extensions for 
future research. The Appendix provides details of proofs on the 

Finsler measure.

The Modified Dynamic Window Control

We have extended the original Dynamic Window Approach [7] by 
modifying the objective function. The introduction of the 4th term 
using the Finsler measure allows us to capture the collaborations 
among individuals while minimizing the computational complexity 
to achieve a formation shape in a robot swarm. We shall first 
describe the components of our modified DWA algorithm. We 
shall focus on the local swarm collaboration mechanism first by 
assuming knowledge of the moving pattern of a target. Then we 
discuss the objective function that can facilitate a fast optimization 
using the Finsler measure. An example is provided at the end to 
elucidate all operations as well as the terminologies.

DISTRIBUTED ALGORITHM

The distributed algorithm executed by each autonomous robot has 
the following steps as evolved over time (identified by steps n).

At time step n=0

1.	 Start with a pre-defined direction d, translational speed v, and 
angular velocity w. Also the safety distance (from neighboring 
robot) and the number of paths p in the window to be 
optimized.

2.	 Determine the distance and direction of the moving robot and 
target to be expelled.

3.	 Determine the distance and direction of all neighboring 
moving robots

4.	 Determine the Finsler measure (as formulated in Section 
Finsler measure)

5.	 Determine the deviation of present robot from the planned 
direction, the clearance from the closest obstacle that intersects 
with the path curvature and the speed to arrive at the next 
desired position on the current trajectory.

6.	 For count=1 to p Evaluate each path with the objective 
function G(v,w) as given in equation (1) below.

7.	 Determine the optimum path which has highest G(v,w) and 
move the moving robot to the new location according to d, v,w 
and the duration of each time step,

8.	 If a neighbor is within the crashing distance choose its next 
best set to compute the distance until no crashing is found.

9.	 Repeat steps 2 to 8, until target is outside coverage area. 

The steps above depict how to move each robot towards its goal 
area occupied by a target, without crashing into its neighbors or 
obstacle, until it moves out of the goal area. The end result is 

usually random, depending on which robot bumping into which 
target first, but should not matter as long as the targets are expelled 
out of the desired restricted region statistically.

During the operation, we use the traditional dynamic window 
approach. We also introduce the concept of diagonal saddle 
orientation and maximum coverage area (to extend the group 
watch-out field-view) setting among the robots. As robots are getting 
too close or too far from each other, the coverage area becomes 
smaller or larger. And the Finsler measure will be smaller (systolic 
pull effect) or larger (diastolic push effect) than that measured by 
the Euclidean counterpart. A candidate solution occurs when the 
robots are apart at the ideal/optimum distance and orientation;

The swarm coverage area will be the maximum while the Finsler 
measure will be minimum. By this way, we are able to coordinate a 
large number of robots instead of the traditional artificial push-and-
pull potential functions used in deterministic control algorithms 
that have a complexity problem of having to examine case by case 
of different scenarios before choosing an optimal solution.

The following assumptions pertain to our operations

1.	 The entire population consist one type of members with the 
same computation power and the same sensory range. This 
allows the simplification of the self-organization design.

2.	 Each robot is able to see its neighborhood and target(s). 
This would allow the measurement of the distance to the 
neighborhood objects.

3.	 The moving pattern of a target is known to allow us to evaluate 
the capability of our algorithm.

Optimization strategies

The objective function of our DWA algorithm is as follows.
( ) ( ) ( ) ( ) ( )( ) ( ), * , *dist , * , * , ..... 1G v w total heading v w v w volocity v w area v wα β γ η= + + +

It is an extension of the objective function in the original DWA 
[7] by introducing a 4th term called area(v,w) as a function of the 
angular velocity w and translational velocity v of the robot. The 
objective function G(v,w) is the evaluation score of a possible path 
(v,w) to a given position desired by the robot in the next time point 
n. As v and w are different at different locationseach robot uses its 
own objective function and its score to optimize it local trajectories.

The four component functions in the objective function are as 
follows:

1.	 The function “heading” measures the deviation of the robot 
from the planned direction. It is given by 180-theta, where 
theta is the angle of the predicted position in the next time 
point relative to the current heading of the robot. The higher 
the function value, the higher the deviation (and therefore less 
desirable)

2.	 The function “dist” measures the clearance from the closest 
obstacle that intersects with the path curvature. It is preferred 
to have a high function value. If no obstacle is on the curvature 
this value is set to ten times of the safe distance in this study. 
A small multiple times can be set if the swarm size is not too 
large.

3.	 The function “velocity” evaluates the speed to arrive at the 
next desired position on the current trajectory. We simply use 
a linear moving speed while ignoring the turning speed since 
the interval between two time points is very small. The higher 
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value indicates a higher order curve integration calculation 
will be involved instead of linear integration used here.

4.	 The function “area” is the Finsler measure indicating the 
“inequality level” among the neighboring robots around you. 
It is an average in terms of their neighboring distance and 
orientation. It has a minimum value of 0 if all neighbor is 
uniformly distributed around you while moving towards (or 
away from) you, and is independent of the swarm size. A 
maximum value of 1 is reached when each neighbor is after 
a different target with diversified positions in the space. To 
avoid the complicated complex number evaluation, only 
the amplitude of the diversity distance is calculated and the 
directional information is omitted. The measure becomes a real 
number. Therefore, the measure reflects the level of “courtesy 
collaboration” among neighboring cluster of robots and the 
capability of a swarm to expel targets under a concerted effort.

All four components of the objective function are normalized to (0 
1) with respect to summation of all terms in order to remove the 
magnitude effect of each function value. Each function is weighted 
by a factor such as α and β to emphasize its importance in the 
Objective Function. It turns out these weights play an important 
role in turns of balance of the control of the above mentioned four 
features, which is the subject of investigation in our performance 
evaluation later.

As v and w are continuous variables in performance evaluation, 
obtaining an optimization is simple by taking the double derivatives 
over v and w and setting them to zero, from which the (v,w) to give 
an optimization can be determined.

By converting a complicated collective decision and motion 
planning problem into a pure simple mathematical optimization, 
a robot only need to find the path that delivers the largest G(v,w) 
score from among all paths (v,w) available during a planning cycle. 
For example, if the human driver brain can analyze paths at a rate 
of 10 Hz (i.e. 10 paths per second), and by considering a cycle 
length of 1 second, one only needs to evaluate a maximum of 10 
possible paths that the robot can deliver under different driving 
constraints (such as steering, gas consumption, braking distance). 
These 10 paths set would form a dynamic/controllable window for 
path adjustments. Obviously, the set size in the same controllable 
window can be much larger for faster robots when using computer 
power.

This computation allow a regular robot to reach its destination 
with the best orientation, the best safety collision distance, at the 
fastest speed and with the most uniform distribution coordinated 
with the neighborhood robots; all are achieved simultaneously.

APPLICATION EXAMPLE

A practical example is provided here to provide more meaning 
and definitions to the wording used throughout this paper. This 
example is used in our simulation study section below.

The example comes from the common headache faced by every 
airport in having to expel birds away from the flight path area (both 
landing and taking off).So man-made flying swans mimicking the 
behavior of their natural competitors (e.g. geese) can be used to 
scare them off. These flying swans would use the modified DWA 
to form a shape formation to expel the birds.

With reference to the modified DWA above, the geese in the 
simulation are the target robots to be expelled by artificial swans 

(autonomous robots) while the green reference robots in simulation 
section represent the slow moving obstacles. From their initial 
positions (with initial values of v,w,d… determined/known), we 
would like to investigate the success of our algorithm by observing 
how the artificial swans expel the geese over increasing time steps n 
as they move along a path with some obstacles in the way.

Finally, our example can extend easily into other machines with 
artificial intelligence which can be vehicles, unmanned planes or 
boats.

Finsler measure

Previous section has shown the importance of the Finsler Measure 
to reflect the capability of a swarm to expel targets using a concerted 
effort. It is effectively a normalized area measurement. In this 
section, we shall provide more on the mathematical features and 
rationale of using this special area measurement to reflect the level 
of “courtesy collaboration” among neighboring cluster of robot. 
We shall review/summarize some definitions first, followed by a 
series of theorem and discuss why the Finsler measure is a better 
measure used in the collaboration of swarm. Some proofs of its 
validity are provided in the Appendix.

The length of a vector V=(x
1
, x

2
,….., xn) in an n-dimensional 

real vector space Rn is usually given by the Euclidean norm. The 
Euclidean distance between two points A and B can be captured 
by the vector AB whose length represents the straight-line traveling 
distance between A and B in a L2 norm space, see below formula 
(2) for p=2. However, there are other applications and scenarios 
where the Euclidean distance is insufficient to measure the actual 
traveling distances. The scenarios can be represented by the 
generalized Lp-norm space whose distance is given by

( ) ( )
1

1 2 ....... ............. 2p p p p
nDP x x x= + + +

Where, p is a positive rational number, The L∞-norm space or 
maximum norm (or uniform norm) space is the limit of p → ∞. It 
turns out that this limit is equivalent to the definition of maximum 
operation. On the other hand, in the L1-norm space its distance 
is the rectilinear distance to the destination. An example is the 
distance traveled by a taxi driver in grid-pattern streets (such as 
downtown Manhattan) that are either orthogonal or parallel to 
each other (i.e., p=1).

It turns out the p-norm may not be good/general enough to cover 
all “distance” perceived under different physical environments. 
Examples are the deformation the space time under heavy 
gravitation force. Hence a f-norm is defined whose distance is a 
function of the Euclidean distance and which can account for 
nonlinear systolic pull and diastolic push effect distance.

Consider swans looking for tiny food high up from sky and when 
flying in a flock (swarm formation). Since the earth is no longer flat 
from up there, the Finsler measure turns out to be a proper/better 
indication of distances that are distorted in different ways from 
different observations from the eyes of a bird.

Let x and y be Euclidean distance between two swans on the x-axis 
and y-axis respectively. Then the front view distance DS of a far 
object perceived by a swan is a Finsler distance given by

( )4 4............. 3DS x y= +

It is the hypotenuse of flying triangulation formalization. The side-
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view distance DB from a swan’s eye on a nearby object moving/

flying in a diagonal saddle is given by

( )2 2............. 4DB x y=

It is one of right angle edge. Then the distance between two flying 

swans is given by the variable

 

( )............. 5
2

DS DBAV −
=

It is the other right angle edge. The coverage area-based DF 
estimated from the eye of a swan within a cluster is given by

( ) ( )............. 6DF sum AV=

Where sum is the function summing up the distances/areas all 
nearby neighbor cluster as seen through the eye of a swan.

Compared to the Euclidean Distance this distance measure can be 
used by a swan to avoid collision, as DS exaggerates the distance 
and DB maximizes the saddle clearance. The parameter AV is used 
to indicate systolic pull and diastolic push effect for adjusting the 
area coverage, when the actual distance is too close or too far away, 
while DF provides the balance within the cluster.

Note that if we replace the Finsler area by the Euclidean distance 
and change the coefficients slightly, formula (5) is similar to the 
Matyas function which is a test function commonly used in the 
optimization community. The Matyas function has a nice feature 
of having no local minima except the global one. This allows us to 
fulfill collaboration with a simple formula, by using the Finsler area 
in (6) to find the global minimum.

Formula (5) can also be used by autonomous cars to measure 
distance because these cars mainly use LIDAR (Laser Imaging, 
Detection And Ranging) or RADAR (Radio Detection And 
Ranging) to detect the distances to surrounding objects, including 
neighboring robots, targets to expel and obstacles to go around. 
These machines use normal Euclidean measurement to provide the 
input x and y for the formula (3) to (6).

THEOREMS AND PROOFS

We shall summarize all the proofs to show the Finsler measure 
satisfies the definition of the norm and that it can provide the 
minimum on the said distance and orientation. For clarity, we 
leave the proofs in the Appendix

Theorem I shows the existence of such metric. Theorem II uses to 
prove the Finsler measure is better than the same measure without 
congruence information.

Theorem I: Non-quadratic congruence information metric

On a finite Finsler manifold, there exist an aggregated measure 
f-norm called sum(AV), where AV(Area Variable) is a positive real 

number derived from a pair of neighbor points coordinate: 

 

( )4 4 2 2

2

x y x y
AV

+ −
=

AV is a Finsler metric, a non-quadratic metric that is neither Euclid 
nor Riemann. 

Proof: Please see Appendix for details.

The input into above formula comes from the laser sensor that 

measures the distance, which naturally comes with errors, the error 
becomes the perturbation to the outcomes, and as such we need to 
further do following simplified perturbation analysis.

Theorem II: Error information metric perturbation

On a finite Finsler manifold, there exist an aggregated measure 
called sum(AE), AE stands for Area Euclidean, a positive real 
number that is given by a pair of neighbor points coordinate: 

( )4 4

2

x y
AV

+
=

where AE is of Euclidean metric, it is a quadratic metric, and we 
have

( ) ( )Error AE Error AV>

As long as the perturbation is proportional in any directions

Proof: Please see Appendix for details.

Above theorem only said the error bound, but doesn’t know exact 
how big the error is, in the future work, we will tell exact value, with 
extra assumption, that is realistic in real life situation.

RESULTS AND DISCUSSION

We use the well-known Player/Stage simulator [25] to carry out 
the evaluation of our algorithm to accomplish a flight formation. 
We want to show our simple area-based collaboration algorithm is 
capable to achieve a swarm formation as if there is a potential field 
with a short convergence time. Also it is capable to form diagonal 
saddle cluster, and use it to expel invaders. All distances are 
calculated by the iterative formula called “swan swarm algorithm” 
of which the complete code can be found on github under the 
contribution title “swan swarm algorithm”. Each individual is 
equipped with a LIDAR with a range of 10 m to detect robots, 
birds or obstacles nearby. There are 420 swans. Simulations are 
conducted on an Intel i7 Laptop and using the LINUX platform 
simulated for 100 seconds with a large flock, and a typical computer 
run time for each simulation is about 5 hours. Each simulation has 
been repeated 10 times, each using a different simulation seeds, 
α=0.05,β=0.2,γ=0.1 are fixed as original DWA recommended. 
Since the results/observations are similar, we present one set of 
time-evolution plots only.

There are 420 individuals, of which 21 are green reference robots 
that run on a fixed horizontal route by themselves without any 
optimization nor any interactions with others. They are used as 
references of moving speed in the simulation or obstacles to other 
fast runners. Of the remaining 399 individuals, 104 are blue geese 
to be expelled by 274 red artificial swans. In order to allow easy visual 
tracking of the many artificial swans (295 of them), we make the 
21 of them cyan artificial swans to stand right beside the reference 
obstacles. There are also 8 orange fixed obstacles distributed in a 
V shape (but rotated 90 counterclockwise) on the right in order to 
disrupt the flight paths of all individuals.

The initial positions of all these individuals and obstacles are 
depicted in (Figure 1), with the 21 cyan swans standing right beside 
the reference robots. The square box represents an area of 150 m by 
150 m in the corner of an airport from which the blue birds must 
be expelled by the 274 red and 21 cyan swans using line-shaped 
cluster formation. All individuals start moving from the left to 
right (towards the home of the geese) at a speed of 5 to 25 m/s. The 
varying speeds are due to swarm interaction induced through the 
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random noise sensors. Except for the non-collaborating reference 
robots, all other individuals can collaborate with its neighbor as 
much as they can by running the swarm collaboration formula 
described before.

(Figure 2) shows the positions of the individuals at 20% time 
into the simulation run. We can see the green reference robots 
are running much slower than others. Their speeds are fixed and 
non- optimized (because their optimization is turned off to acting 
as additional moving obstacles). The rest of the robots spread out 
quickly according to the dynamic window control optimization. 
One can see that most cyan swans are less active than the red swans 
because they are farther away from blue birds, and thus there is less 
movement or displacement away from its original position through 
the interactions.

(Figure 3) is 40% time into the simulation run. We can see almost 
all cyan and red swans are actively expelling the blue birds which 
are within their sighting range now.

From (Figures 4 and 5), one can see that 90% of blue birds have 
been expelled successfully from the restricted square area at 60% 
time and increases to 95% at 80% time into the simulation run.

Figure 1:  0%-Time completed for 420 individuals.

(Figure 6) is the completion of the simulation run. We can see two 
third of the square is free of blue birds. That is good enough for 
expelling birds from an airport bird in real-life. This task we wanted 
to escort the blue bird all the way to the designated goal area far 
from the airport, we will not call back the swans halfway through.

CONCLUSIONS

We have proposed a new DWA for autonomous robots to expel 
invading objects. This is a modification of existing algorithm by 
carefully implementing a new objective function in the optimization 
process. Our performance evaluation and analysis via simulations 
section demonstrate the feasibility of this algorithm. It allows a very 
large team of autonomous robots to be controlled real-time without 
collision and can have many potential applications such as airport 
bird control.

For the first time, the Finsler measure is used in the robotic 
formation and optimization processes. It allows us to eliminate the 
complicated push-and-pull functions. This work is expelling the 
invader birds out of a given territory in a linear direction. It can 
be extended to the scenario that the swan can be divided into the 
task teams, some team matches with escorting out of airport geese, 
the other team may return back to airport matches with remaining 
geese that are reluctant to leave.

The effect of the laser sensor noise on the swarm area formation 
error is calculated and proven. With the proven theorem, the Finsler 

Figure 4:  60%-Time completed for 420 individuals.

Figure 5:  80%-Time completed for 420 individuals.

Figure 2:  20%-Time completed for 420 individuals.

Figure 3:  40%-Time completed for 420 individuals.

Figure 6: 100% time completed for 420 individuals.
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methodology is ready to be extended to variations of dynamic 
window approach or other statistical robot planning method, 
as long as the planning method making use of the optimization 
approach, where an object function exists.

Our future work may include the following:

1.	 Investigate the effect of low-level motion planning, 

2.	 Forming different shapes to expel invading geese,

3.	 Possibility of partial returning of the artificial swans, 

4.	 Expelling multiple-homed geese,

5.	 Investigate the effects of other weight values of α, β, γ.

APPENDIX: PROOFS OF F-NORM THEOREMS

In a short summary, Finsler measure is usually used to depict a 
non-quadratic metric while the Euclidean measure is a used for a 
quadratic metric. We have used a number of theorems to prove the 
Finsler measure is better than the Euclidean measure. The proofs 
of the Theorems are derived based on the definition of the Finsler 

measure and the congruence number.

Proof of Theorem I: Existence of a non-quadratic congruence 
information metric

On a finite Finsler real manifold, there exist an aggregated measure 
f-norm called sum(AV), AV stands for Area Variable, a positive real 
number that is given by a pair of neighbor points coordinate: 

( )4 4 2 2

2

x y x y
AV

+ −
=

Where AV is of Finsler metric, that is neither Euclid nor Riemann, 
it is a non-quadratic metric.

Proof:

Let AV denote the area defined on Finsler Geometry, it is easy to 
prove that if AV is of f-norm then sum(AV) will be also of f-norm. It 
is also not hard to see that AV satisfying the first two properties of 
the measure f-norm, i.e. 1) when x=y=0, we have AV=0. 2) Swapping 
x and y does not change the value

We shall focus on the third property, which is the sub-additive rule. 
To do this, first let x

1
, y

1
 and x

2
, y

2
 be the points on the manifold, 

then we need to proof that we have

( ) ( ) ( )1 2 1 2 1, 1 2 2, ,F F Fx x y y x y x y+ + ≤ +

Assume that x
1
, y

1
 and y

2
, y

2
 will be the two points of the right-

angled triangle, we can show that

( )( ) ( ) ( ) ( ) ( )4 4 2 22 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 24 , Fx x y y x x y y x x y y+ + = + + + − + +

( ) ( ) ( )( )2 22 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2x x y y x x y y= + + + − + +

( ) ( ) ( )24 4 2 2 4 4 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 1 2 1 2 1 2 2 12 2x y x y x y x y x x y y x y x y= + − + + − + + − −

Seeing that

( )( ) 4 4 2 2
1, 1 1 1 1 12

4 Fx y x y x y= + −

And that

( )( ) 4 4 2 2
2, 2 2 2 2 22

4 Fx y x y x y= + −

We just need to prove

( ) ( )( )22 2 2 2 2 2 2 2 2 4 4 2 2 4 4 2 2
1 2 1 2 1 2 2 1 1 1 1 1 2 2 2 22 2 2x x y y x y x y x y x y x y x y+ − − ≤ + − + −

Which is
2 2 2 2 4 4 4 4

1 2 1 2 1 2 2 16 3 3x x y y x y x y≤ +

That is

( )22 2 2 2
1 1 2 10 x y x y≤ −

It is obviously true for any real value of points on manifold, this 
ends the proof.

Proof of Theorem II: Existence of an error information metric 
perturbation

On a finite Finsler real manifold, there exist an aggregated measure 
called sum(AE), AE stands for Area Euclidean, a positive real 
number that is given by a pair of neighbor points coordinate: 

( )4 4

2

x y
AE

+
=

Where AE is of Euclidean metric, it is a quadratic metric, and we 
have

( ) ( )Error AE Error AV>

As long as the perturbation is proportional

Proof: 

From Lemma II, substitute  and 

Then we have
( ) ( ) ( )2 2 2 2 2 2 2 2( 2 ( 2 )) / 2 ( 2 2 )( )x x y y x x y yError AE Error AV x x y y x y x yε ε ε ε ε ε ε ε− = + + + + + − − −

As long as

x yx yε ε=

We have

( ) ( )Error AE Error AV>

This ends the proof.
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