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Alzheimer’s disease, the most frequent form of dementia that 
accounts for 50-70% of all cases, impairs memory and learning, precludes 
independent living, and poses psychological and financial strain on 
caregivers and the healthcare system [1]. Since the first discovery from 
a patient of Alois Alzheimerin 1906, a century of vigorous research 
has established key pathological features, including the conspicuous 
neuro degeneration that preferentially target shippo campus and the 
deposition of cerebral amyloid plaques and neurofibrillary tangles. 
However, there have been no established strategies to treat Alzheimer’s 
disease, and the currently-identified risk factors for Alzheimer’s disease 
(i.e., aging and ApoEɛ4 allele) are non-modifiable [2]. As a large 
number of baby boomers will be facing elevated risks of developing 
Alzheimer’s disease in the near future, there is an ever increasing 
need to search for modifiable risk factors and to identify intervention 
strategies to attenuate and prevent the disease development [3]. 
Emerging evidence indicates that vascular dysfunction and risk factors 
for vascular disease may be mechanistically linked with an elevated risk 
of dementia and that regular physical activity may improve cognitive 
function presumably through the improvement of vascular function.

The chronic exposure to risk factors for vascular disease 
accelerates structural brain aging and cognitive decline. For example, 
hypertension, diabetes, smoking, and obesity in midlife are all 
associated with an increased progression of vascular brain injury (e.g., 
white matter hyperintensity), global and hippocampal atrophy, and 
decline in executive function [4]. All of these vascular risk factors could 
also develop into cerebral atherosclerosis, a prominent characteristic of 
Alzheimer’s disease, and compromises the normal cerebral perfusion 
leading to cerebral hypoxia that stimulates the production of cerebral 
amyloid [5,6]. Indeed, Framingham atherosclerotic risk scores are 
correlated with the level of cerebral amyloid deposition [7]. Taken 
together, these pathological findings support the notion that chronic 
exposure to vascular risk factors can contribute to the pathogenesis of 
Alzheimer’s disease at the preclinical stage.

Vascular function and risk factors for vascular disease are largely 
modifiable and may pave a way in identifying an effective intervention 
against Alzheimer’s disease. For example, regular aerobic exercise is 
widely regarded as an effective strategy to improve vascular function 
and increasingly recognized in terms of its benefit on cognitive function 
[8,9]. In particular, regular aerobic exercise ameliorates vascular 
endothelial function and central artery stiffness [8]. Cerebrovascular 
endothelium composes blood-brain barrier and strictly regulates the 
molecular trafficking between the brain and blood. One of the most 
important molecules that need clearance from the brain parenchyma 
is amyloid-β [10]. In this context, regular aerobic exercise is associated 
with preserved cerebrovascular endothelial function and the lower 
level of cerebral amyloid deposition [11,12]. Arterial stiffness is also 
an important feature that influences the cerebrovascular and cognitive 
function. With stiffening of cardiothoracic artery, pulsatile pressure 
energy can penetrate into the distal capillaries and increases the risk of 
end-organ damage [13]. Central artery stiffness also impairs baroreflex 
sensitivity and may elevate the risk of cerebral hypo- and hyperperfusion 
in response to transient blood pressure changes [14]. In fact, arterial 
stiffness is associated with lower cerebral perfusion, higher prevalence 

of subcortical infact, and accelerated cognitive decline [15,16]. It is 
reasonable to hypothesize that the favorable effect of regular aerobic 
exercise on vascular function, particularly endothelial function and 
arterial stiffness, may translate into a better cognitive function.

Although vascular function and risk factors for vascular disease 
appear to be a promising mediator for the exercise-related improvement 
in cognitive function, regular aerobic exercise may benefit cognitive 
function directly via stimulating the release of neurotrophic factor. 
Voluntary wheel running in rodents promoted neurogenesis and 
enhanced long-term potentiation in dentate gyrus of hippocampus 
[17,18]. The exercise-related enlargement of hippocampal volume 
in animals was associated with an elevated local cerebral perfusion 
resulting from angiogenesis and brain-derived neurotrophic factor 
[19]. In humans, a1-year aerobic exercise training intervention, which 
primarily consisted of walking, improved memory function and 
increased the hippocampal volume [20].

The evidence supporting the benefit of regular exercise in 
attenuating the risk of dementia is accumulating. However, there are 
many important questions that remain to be addressed regarding the 
mechanistic interaction among vascular risk, regular aerobic exercise, 
and cognitive function. Does the exercise-related improvement in 
vascular riskbenefit cognitive function independent from aging and 
genetic risk factor (i.e., ApoEɛ4 allele)? Does the improvement of 
cerebrovascular function from regular aerobic exercise promote the 
neurogenesis of hippocampus? What is the key component of vascular 
function that mediates the relation between regular aerobic exercise 
and better cognitive function? What are the optimal mode, intensity, 
volume, and frequency of physical activity inorder to attenuate the 
risk of cognitive decline and impairment? As we likely encounter an 
exponential increase in the prevalence of dementia due to the rapid 
population aging [1], we are in the immediate need to answer these 
questions and lower the devastating effect of Alzheimer’s disease for 
the future generations.
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