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Abstract
Recent studies have shown that some toxic metals have been associated with neurological diseases. The binding 

and transport of these metals in the blood may occur by species of High Molecular Mass (HMM) and Low Molecular 
Weight Species (LMM) of proteins. These main species are known to be responsible for aluminum transporting is the 
case of transferrin and citrate. It seems that autistic children may have a genetic predisposition to accumulate large 
amounts of metals as it is has been proposed. This study seeks to understand the toxic mechanism of selected metals 
in autistic children and its correlation with the psycho-metabolic implications of the syndrome. Preliminary results 
have indicated that some metals such as chromium, arsenic and particularly aluminum were elevated in the blood 
of an autistic child, as compared to reference values of a normal child. A case-control study is under investigation. 
Furthermore, the consequences of the disease, as such the difficulties in socialization and language skill disabilities 
may also be related to the burden of toxic metals in general, particularly aluminum.
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Introduction
The autism is a worldwide syndrome known as Autism Spectrum 

Disorders (ASD) or simply autism. As such, this neurological disorder 
is diagnosed in the early stages of childhood and also known as 
Pervasive Disorders of Development (PDD). 

The incidence of autism in the 90’s was estimated as 1 in every 110 
children [1,2] but recent studies have been shown that this incidence 
is increasing to 1 in every 88 children [3] make it important to develop 
studies that give some insights on the possible causes and on the early 
diagnosis of this syndrome.

In addition to genetics, environmental factors seem to be related 
to this syndrome and the exposition to toxic metals may contribute 
for its development [3-6]. It seems autistic children have metabolic 
disorders  that can be tiered  accordingly. Therefore, it may affect the 
absorption nutrients processes and the excretion of toxic substances 
in the gastro-intestinal tract [7]. Thus, there appears to be no control 
on the nutrients uptake and probably a high amount of toxic metals is 
not excreted. Recent studies has investigated the relation of autism with 
toxic metals such as mercury, cadmium and arsenic [4,8]. Aluminum 
has not been blamed, as yet.

The  availability of toxic metals may change trace element 
absorption and the interaction between essential elements and toxic 
metals can change threshold limits and pose a risk for toxic effects 
to cells [9]. Some elements such as cadmium, lead, mercury and 
aluminum may metabolically and nutritionally disturb the key role of 
essential metals (e.g., Cr, Zn, Mn, Fe, Mo, Cu) [10-13]. For instance, 
Fe deficiency increases absorption of cadmium, lead, and aluminum 
while lead interacts with calcium in the nervous system that can 
alter neurocognitive learning skills in the early stages of the child 
development. Furthermore, Cd and Al interact with calcium in the 
skeletal tissues to produce osteomalacia (bone pain, ribs, hips and 
vertebrae fractures) and muscle weakness whilst Pb can substitutes Zn 
on cell border enzymes and Cd has the strength to switch Zn in the cell 
metabolism. Calcium deficiency along with low content of Mg in the 
diet may play a role in aluminum-induced neurodegenerative diseases 
[14,15]. The role for highly aluminum-content in dietary food and water 
in the pathogenesis of encephalopathy is clinically characterized by 

dementia, asterixis, speech dysarthria/apraxia. Myoclonia and seizures 
are also well-known in dialysis patients although in Alzheimer`s disease 
remains a matter of discussion [16] while the effects of aluminum on 
the central nervous system were fully listed by Kawahara and Kato-
Negishi [17] and shown in Table 1. 

This may bring about consequences such as chronic inflammation of 
the digestive tract, changes in the immune system and in the brain [18]. 
As the most common consequences are the difficulty of socialization 
(prefers to be alone in an aloof manner) and language skill disabilities 
(unresponsive to normal teaching methods), as well as overweight [19]. 

The present work is being developed by a multidisciplinary project 
group that aims to integrate  nutritional parameters with analytical 
chemistry, psycho-metabolic and clinical data. This paper has two 
strands, the chemistry analysis of blood serum and urine of an autistic 
child and the analysis of the protein profile of some metals in the blood 
as well as a psycho-metabolic study, for mapping the markers and to 
assist in the early diagnosis of infantile autism. 

Materials and Methods
Subjects

This investigation has been approved by the National Ethical 
Research Committee Board under the no. 089/2010 with an additional 
amendment to the Protocol in 11/08/2011. In the first place, the parents 
were fully and duly explained about the aim of the research following 
an invitation to sign the Term of Consent and to fill a dedicated 
questionnaire adapted from Williams and Aiello [101] regarding the 
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 References
(1) Nucleus and gene expression.  
Binding to DNA  
Binds to histone-DNA complex and induces conformational changes of chromatin. [20]
Induces topological changes of DNA. [21,22]

 

Altered gene expression.  
Induces decreased expression of neurofilament and tubulin. [23]
Induces altered expression of genes of neurofilament, APP, and neuron specific enolase. [24]
Induces decreased expression of transferrin receptor. [25]
Induces altered expression of RNA polymerase I. [26]
Induces downregulation of mitochondrial cytochrome c oxidase. [27]
Induces altered expression of calbindin-D28k. [28]
Induces decrease in the expression of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). [29]
Induces expression of pro-inflammatory genes and pro-apoptotic genes. [30]
Induces elevated expression of APP. [31,32]
Induces altered expression of oxidative stress marker genes (SOD1, glutathione reductase, etc.). [33]
Induces decreased expression of neprilysin. [34]
Induces altered expression of β-APP secretase (BACE1 and BACE2). [35]

 

(2) Cellular functions  
Energy metabolismo  
Inhibits the activity of hexokinase [36]
Inhibits the activity of phosphofructokinase [37]
Inhibits the activity of glucose-6-phosphate dehydrogenase [38]
Causes mitochondrial dysfunction and depletion of ATP [39,40]
Decreases in activity and expression of TCA-cycle related enzymes (succinate dehydrogenase (SDH), alpha-ketoglutarate 
dehydrogenase (KGDH), isocitrate dehydrogenase-NAD+ (IDH), fumarase (FUM), aconitase (ACN), and cytochrome c oxidase 
(Cyt C Ox)).

[41]

 

Phosphorylation and dephosphorylation  
Inhibits the activity of protein phosphatase. [42]
Increases the activity of protein kinase C and cytoskeleton proteins. [43]
Accelerates phosphorylation and accumulation of neurofilament. [44]
Enhances Ca2+/Calmodulin dependent protein kinase activity. [45]
Accelerates phosphorylation of MAP 2 and neurofilament. [46]
Inhibits dephosphorylation of tau. [47]
Induces nonenzymatic phosphorylation of tau. [48]

 

Abnormal accumulation of proteins  
Causes the conformational change and the accumulation of neurofilament and MAP1A, MAP1B. [49]
Accelerates the phosphorylation of tau and its accumulation. [50]
Causes the accumulation of tau protein in neuroblastoma cells or in primary cultured neurons. [51,52]
Causes the accumulation of tau protein in experimental animals. [53,54]
Causes neurofibrillary degeneration in vivo. [55]
Causes the accumulation of AβP in cultured neurons or in neuroblastoma cells. [56,57]
Causes the accumulation of AβP in vivo. [58,59]

 

Neurotransmitter release  
Inhibits glutamate release. [60]
Impairs synaptic transmission. [61,62]
Inactivates glutamate dehydrogenase. [63]
Inhibits NMDA-type glutamate receptor. [64]
Inhibits choline acetyl transferase and tyrosine hydroxylase, glutamate decarboxylase. [65,66]
Influences acetyl-CoA and inhibits acetylcholine release. [67]
Activates monoamine oxidase. [68,69]
Inhibits dopamine beta-hydroxylase. [70]
Inhibits uptake of serotonin and noradrenalin in synaptosomes. [71]

 

Channel inhibition  
Influences the activities of Na+ channels and K+ channels. [72]
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daily habits and behavior of each child. All children who participate in 
this preliminary approach were diagnosed by a multi-professional team 
of physicians, psychologists, occupational and physical therapists and 
they had no signs or symptoms of chronic, degenerative nor infectious 
illnesses other than ASD. Amongst 38 children of both sexes at the age 
3–12 years old, 12 (8 boys and 4 girls) met the criteria and were selected 
for this investigation. The inquiry enrolled questions of the mother’s 
pregnancy and they were also followed-up since the early stages of 
development, along 6 years, uninterruptedly. The complete screen of 
clinical chemistry of these children was not displayed in this progress 
research report but they matched with normal reference values for 
non-autistic children. Only a child of this group had blood and urine 
analyzed while the other are under investigation.

The inclusion criteria were:

•	 No cerebral palsy dysfunctions

•	 No acute liver or kidney diseases

• No food or drink restrictions

•	 Under medication or not

The exclusion criteria occurred also when:

•	 Progressive neurological disorders

•	 Unstable epilepsy

•	 Physical handicap

Blood serum and urine analysis

The determination of the total concentration of metals in blood 
serum and urine of an autistic child was performed by Inductively 
Coupled Mass Plasma Spectrometry (ICP-MS). The concentration 
metals determined were Mg, Al, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, 
Pb and U. The samples were diluted in nitric acid 2% before analysis.

Before analyzing the sample, the methodology has to be validated. 

Enhances the voltage-activated Na+ channels. [73]
Inhibits the voltage-gated calcium channel. [62,74]
Inhibits the IP3-mediated Ca2+ release. [75]

 

Others  
Influences GTP binding proteins as aluminum fluoride. [76]
Inhibits GAP junction. [77]
Inhibits axonal transports. [78]
Binds to calmodulin and inhibition of calmodulin-binding enzymes. [79]
Induces inflammatory responses. [80]

 

(3) Membrane lipids  

 

Peroxidation  
Accelerates iron-induced membrane lipid peroxidation. [81]
Enhances lipid peroxidation in liposomes. [82]
Induces peroxidation of myelin lipids in vivo. [83]
Increases peroxidation products (malondialdehyde). [50]

 

Membrane properties  
Causes the change the lipid/phospholipids profiles of myelin in vivo. [84]
Induces the change in membrane physical properties (surface potential, lipid fluidity, and lipid arrangement). [83]
Induces the change of membrane fluidity. [85]

 

(4) Higher functions  

 

Cell death  
Causes the apoptotic neuronal death. [86,87]
Causes the apoptosis of astrocytes. [88]
Causes the death of motor neuron. [89,90]

 

Behavior, learning, and memory, others  
Inhibits long term potentiation (LTP). [91,92]
Causes learning disorder or memory deficit in experimental animals. [93–95]
Influences electrical activity in hippocampus and inhibits spatial learning memory deficit in aging rats. [96]
Causes memory deficit in AD model mice. [97,98]
Causes encephalopathy in dialysis patients. [99]
Causes encephalopathy in patients with renal failure. [100]

Table 1: Effects of aluminum on the development of the central nervous system.
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For this, recovery tests were performed using certified material of blood 
serum and recovery approximately of 90% was found. 

It was performed a qualitative study in order to evaluate the 
capability of elements to bind proteins in biological fluid samples, 
using size exclusion chromatography. Was used a Superdex peptide 
column, and was possible to separate de species of blood sample in 
two fractions: High molecular mass (HMM) and Low molecular 
mass (LMM). The HMM fraction contain albumin, transferrin and 
immunoglobulin G. The fraction of LMM basically consists of citrate 
and phosphate. The monitoring of proteins was performed by UV 
(ultraviolet) and the metals analysis was made with ICP-MS [102-105]. 
Recovery tests were performed with the column in order to verify if it 
would not be contaminating the samples or retaining Al. For this tests, 
a mixture of standards (transferrin, albumin and immunoglobulin G), 
simulating HMM in blood was used. In an aliquot it was added 6 µg 
L-1 of Al.

This study was performed only for some metals. The essential (Cu 
and Cr) and toxic (Al and Pb) elements were chosen. 

Psycho-metabolic markers 

The methodology for the psycho-metabolic study was based on the 
application and interpretation of questions to parents of the selected 
autistic children. There were several questions about pregnancy and 
childbirth, and also about the child’s cognitive, psychomotor, language 
and emotional developments in different ages and stages of the child. 
There were different questions for each development phase.

This instrument was elaborated from the Inventory and of the 
scale adapted from Williams and Aiello [101], which was carried 
out throughout the study and with a brief analysis about the familiar 
characteristics, dwelling aspects of house-keeping, the school, the 
caretaking, which involves the relative and mediating aspects that can 
relate the school performance of the child.

The questionnaire developed for the analysis and establishment 
of psycho-metabolic markers takes into consideration the assessment 
to personal data of the parents that includes: economic aspects, 
characteristic of the domestic and household environment, relative 
aspects to the feeding, pregnancy besides some factors that say respect 

to the some characteristics of the routine and the behavior of a child. 
In such a way, the instrument for analysis of the psycho-metabolic 
markers does not take into consideration the caretakers and/or 
educators, although it has taken a glance to appreciate the pertaining 
to school performance and, therefore, its attention is in the nutritional 
and manner aspects of the family, specially the mother and the child, 
since it enrolled subjects from birth up to twelve years of age. 

Results and Discussion
Blood serum and urine analysis

The results from essential and toxic elements concentration of urine 
and blood serum of an autistic child compared to reference values are 
shown in Table 2. Even considering that these results refer to samples 
of only one child, some preliminary important aspects must be pointed 
out. In the blood serum samples the essential elements concentration 
such as Zn, Cu and Mg all are below the threshold. On the other hand, 
Al, Cr and As concentration, considered as toxic elements, showed 
much higher values than reference ones. This result corroborates 
with the hypothesis of Mulloy et al. [7], which raising the possibility 
that accumulation of toxic metals and eliminate micronutrient. The 
association of the low concentration of Mg and high of aluminum 
corroborates results from literature [14,15] that relates the low 
concentration of Mg with aluminum-induced neurodegenerative 
diseases. Regarding to urine sample, Al together with Zn, also showed 
higher concentration compared to reference ones.

Figure 1 shows the results of metals association with proteins after 
fractionation with a size exclusion column in the blood serum sample. 
The first peak (Figure 1a) at about 11 min refers to the fraction of High 
Molecular Mass (HMM), which contains albumin, transferrin and 
immunoglobulin G. The second peak at about 32.5 minutes (Figure 1a), 
refers to the fraction of Low Molecular Mass (LMM). The results show 
that all the metals monitored bind with the fraction of HMM (Figure 
1b), highlighting the fact that only aluminum was also associated to 
the fraction of LMM, indicating that this metal has besides the ability 
to bind to proteins contained in HMM, also a different transport 
mechanism in the blood comparing to the others metals studied. 
Studies are being performed in order to identify which specific protein 
is binding to the metals in each fraction. 

 Blood serum Urine
 This study Reference value This study Reference value

Concentration (mg /L)
Zn 1.130 ± 0.0 15 35.4-88.7 2.250 ± 0.006 0.266-0.846
Cu 0.7473 ± 0.011 0.80-1.60 0.0288 ± 0.004 0.0042-0.050
Mg 0.8700 ± 0.016 16.00-255.0 8.150 ± 0.005 nf
Se 0.2301 ± 0.004 0.580-2.340 0.0991 ± 0.006 0.001-0.20

Concentration (μg /L)
Al 14.95 ± 0.20 0.3-7.5 122 ± 1.57 1-3
As 42.32 ± 1.43 0.2-6.2 38.62 ± 3.66 10-50
Cr 30.09 ± 1.01 0.02-0.35 17.9 ± 2.46 nf
Pb nd 1.5-3.0 1.18 ± 0.003 nf
Ni nd 1.0-28.0 34.42 ± 1.34 nf
Cd nd 0.1-1.10 0.12 ± 0.02 nf
Mo nd nf 127.9 ± 7.63 nf
Mn nd 1.5-22.0 nd nf
Sb nd nf nd nf
U nd nf nd nf

nf=not found nd=Not detected

Table 2: Elements concentration (μg L-1) and standard deviation in blood serum and urine of an autistic child compared to reference values [106,107].
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Figure 1: Blood serum analysis of the autistic child with SEC. (a) Fractions of HMM and LMM obtained by UV. (b) Metals associated with each fraction, obtained by 
ICP-MS.
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Psycho-metabolic markers 

The changes and adaptations have been made in the questionnaires 
in order to carry through a supportive tool that aimed the inclusion 
of every necessary aspect in this inquiry without disregarding the 
possibility of the mother and/or the child is contaminated by the 
ingestion of food or drink or even by a single contact with noxious 
substances. These may be the triggering factors that contribute for 
metabolic alterations and disturbances in the untainted child to uncurl 
the infantile phases of development.

Amongst the samples already analyzed and the studied aspects, 
it can be that for the pregnancy and childbirth study (Figure 2), the 
results show that 70% of mothers took vaccine or injection and 80% of 
them ate canned food and fish during pregnancy. About babies at birth 
70% were considered quiet when placed in the cradle, 80% of them was 
easy to care and 90% received all vaccines. In this study was possible to 
identify two important data regarding exposure to toxic metals. In 80% 
of cases the autistic children have used or make use of controlled drug 
and 90% of them have taken all vaccines. 

The results for the developmental stages (Figure 3), show that from 
zero to six months is already possible to observe early signs of autism. 
For this phase, two questionnaire items should be highlighted: 50% of 
the children cry a lot and 60% of them present absence of motion hold. 
From six to twelve months the marker related to language development 
indicates that 80% of children have difficulty to speak a simple word. 
From 1 to 2 years, cognitive and psychomotor markers already show 
an increase, with the emphasis on the fact that 90% of children do not 
chain two actions. From age 3 all the markers already present results 
greater than 50%. Two issues are highlighted in this step: obsession 
with some object and rotate objects in a peculiar way, both with 90%. 
At age 4, the cognitive and psychomotor markers reach their maximum 
values. Is when the disease is more easily detected. At this age 100% 
of children are considered either extremely agitated or passive, and 
90% of them show repetitive behaviors. At 5, the highlight involves 
the cognitive and the affective markers. At this age, 83% of autistic 
children challenge obedience. From six years old to teenage years in 
one hundred percent of the cases, the language is limited.

The diagnosis of Autism Spectrum Disorders (ASD) is nowadays 
almost exclusively based on clinical outcomes, mostly concerning 
aspects that often takes into consideration the social communication 
skills, repetitive behaviors and restricted area of interest of the child. 
However, diagnostic tools that may reveal each of these changes in 
cognitive and social behavior have to bridge the gap for starting the 
proper treatment of these children. From birth to the early stages of 
childhood, parents should be aware of the prime signs and symptoms 
of their autistic infant and these needs highlights the importance in 
applying an assertive parent’s inquiry and a full psycho-metabolic 
approach as precociously as possible. Thus, these will allow caretakers 
to develop or exercise the social and learning abilities of the child as 
well as the functional speech skills besides knowing the bioavailability 
of metabolic markers. An early diagnosis makes possible the occurrence 
of also precocious therapeutic treatment which corroborates for a more 
satisfactory prognostic of this individual. 

Preliminary Conclusions 
The understanding on how metals are associated to proteins 

and their blood transport mechanism in autistic child is essential to 
biomedical area, since these data may contribute for new treatment 
discovery.

In this study was possible to notice that the concentration of metals 
in urine and mainly in blood, of autistic child were outside the range, 
indicating a possible correlation between these found changes and the 
disease.

The results from the study of proteins bind metals shows that Al 
has a peculiar behavior in the serum blood of an autistic child, been 
the only one that appears bind to LMM fraction (39% of the Al total), 
whereas for the others metals, Cu, Cr and Pb not. 

Regarding to psycho-metabolic study it is possible to point out 
the importance of precocious markers determination. The difference 
between small signals and symptoms already established can be subtle 
in the first months of life, but its development without no assistance 
or knowledge can develop manifestations, bigger commitments and 
deficits each time. The analysis of the partial results also allows an 
inquiry that it exceeds the child characteristics that, it is possible to 
make an appreciation on the profile of the mothers. The results showed 
that the mothers had contact with toxic substances or agents, either 
through the ingestion of medication, vaccines or of the anesthesia 
used during childbirth. These data may indicate a relation between 
the maternal degree of toxicity and the development of signals of the 
autistic spectrum.

A case-control study is underway in order to further investigate 
that aluminum may be related to an event that probably triggers 
the genetic predisposition to the typical behavior that is diagnosed 

Figure 2: Psycho-metabolic study: Pregnancy and childbirth.

Figure 3: Psycho-metabolic markers versus developmental stages.
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as autism, in the very early stages of life while the child is still in the 
womb. In other words, and tragically, the mother is the immediate 
sources of the contamination. Once these preliminary evidences have 
more forthrightly established the link between aluminum and the 
occurrence of autism, one might take into consideration a study where 
mothers are the cases and controls. Other toxic metals such as arsenic 
and in particular mercury may pose a great relative risk of autism. The 
air contamination of mothers that gave birth to autistic children in 
geographic areas that had a higher levels of ambient mercury have been 
associated to the high level of emissions of this metal from sources such 
as coal-fired power and cement (kilns) plants [108]. 

The project is not finished, but nevertheless more results are 
necessary to confirm the interference of metals in the children’s 
cognitive and psychomotor development, but the analysis of the 
psycho-metabolic markers, might suggest a relation between the level 
of toxic metals and the development process of the autistic children. 
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