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Introduction
Cystic fibrosis (CF) is an autosomal recessive multisystem disorder 

[1,2]. It is caused by mutation in cystic fibrosis transmembrane 
conductance regulator gene (CFTR) [1-3]. CFTR is a membrane protein 
which acts a channel for transport of chloride ions [3]. Transport of 
chloride ions regulate water and salt content of the epithelial surface 
resulting in thin mucus formation, predominantly in respiratory, 
digestive and reproductive tissues [1-5]. Disruption of ion transport due 
to mutated CFTR gene results in production of thick viscous mucous 
and increased salt concentration in the sweat (Figure 1) [1-5]. It results 
in blockage of the airways, ducts, glands resulting in complications like 
pulmonary failure, gastrointestinal disorders as well as infertility [1-6]. 

CFTR is a 170 kDA membrane glycoprotein belonging to ATP-
binding cassette (ABC) transporter gene super family [7]. CFTR protein 
has two membrane spanning domains (MSD), made up of six helices 
each which are connected to the nuclear binding domain (NBD 1 and 

2). NBD’s are involved in ATP binding and hydrolysis [7]. In between 
NBD 1 and MSD2 is present regulatory (R) domain. The R domain 
contain sites for cyclic adenosine monophosphate (cAMP) dependent 
phosphorylation substrates for protein kinase A and C. ATP binding to 
NBD and phosphorylation of R domain regulates ion channel activity 
of CFTR (Figure 2) [7]. Around 1997 CFTR gene mutations are listed 
in the cystic fibrosis mutation database (http://www.genet.sickkids.
on.ca). Deletion of phenylalanine at position 508 (F508del-CFTR), is 
the most predominant mutation reported to be associated with CF and 
it is present in NBD 1 [8]. 

Mutated CFTR causes defective intracellular transport resulting 
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Figure 1: Role of CFTR mutation in cystic fibrosis. a) Normal CFTR channel 
expression facilitates chloride (Cl-) movement across the plasma membrane 
resulting in thin watery mucus. b) Mutated CFTR disrupts Cl- ion movement 
resulting in thick viscous mucous.

Note: MSD: Membrane Spanning Domain; NBD: Nuclear Binding Domain; R 
Domain: Regulatory Domain; PKA: Protein Kinase A; PKC: Protein Kinase C. 

Figure 2: Structure of CFTR protein.
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in CF etiology. Role of defective CFTR in altering mitochondrial 
functioning has been reported. All the available literature illustrating 
alteration of mitochondrial functioning in cystic fibrosis has been 
reviewed and accounted in the underlying sections. 

Mitochondrial function and cystic fibrosis: Evidence in 1970’s 
and 1980’s

The role of altered mitochondrial function in CF was hypothesised 
as early in 1979 by Burton L. Shapiro et al. [9-13]. Using cultured 
fibroblast cells from the CF patients and control they have reported 
that CF cells showed more oxygen consumption compared to the 
control, moreover inhibition of the mitochondrial electron transport 
system using rotenone resulted in distinctive rates of inhibition of 
oxygen consumption in control and CF cells [10]. Nicotinamide 
adenine dinucleotide (NADH) dehydrogenase, which is the enzyme of 
complex I of the mitochondrial electron transport system also showed 
differences in enzyme kinetics with decreased Km and increased pH 
optima in CF cells [9-14]. Similarly, altered kinetics for cytochrome-c 
oxidase resulting in increased Km at temperature >25oC have been 
reported in CF fibroblast [15]. 

CF cells were also reported to show increase in the intracellular 
calcium concentration compared to control [16-18], moreover 
mitochondria showed enhanced calcium uptake [18]. They have 
also reported an increase in relative electron transport activity of 
mitochondrial complex in case of NADH-oxidase, NADH-cytochrome 
c reductase, and succinate-cytochrome c reductase in CF cells compared 
to control [18]. Altered levels of glutathione (GSH) and activity of 
glutathione reductase (GR) has been reported in CF compared to 
control [19,20]. Altered levels of GSH are implicated in the conditions 
of oxidative stress, moreover, mitochondria are one of the prime sites 
for oxidative stress and GSH plays a critical role in maintaining redox 
homeostasis. All these lines of evidences reported in late 1970’s and 
1980’s supported the role of mitochondrial dysfunction in CF.

Mitochondrial dysfunction and cystic fibrosis: Post 1990’s

Advent of cloning technique facilitated cloning of CF gene in late 
1980’s and revealed it as a chloride channel [3,4]. Further research 
facilitated that CFTR facilitates expression of several genes. CFTR has 
been reported to regulate expression of RANTES which are chemokines 
mediating mucosal immunity [21]. Similarly, CFTR has also been 
reported to regulate MUC1 (mucins) and tyrosine kinase c-Src 
expression [22]. Role of mitochondrial dysfunction in CFTR became 
more confirmative by the finding of CFTR dependent regulation of two 
mitochondrial genes CISD1 and MT-ND4 [23,24]. CISD1 gene encodes 
for a protein with a CDGSH iron-sulfur domain and which is localized 
to the outer mitochondrial membrane whereas, MT-ND4 encodes for 
MT-ND4 mitochondrial Complex I (mtCx-I) subunit [23,24]. Down 
regulation of CISD1 has been reported in CF cells, similar results were 
reported when CFTR chloride channel activity was disrupted using 
chemical inhibitors [23]. Similar results of down regulation of MT-
ND4 in CF cells or an inhibition of CFTR chloride transport have been 
reported [24].

Role of CFTR in regulating MT-ND4 also supports the initial 
observation of Shapiro et al regarding altered kinetics of NADH 
dehydrogenase enzyme of mitochondrial complex I [11,13]. MT-
ND4 also known as mitochondrially encoded NADH dehydrogenase 
4 encodes for NADH dehydrogenase 4 protein (ND4), which is 
one of the subunit of NADH dehydrogenase enzyme or complex I 
of mitochondrial respiratory chain [24]. In concurrence with the 
observation of down regulation of MT-ND4 gene expression in CF 

cells, reduction in mitochondrial complex I activity as well as altered 
mitochondrial membrane potential has been demonstrated [25,26].

CISD1 proteins also named as mitoNEET have been reported to 
belong to the family of iron-sulfur (2Fe-2S) proteins with Fe-S domain 
comprising of CDGSH amino acid sequence [27-29]. mitoNEET 
proteins have implicated in regulating cellular iron and homeostasis 
of reactive oxygen species (ROS) [27-29]. Suppression of mitoNEET 
proteins has implicated to result in accumulation of iron, ROS and 
autophagy [27]. However role of CISD1 downregulation in CF still 
remain unclear, but it may be due altered mitochondrial function due 
to accumulated iron and ROS.

Another important function of mitochondria is Ca2+ buffering 
to regulate Ca2+ signalling. Ca2+ signalling is vital for many cellular 
functions and deregulation of it has been reported in CF. Deregulation 
of mitochondrial Ca2+ buffering resulting in increased Ca2+ 

accumulation compared to control has been reported in mitochondria 
obtained by fibroblast culture from CF patient in research reported in 
1970’s and 1980’s [16-18]. A study done using F508del-CFTR airway 
epithelial cells have reported reduced Ca2+ levels in CF cells compared 
to control [26]. They have also reported alteration in mitochondrial 
morphology to more fragmented form in CF human tracheal gland 
cells compared to control [26]. Mitochondrial membrane potential 
has also been reported to be reduced in CF cells compared to control 
[26]. Another study published recently has reported role of F508del-
CFTR accumulation in endoplasmic reticulum (ER) in deregulation 
of Ca2+ signalling in CF [30]. They have reported that accumulation of 
F508del-CFTR in ER results in increased SERCA (Sarcoendoplasmic 
Reticulum Ca2+ Transport ATPase) pump activity on the other hand 
activity of PMCA (Plasma Membrane Ca2+ ATPase) gets reduced [30]. 
The possible role of increased CFTR/SERCA interaction and decreased 
CFTR/PMCA in CF cells in deregulation of Ca2+ homeostasis has 
been reported [30]. Increased Ca2+ retention in ER was reported due 
to F508del-CFTR accumulation and the effect was rescued following 
F508del-CFTR clearance [30]. Mitochondrial Ca2+ uptake has also been 
reported to increase in CF cells, however clearance of F508del-CFTR 
ER trafficking failed to restore normal mitochondrial Ca2+ levels [30].

Apart from transport of chloride ions role of CFTR in GSH 
transport has also been reported [31-33]. Altered GSH level in CF has 
been reported by the initial studies done in 1970’s [19,20]. They have 
demonstrated higher, GSH reductase activity and total GSH levels 
in blood cells of CF patients compared to non CF [19]. Studies done 
during 1990’s demonstrated GSH deficiency in CF samples. Decreased 
GSH levels have been reported in CF epithelial lining fluid (ELF), apical 
medium obtained from CFTR-deficient cell culture [32,34] moreover, 
transfection of normal CFTR has been reported to result in increased 
GSH [32]. On the similar line study done using CFTR knockout (CFTR-
KO) mice demonstrated decreased GSH levels in ELF, whereas activity 
of glutathione reductase and glutathione peroxidase were elevated in 
CFTR-KO lung tissue [33,35].

Oxidative stress due to defective CFTR together with dysregulation 
of antioxidative effect due to decreased GSH level results in CF disease 
progression and its pathological hallmarks. Mitochondrial electron 
transport system is one of the major sources of ROS generation [36] 
and GSH plays an antioxidative role. Mitochondria do not produce 
GSH and thus are dependent on GSH uptake from the cytosol. 
Decreased levels of mitochondrial GSH have been reported in the lungs 
of CFTR-KO mice and CFTR-deficient human lung epithelial cells; 
mitochondrial oxidative stress was also increased [33]. Another study 
reports depleted mitochondrial GSH levels in CF impairs functioning 
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of electron transport chain (complex I) and restoring of GSH levels 
by GSH monoethyl ester (GSH-EE) restores electron transport chain 
functioning and mitochondrial membrane potential [35]. GSH-EE was 
also reported to re-establish normal levels of Interleukin-8 (IL8) in CF 
cells [37]. 

Conclusion
A mutation in the CFTR protein hampers its biosynthetic 

processing resulting in its proteolytic degradation in ER [38]. Proteolytic 
degradation of CFTR results in disrupted intracellular ion transport, 
oxidative stress, imbalance in redox homeostais and resulting in 
pathological features of the disease like increased sodium and chloride 
levels in sweat, viscous mucous secretion, infection, inflammation 
etc. Mutated CFTR protein has been reported to affect mitochondrial 
structure as well as function. CFTR has also been reported to regulate 
expression of few mitochondrial genes. Functioning of mitochondrial 
electron transport chain, Ca2+ homeostasis, redox balance, GSH levels 
all have been reported to be distressed in CF. Thus further exploration 
of mechanism underlying regulation of mitochondrial structure and 
function by CFTR gene may open possible avenues for CF therapeutics. 
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