
Volume 3 • Issue 3 • 1000139
J Vaccines Vaccin
ISSN:2157-7560 JVV an open access journal

Review Article Open Access

Lundstrom, J Vaccines Vaccin 2012, 3:3 
DOI: 10.4172/2157-7560.1000139

Keywords: Alphaviruses; Viral vectors; DNA vaccines; Neutralizing
antibodies; Protection against viral; Tumor challenges 

Introduction
The members of alphaviruses belong to the Togaviridae. They 

possess a single stranded RNA genome, which together with the capsid 
forms the nucleocapsid surrounded by membrane proteins embedded 
in a liposome envelope structure [1]. A number of alphaviruses has 
demonstrated pathogenicity among them recently Chikungunya with 
global fever epidemics [2]. Although Semliki Forest Virus (SFV) has 
been associated with an outbreak of febrile illness in Central Africa [3] 
and Venezuelan Equine Encephalitis (VEE) Virus with an epidemic in 
horses and humans in South America [4], attenuated strains has been 
the basis for the development of safe and efficient expression vectors. In 
this context, SFV [5], Sindbis virus (SIN) [6] and VEE [7] vectors have 
been engineered for heterologous gene expression. 

The most common approach has been to generate replication-defi-
cient alphavirus vectors. These can be used for vaccine development in 
three variations (Figure 1). Naked RNA consisting of the nonstructural 

replicase genes and the antigen generating gene downstream of the 
strong subgenomic promoter can be administered as such. Moreover, 
replication-deficient recombinant alphavirus particles providing infec-
tion capacity of a broad range of host cells without any further produc-
tion of virus progeny are potential vehicles for immunization. Finally, 
layered DNA vectors, which provide the replicase genes and antigen of 
interest in DNA form, can be applied. In all approaches advantage is 
taken of the extremely efficient RNA replication of some 200,000 RNA 
copies from each RNA molecule due to the presence of the alphaviral 
replicase genes. The most significant differences are related to delivery 
and safety aspects described later in the review. A number of topologi-
cally different recombinant proteins have been expressed from par-
ticularly SFV vectors [8]. Typically, high expression levels of integral 
membrane proteins have been obtained in various mammalian host 
cell lines [9], in primary neurons [10], and in vivo [11]. In the context 
of vaccine development, the three main vector systems (SFV, SIN and 
VEE) have been applied in the forms of naked RNA, recombinant vi-
rus particles and layered DNA vectors [12]. As described below viral 
and tumor antigens have been administered in various animal models 
to elicit neutralizing antibodies and protection against challenges with 
tumor cells or lethal doses of viruses. 

Viral Vaccine Approaches 
The obvious targets for vaccine development have been viral 

structural proteins [12] (Table 1). For instance, influenza nucleoprotein 
(NP) and hemagglutinin (HA) have generated strong immune 
responses in rodents [13] and even protection against challenges 
with H5N1 virus in chicken [14]. Moreover, several studies have been 
conducted on HIV targets (env, gp41, MA/CA) in attempts to elicit 
antibody responses in mice [15-17]. Additionally, immunization 
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Abstract
The high-level heterologous gene expression provided by alphavirus vectors has accelerated their applications 

in vaccine development. The versatility of alphavirus vectors has allowed their use in the form of recombinant 
viral particles, naked RNA and layered DNA molecules for immunization. The most commonly used alphaviruses 
have been Semliki Forest virus, Sindbis virus and Venezuelan Equine Encephalitis virus. Numerous viral structural 
proteins have been used as antigens to generate neutralizing antibodies in immunized animals. Vaccination 
has demonstrated protection against challenges with lethal doses of viruses. Moreover, vaccination with tumor 
antigens has demonstrated prophylactic protection against cancer. Novel approaches include the application of 
RNA interference and microRNA. The other side of the coin is the development of vaccines against alphaviruses 
themselves, and typically the Chikungunya virus.
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Figure 1: Alphavirus vectors applied in vaccine development. A. Naked 
RNA vector: In vitro transcribed RNA is directly injected into animals. B. Repli-
cation-deficient recombinant particles: Replicon particles are obtained from 
in vitro transcribed RNA from expression and helper vectors after co-electro-
poration of BHK-21 cells. C. Layered DNA vectors: Plasmid DNA can be used 
directly for immunization.
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Virus Target Vector/Delivery Immunization Response Reference 
NS3 (p80) SFV / DNA Mouse CTL CMI [63]
CSFV E2 SFV / DNA Swine CSFV protection [24]
EAV G, L, M VEE / Particles Mouse Neutralizing Abs [64]
Ebola NP VEE / Particles Mouse Ebola protection [18] 

NP, GP VEE / Particles Guinea pig Ebola protection [65]
VP24, 30, 35, 30 VEE / Particles Mouse Ebola protection [66]

Hepatitis B cAg SIN / DNA Mouse Specific Abs [67]
sAg SIN / DNA Mouse Specific Abs [67]

Hepatitis C cAg SFV / Particles, DNA Mouse CTL [68]
NS3 SFV / Particles Mouse Cellular [69]

HeV Glycoprotein VEE / Particles Mouse Neutralizing Abs [25]
HIV-1 env SFV / Particles Mouse Humoral [15]

gp41 SFV / Particles Mouse Monoclonal Abs [16]
MA/CA VEE / Particles Mouse Humoral, CTL [17]

HPV 16E7 SFV / DNA Mouse CTL [70]
16E7-VP22 SIN / Particles Mouse CD8+ T cell response [71]
E7-hsp70 SIN / Particles Mouse CTL [72]

HSV-1 gpB SIN / Particles Mouse HSV protection [73]
gpB SIN / DNA Mouse CTL, protection [74]

IBDV VP2 SFV / Particles, DNA Chicken  Specific Abs [75]
Influenza HA SFV / Particles Mouse Systemic response [13]

HA SFV / DNA Mouse Humoral, cellular [76]
HA VEE / Particles Chicken  Influenza protection [14]
HA VEE / Particles Swine Influenza protection [20]
HA VEE / Particles Swine Specific Abs [21]
NP SFV / Particles, RNA Mouse Humoral, CTL [77]
NP SFV / Particles, RNA Mouse CTL [78]

JEV prM-E, NS1-2A SIN / Particles Mouse JEV Abs [79]
Lassa N VEE / Particles Mouse Immune response [19]
LIV prME  SFV / Particles Mouse LIV protection [80]

prME, NS1 SFV / Particles Sheep LIV protection [81]
MBGV GP, NP, VP35 VEE / Particles Guinea pig MBGV protection [82]

GP, NP VEE / Particles Macaques MBGV protection [83] 
Measles HA, FUd SIN / DNA Mouse Measles protection [29]

HA, FUd SIN-VEE / Particles Macaques Measles protection [30]
MVE prME, E SFV / Particles Mouse Neutralizing Abs [84]
NiV Glycoproteins VEE / Particles Mouse Neutralizing Abs [25]
NLV VLP VEE / Particles Mouse Immune response [85]
Rabies G SIN / DNA Mouse Rabies protection [32]
RSV F, G SFV / DNA, RNA Mouse RSV protection [86]

F, G SFV / Particles Mouse RSV protection [87]
SARS-CoV Glycoprotein VEE / Particles Mouse SARS-CoV protection [23]
SEOV M, S SIN /Particles, DNA Hamster SEOV protection [88]
SHIV env SFV / Particles Macaques T cell prolif. Response [89]
Vaccinia A33R, B5R VEE / Particles Mouse Vaccinia protection [31]

Abs: Antibodies; BVDV: Bovine viral diarrhea virus; CMI: Cell-mediated immune response; CSFV: Classical swine fever virus; CTL: Cytotoxic T-lymphocyte activity; EAV: 
Equine arteritis virus; HBV: Hepatitis B virus; HBC: Hepatitis C virus; HeV: Hendra virus; HIV: Human immunodeficiency virus; HPV: Human papillomavirus; HSV: Herpes 
simplex virus; IBDV: Infectious bursal disease virus; JEV: Japanese encephalitis virus; LIV: Loupin ill virus; MBGV: Marburg virus; MVE: Murray Valley encephalitis virus; 
NiV: Nipah virus; NLV: Norwalk-like virus; RSV: Respiratory syncytial virus; SARS-CoV: Severe acute respiratory syndrome corona virus; SEOV: Seoul virus; SFV: Sem-
liki Forest virus; SHIV: Simian-human immunodeficiency virus; SIN: Sindbis virus; VEE: Venezuelan equine encephalitis virus

Table 1: Vaccine development for viral targets.

studies with VEE vectors in mice and guinea pigs demonstrated that 
protection could be achieved against challenges with some of the 
most feared viruses such as Ebola [18] and Lassa [19]. More recently, 
an alphavirus replicon (VEE) particle vaccine expressing the cluster 
IV H3N2 swine influenza HA gene demonstrated protection against 
challenges with homologous influenza virus [20]. In another study, 
VEE particles expressing the human influenza HA protein was 
demonstrated to generate high antibody titers in swine illustrating their 

potential use in vaccine development [21]. In attempts to improve the 
immunogenicity the herpes simplex virus type 1 (HSV-1) VP22 protein 
was fused to influenza HA from the H5N1 subtype [22]. Immunization 
studies demonstrated that both interleukin-4 (IL-4) of CD4+ T cells 
and interferon-gamma (IFNγ) of CD8+ T cells in vaccinated mice 
suggesting a promising approach for vaccine development against 
human-avian influenza viruses. Among the newly emerging viruses, 
the severe acute respiratory syndrome coronavirus (SARS-CoV) has 
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been targeted for vaccine development applying VEE replicon particles 
[23]. VEE vaccinated aged mice showed protection against challenges 
with SARS-CoV. Moreover, a combined vaccine approach with SFV 
DNA vectors and recombinant adenovirus expressing the Classical 
Swine Fever Virus (CSFV) E2 glycoprotein demonstrated higher titers 
of neutralizing antibodies in pigs [24]. Challenges with the virulent 
CSFV Shimen strain showed no symptoms of viremia, for the combined 
vaccine, whereas immunization with adenovirus alone resulted in 
viremia in one pig of five. Glycoproteins from the zoonotic pathogenic 
Hendra Virus (HeV) and Nipah Virus (NiV), which can cause fatal 
infections in both animals and humans, have been expressed from VEE 
particles to generate neutralizing antibodies [25]. Preliminary results 
indicated the approach enhanced the induction of cross-reactive 
neutralizing antibodies. In a study on Rift Valley Fever Virus (RVFV) 
both DNA plasmids and alphavirus replicons expressing the RVFV 
glycoprotein Gn fused to the C3d complement protein were applied 
for the vaccination of mice [26]. This strategy resulted in generation 
of neutralizing antibodies and provided protection against RVFV 
challenges. The plasmid DNA and alphavirus replicon approaches as 
well as the combined DNA prime/replicon boost strategy therefore 
shows great promise for valid RVFV vaccine development. 

Sequential immunization with SIN and VEE replicon particles 
encoding the type1 HIV gp140 envelope (Env) and trimeric Env 
protein in MF59 adjuvant resulted in partial protection against high-
dose intravenous challenge with simian-human immunodeficiency 
virus (SHIV) in macaques [27]. More recently, it was shown that 
antibody-mediated protection could be extended to intramuscular 
and mucosal routes of delivery [28]. The immunization resulted in 
different degrees against subsequent mucosal SHIV challenge, but 
interestingly those macaques that were vaccinated intramuscularly 
with alphavirus replicon particles and boosted with Env protein 
were completely protected. Two SIN DNA vaccines expressing the 
hemagglutinin (pMSIN-H) and fusion proteins (pMSINH-FdU) 
elicited neutralizing antibodies, mucosal and systemic antibody-
secreting cells, memory B cells and IFNγ secreting T cells in cotton rats 
[29]. A one hundred percent protection against pulmonary measles 
was obtained after priming with pMSIN-H. In contrast, pMSINH-FdU 
priming gave protection only after live measles virus vaccine boost. 
Moreover, chimeric VEE/SIN replicon particles have been applied for 
the expression of hemagglutinin (H) and fusion (F) proteins of measles 
virus [30]. Intradermal vaccination of macaques resulted in high-
titer neutralizing antibody and IFNγ-producing T cells. Challenges 
with wildtype measles virus 12-17 months after vaccination showed 
protection from rash and viremia. In the need of safe and more efficient 
smallpox vaccines, VEE particles expressing the vaccinia virus A33R, 
B5R, A27L and L1R genes elicited protective immunity in vaccinated 
mice [31]. Likewise, immunization of macaques generated efficient 
antibody response and was able to neutralize and inhibit the spread of 
vaccinia and monkeypox viruses. Interestingly, a rabies virus vaccine 
study where SIN-based DNA encoding rabies glycoprotein (G) was 
compared to a conventional rabies DNA vaccine and to Rabipur vaccine 
[32]. The replicon-based DNA vaccine induced better humoral and cell 
mediated immune responses than the conventional DNA vaccine in 
immunized mice. Moreover, complete protection was demonstrated 
against challenge with rabies virus CVS strain. 

Non-viral Targets 
In addition to viral targets a number of other infectious pathogens 

have been addressed as targets for vaccine development (Table 2). 
In this context, mice immunized with SFV vectors expressing the 
Plasmodium falciparum Pf332 antigen elicited immunological memory 
[33]. In another approach, SIN-based plasmid DNA vaccination with 
the Mycobacterium tuberculosis 85A antigen (Ag85A) provided strong 
immunity and resulted in long-term protection against M. tuberculosis 
challenges in mice [34]. Moreover, SFV DNA replicons were applied 
to express the botulinum neurotoxin A Hc gene (BoNTA-Hc) [35]. 
Both antibody and lymphoproliferative responses were obtained 
in BALB/c mice. Co-expression of the granulocyte-macrophage 
colony-stimulating factor (GM-CSF) as an adjuvant enhanced 
immunogenicity. Replication-deficient SFV particles have also been 
used for immunization experiments in BALB/c mice for the Brucella 
abortus translation Initiation Factor 3 (IF3) [36]. It was demonstrated 
that mice challenged with the virulent B. abortus strain 2308 exhibited 
a significant level of resistance. Alternative forms of the protective 
antigen (PA) for Bacillus anthracis were expressed from SIN vectors 
[37]. Vaccination of Swiss Webster mice induced PA-specific IgG 
and neutralizing antibodies and also offered some protection against 
challenges with a lethal Ames strain. 

Tumor Vaccine Approaches 
Additional alphavirus applications are related to tumor vaccines 

(Table 3). One of the basic studies involved the immunization of 
mice with naked SFV RNA carrying the LacZ gene, which resulted in 
therapeutic efficacy [38]. Other vaccine approaches with SFV particles 
expressing the P1A gene [39] and VEE vectors carrying the Human 
Papilloma Virus (HPV) E7 gene [40] resulted in protection against 
further tumor development. In attempts to enhance the efficacy of 
HPV vaccines the adjuvant effect of interleukin-12 expressed from 
SFV vector was evaluated in mice [41]. Even a low dose of SFV-IL12 
stimulated antigen-specific CTL responses and anti-tumor activity after 
SFV-based HPV16-E6E7 immunization. However, increased dosages 
did not improve these activities. Recently, alphavirus replicon-based 
expression of Melanoma Differentiation Antigen (MDA) tyrosine 
managed to prevent the growth of B16 transplantable melanoma [42]. 
It was demonstrated that the vaccine encoding tyrosine related protein 
2 (TRP-2) relied on a novel immune mechanism, which required 
activation of both IgG and CD8+ cell effector responses. 

Agent Target Vector/Delivery Immu-
niza-
tion 

Response Refer-
ence 

B. antracis PA SIN / Particles Mouse B. antracis 
protection

[37]

B. abortus IF3 SFV / Particles Mouse Brucella 
protection

[36]

C.botulinum  BoNTA-Hc SFV / DNA Mouse Abs, lym-
phoprolif

[35]

Malaria CS SIN / Particles Mouse Malaria 
protection

[90]

M. tuberculosis Ag85A SIN / DNA Mouse Protection [34]
P. falciparum Ag Pf332 SFV / Particles-RNA Mouse Immunoligi-

cal memory
[33]

Prion NP SFV / Particles Mouse Monoclonal 
Abs

[91]

Staphylococcus enterotox B VEE / Particles Mouse Protection [92]

Abs: Antibodies; SFV: Semliki Forest virus; SIN: Sindbis virus; VEE: Venezuelan 
equine encephalitis virus 

Table 2: Vaccine development for non-viral infectious agents.
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Clinical Trials for Alphavirus Vaccines 
Despite the numerous studies conducted in various animal models 

very few evaluations have been carried out with alphaviruses in humans. 
The first clinical trial for SFV relates to intravenous administration of 
liposome encapsulated particles in melanoma and kidney carcinoma 
patients [43]. The first vaccine-related alphavirus study was a Phase 
I randomized, double-blind clinical trial for cytomegalovirus (CMV) 
[44]. A two component vaccine expressing CMV gB or pp65/1E1 
fusion protein was administered intramuscularly or subcutaneously 
in CMV seronegative adult volunteers. The vaccine was well tolerated 
showing only mild to moderate local reactogenicity and no clinical 
important changes. The immunization induced neutralizing antibody 
and multifunctional T cell responses against CMV antigens. In another 
study, it was shown that alphavirus particles, which efficiently infect 
dendritic cells, could be repeatedly administered to patients with 
metastatic cancer expressing the Carcino Embryonic Antigen (CEA) 
[45]. Moreover, CEA-specific antibodies were capable of mediating 
antibody-dependent cellular cytotoxicity against tumor cells from 
human colorectal cancer metastases. Most encouragingly, patients with 
CEA-specific antibodies showed extended overall survival. 

Recent Vector Development 
It is appropriate in this review to describe some recent development 

of alphavirus vector applications. It was demonstrated that when VEE 
replicon particles without any transgene were used as adjuvant for an 
inactivated influenza vaccine in rhesus monkeys, the influenza-specific 
CD4+ T-cell responses were 4.4 fold higher and the virus-specific 
IFNγ and IL-2 producing CD4+ T cells were enhanced 7.6 and 5.3 
fold, respectively [46]. In summary, the VEE replicon particles used as 
adjuvant dramatically improved the immunogenicity and protection 
against challenges with the human seasonal influenza isolate A/
Memphis/7/2001 (H1N1). In another study, alphavirus adjuvants were 
co-administered with mouse-tropic norovirus (MNV)-like particle 
vaccine [47]. These multivalent vaccinations significantly reduced the 
viral load of MNV suggesting that the humoral immunity may protect 

against challenges with heterologous noroviruses. Furthermore, VEE 
replicons were shown to possess adjuvant activity and induced an 
increased and balanced IgG subtype response, which also increased 
augmented systemic and mucosal antigen-specific CD8+ T cell 
responses [48]. This approach provides the potential molecular basis 
for alphavirus-induced immunity and improvement in alphavirus-
based vaccines. 

Chimeric VEE-SIN vectors for the expression of measles virus 
hemagglutinin (VEE/SIN-H) have been compared to a non-formalin-
inactivated alum-precipitated measles vaccine (FI-MV) [49]. Although 
the MV-specific IgG levels were similar, the VEE/SIN-H antibodies 
showed neutralizing activity. Spontaneous ex vivo production of IFNγ 
and IL-4 was observed in induced T cells after immunization with VEE/
SIN-H, whereas vaccination with FI-MV-induced T cells generated 
IL-4 only after stimulation. In another approach vaccine vectors were 
constructed based on live recombinant Vesicular Stomatitis Virus 
(VSV) and an SFV replicon that propagates through expression of the 
VSV glycoprotein (G) [50]. Applying these vectors for the expression 
of Simian Immunodeficiency Virus (SIV) gag and env proteins in 
vaccinated macaques resulted in protection against challenges with 
lethal doses of SIV. Recently, it was demonstrated that a heterologous 
prime-boost approach with recombinant SFV encoding a HPV E6-E7 
fusion protein and virosomes containing HPV E7 resulted in higher 
numbers of antigen-specific CTL in mice than applying homologous 
protocols [51]. However, the higher frequency of central memory T 
cells after homologous immunization, which is crucial for cancer 
vaccines, indicates that the superiority in number of antigen-specific 
CTL observed after heterologous prime-boost immunization should 
not be overestimated. 

Vaccines against Alphaviruses 
In the context of alphavirus vaccines a large portion has dealt 

with generating vaccines against various alphaviruses (Table 4). For 
instance, BALB/c mice vaccinated with an attenuated VEE strain 
resulted in protection against airborne virus [52]. Furthermore, the live 
attenuated V3526 VEE vaccine showed improved protection against 
VEE challenges [53]. Likewise, C57BL/6 mice demonstrated complete 
protection against lethal challenges with a virulent Eastern Equine 
Encephalitis (EEE) virus strain after vaccination with a chimeric 
EEE and Western Equine Encephalitis (WEE) virus [54]. A live 
Chikungunya (CHIK) tested in a human Phase II trial demonstrated 
generation of neutralizing antibodies [55]. 

A new approach for designing attenuated alphaviruses has been 

Target Gene Vector/De-
livery

Immu-
niza-
tion

Response  Refer-
ence

Brain 
tumor

IL-12 SFV / Particles Mouse Mouse [93]

Cervical 
cancer

HPVE6-E7 SFV / Particles Mouse Tumor protection [94]

Glioma B16, 203 SFV / Particles Mouse Tumor protection [95]
Melanoma MDA/trp-2 VEE / Particles Mouse Therapeutic effect [42]
Tumor β-galactosidase SFV / RNA Mouse Tumor protection [38]
Tumor HPVE7 VEE / Particles Mouse Tumor protection [40]
Tumor HPVE6E7+IL12 SFV / Particles Mouse Anti-tumor activity [41]
Tumor HPVE7-VP22 SIN / Particles Mouse CD8+ T-cell 

response
[96]

Tumor IL-12 SFV / Particles Mouse Tumor protection [97]
Tumor 
antigen

MHC class II SFV / Particles-
DNA

Mouse Immunogenicity [98]

Tumor 
antigen

P185 SFV / Particles Mouse CTL, tumor pro-
tection

[39]

Tumor 
antigen

trp-1 SIN / DNA Mouse Antitumor activity [99]

CTL: Cytotoxic T-lymphocyte activity; HPV: Human papillomavirus; IL: interleukin; 
MDA: Melanoma differentiation antigen; MHC: Major histocompatibility complex; 
SFV: Semliki Forest virus; SIN: Sindbis virus; trp: tyrosine-related protein; VEE: 
Venezuelan equine encephalitis virus 

Table 3: Vaccine development for cancer targets.

Virus Gene Vector Delivery Immuniza-
tion

Response Reference

CHIK
Abs

TSI-GSD-218 CHIK Infection Human Neutralizing [55]

CHIK Glyocprotein CHIK Infection Macaques Neutralizing 
Abs

[58] 

EEE EEE/WEE EEE Infection Mouse EEE protection [54]
VEE VEE att VEE Infection Mouse VEE protec-

tionc
[100]

VEEc VEE V3526 VEE V3526 Mouse VEE protection [101]
VEE VEE TC-83 VEE Infection Mouse VEE protection [102]
VEE 26S VEE Infection Macaques VEE protection [59]
WNV WNV att WNV Nanopatch Mouse Abs [60]

Abs: Antibodies; att: attenuated; CHIK: Chikungunuya virus; EEE: Eastern equine 
encephalitis virus; SFV: Semliki Forest virus; SIN: Sindbis virus; VEE: Venezuelan 
equine encephalitis virus; WNV: West Nile virus

Table 4: Vaccine development against alphaviruses.
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to tackle the mechanisms of replication and virus-host interaction. 
Variants of CHIK envelope lacking important contributors to viral 
pathogenesis were made incapable of transmission by mosquito 
vectors by making their replication dependent on internal ribosome 
entry sites (IRES) [56]. This engineering prevented replication on cells 
of mosquito origin, whereas the replication occurred efficiently in Vero 
cells. In another study, chimeric vaccine candidates were engineered 
applying the non-structural genes of either the attenuated VEE strain 
TC-83 or a naturally attenuated EEV strain and the structural genes 
of CHIK [57]. The vaccines showed significantly lower infection of 
Aedes aegypti and A. albopictus, the common urban vectors for CHIK, 
which suggested a low risk of transmission. A synthetic DNA vaccine 
expressing a component of the envelope glycoprotein was engineered 
based on a new CHIK virus isolated from an acutely infected human 
patient [58]. In vivo electroporation induced robust antigen-specific 
cellular and humoral immune responses and provided protection 
against CHIK challenge in mice. Additionally, studies in macaques 
showed induction of neutralizing antibodies similar to those found in 
convalescent human patient sera. 

Nonhuman primates were subjected to a VEE DNA vaccine in an 
aerosol model, where the VEE 26S structural genes were expressed 
from a DNA vector [59]. No viremia was detected in two out of 
three vaccinated macaques, while one animal showed low viremia. In 
contrast, control animals demonstrated high viremia. 

In the area of vaccine delivery, the Nanopatch comprised of arrays 
of densely packed projections has been applied for skin vaccination 
of West Nile Virus and CHIK in mice [60]. The goal was to target 
epidermal and dermal antigen presenting cells (APCs). The efficiency 
of Nanopatch delivery was demonstrated using an inactivated whole 
CHIK vaccine and a DNA-based attenuated West Nile Virus vaccine. 
This approached offered needle-free, highly effective and inexpensive 
vaccine delivery. 

The discovery of gene silencing as a common phenomenon in 
biology has had a major impact on all areas of drug discovery. Not 
surprisingly, efforts to apply RNA interference have also reached 
vaccine development. In this context, the efficiency of small interfering 
RNAs (siRNAs) against CHIK replication has been investigated in 
Vero cells [61]. Two siRNAs against the conserved regions nsP3 and E1 
genes showed a reduction of virus titer up to 99.6%. The effect was most 
prominent at 24 h (99%) and still significant at 48 h (65%) and might 
present a new therapeutic approach. Moreover, microRNA (miRNA) 
specific target sequences have been introduced into alphavirus helper 
RNAs used for replicon particle production (see Figure 1) [62]. 
Interestingly, particles were efficiently produced when miRNA-specific 
inhibitors were present. However in their absence, cellular miRNAs 
down-regulated helper RNA replication in vitro. When replicon RNA 
with miRNAs incorporated into the sequence was administered in 
mice, cellular miRNAs were able to prevent the replication of replicon 
RNA. These results suggest the feasibility of potentially using miRNA 
for the inhibition of viral replication as a therapeutic approach. 

Conclusions 
As described above a number of vaccine development studies 

have been carried out using mainly the three most commonly 
applied alphavirus vectors, SFV, SIN and VEE. Interestingly, these 
vectors have been used as replicon particles, naked RNA and layered 
DNA vectors. The results indicate that each approach has generated 
responses in the form of cellular or humoral responses and in many 
cases protection against challenges with lethal doses of virus (Table 1) 

and other non-viral agents (Table 2). Furthermore, protection against 
tumor challenges has been successfully achieved (Table 3), which bodes 
well for future preventive vaccination against cancer. Obviously, as 
alphaviruses themselves are pathogens causing epidemics [2-4], they 
are credible targets for vaccine development. A number of studies 
have been conducted, particularly for VEE and CHIK (Table 4), which 
have indicated the feasibility of generating efficient vaccines providing 
protection against challenges with virulent alphavirus strains. 

Application of alphavirus vectors for vaccine development requires 
the addressing of biosafety issues. Although certain alphaviruses have 
been the cause of global fever epidemics [2-4] the strains used in vaccine 
development have most commonly been attenuated. Furthermore, 
second generation helper vectors [103] or split helper systems [104] 
have been used for the generation of replication-deficient alphavirus 
particles to ensure that no wild-type like replication-proficient particles 
are produced through homologous recombination. The safe application 
of SFV vectors in humans was first demonstrated in a phase I trial in 
melanoma and kidney carcinoma patients [43]. Repeated intravenous 
administration showed no SFV related toxicity or adverse reactions. 
Obviously, the use of naked RNA or layered DNA vectors presents 
no biosafety risk as no infectious viral particles are produced at any 
stage of the immunization procedure. Most encouragingly, the positive 
outcome of the first clinical trials with alphavirus replicons will further 
boost additional studies. 

In summary, the ease of generating naked RNA, layered DNA 
vectors and recombinant particles are great assets in vaccine 
development. Alphavirus vectors provide rapid transgene expression 
of a transient nature, which makes them attractive as efficient gene 
delivery vehicles. However, their full potential has not yet been 
employed and future development will provide excellent opportunities 
for the generation of new and efficient vaccines. 
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