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Abstract
Alphavirus vectors engineered for gene delivery and expression of heterologous proteins have been considered 

as valuable tools for research on neurological disorders. They possess a highly efficient susceptibility for neuronal 
cells and can provide extreme levels of heterologous gene expression. However, they generally generate short-term 
transient expression, which might limit their therapeutic use in many neurological disorders often requiring long-term 
even life-long presence of therapeutic agents. Recent development in gene silencing applying both RNA interference 
and microRNA approaches will certainly expand the application range. Moreover, alphaviruses provide interesting 
models for neurological diseases such as demyelinating and spinal motor diseases. 
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Introduction
Both viral and non-viral vectors have provided interesting novel 

approaches in research on neurological disorders with a great potential 
for future therapeutic applications too [1,2]. The advantages of using 
non-viral vectors are the simple, rapid and relatively inexpensive vector 
production although they have suffered from inefficient gene delivery 
and therefore limited efficacy. Viral vectors have provided excellent 
delivery and high expression of heterologous genes. On the other hand, 
production of large quantities of viral vectors is often more complicated 
and expensive. Furthermore, the application of viral delivery has 
raised some considerations related to safety issues. Among the non-
viral vectors, plasmid DNA complexed with polyethyleneimine (PEI) 
has been applied for targeting of neuronal stem cells [3]. Moreover, 
intravenous administration of pegylated immunoliposomes (PIL) 
carrying plasmid DNA expressing shRNA against the human epidermal 
growth factor receptor demonstrated 90% gene silencing in mice [4]. 
There are a number of viral vectors, which have been evaluated for CNS 
delivery and even such therapeutic indications as Alzheimer’s disease, 
Parkinson’s disease and amyotrophic lateral sclerosis in rodent and 
primate models [2]. In this context, adeno-associated virus (AAV), 
herpes simplex virus (HSV), lentivirus and SV-40 virus vectors have 
been applied. For instance, AAV vectors expressing NGF prevented 
age-related memory deficit and increased the cholinergic neuron size 
by 34% after intraseptal injections [5]. Furthermore, AAV-based NGF 
therapy in a phase I clinical trial in 8 patients with mild Alzheimer’s 
disease demonstrated no long-term adverse effects, suggested reduced 
rate of cognitive decline and increase in cortical 18-fluorodeoxyglucose 
based on PET scans [6]. Similarly, helper-free HSV-1 vectors expressing 
GDNF and BDNF were evaluated in a rat model for Parkinson’s disease 
[7]. In rats sacrificed 7 months after intrastriatal HSV-1 administration, 
significantly superior benefits measured as correction of behavioral 
deficits and protection of nigrostriatal dopaminergic neurons were 
observed for GDNF in comparison to BDNF. Lentivirus-based 
GDNF delivery to the striatum and substantia nigra was evaluated in 
a primate model for Parkinson’s disease, in which prevention of loss 
of dopaminergic neurons and improved motor performance were 
observed. In aged animals dopaminergic neurons were protected from 
cell death [8].

Moreover, in vivo delivery of SV40 vectors expressing HIV-
1 RevM10 was studied in rhesus monkey CNS [9]. Stereotactic 

injections into the caudate nucleus showed strong neuronal expression 
throughout the 6 month study. No expression was observed in 
astrocytes and oligodendroglial cells. SV40-based delivery caused no 
evidence of inflammation or tissue damage.

Despite these encouraging results obtained with both non-viral 
and viral vectors described above alternative gene delivery methods 
are in demand. This review will focus uniquely on alphaviruses, which 
possess various features related to CNS delivery and make them 
attractive candidates as gene delivery vehicles. Interestingly, these 
viruses have a dual function as they are responsible for involvement in 
certain neurological disorders and simultaneously can be engineered to 
gene delivery vectors for therapeutic function. 

Basics of Alphaviruses
Alphaviruses belong to the family of Togaviridae and possess a 

single-stranded RNA of positive polarity surrounded by a capsid and an 
envelope structure [10]. Several of the members of the alphaviruses are 
considered as pathogens and have caused epidemics. Recently, a global 
fever outbreak occurred for Chikungunya [11]. Similarly, Semliki 
Forest virus (SFV) and Venezuelan equine encephalitis (VEE) virus 
have been associated with febrile illness in Africa [12] and epidemics in 
horses and humans in South America [13], respectively. Despite that, 
SFV [14], Sindbis virus [15] and VEE [16] have been engineered to 
efficient gene expression vectors, albeit based on attenuated strains. In 
this context, three major approaches have been taken (Figure 1). (A) 
Replication-competent expression can be obtained by the addition of a 
second subgenomic promoter and the gene of interest to the full-length 
genome. These vectors can provide high levels of heterologous gene 
expression and simultaneously generate new viral particles. They can 
sustain longer duration of expression and in vivo re-infect additional 
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cells. However, the downside of this approach is the potential unwanted 
spread of viral infection. (B) Replication-deficient expression requires 
the use of a dual vector system consisting of an expression vector 
including the non-structural replicase genes, a strong subgenomic 
promoter and the gene of interest. The other vector provides the viral 
structural genes and is therefore named helper vector. In attempts to 
generate the highest possible safety of the system, a second generation 
helper vector was engineered, which rendered the produced viral 
particles conditionally infectious [17]. Moreover, the design of split 
helper vectors provided additional safety and guaranteed no production 
of unwanted wild type recombined virus [18]. Due to the presence of 
an RNA packaging signal uniquely located on the expression vector, 
recombinant particles contains only the replicase genes and the gene 
of interest, which prevents any further production of virus progeny. 
Replication-deficient vectors can still provide one round of cell 
transduction and generation of high levels of transient heterologous 
gene expression. (C) Layered DNA expression is based on alphavirus 
expression vectors, where the SP6 RNA polymerase promoter has 
been replaced with a CMV promoter. It allows direct expression of 
plasmid DNA without any intermediate steps of recombinant particle 
production. The advantage is obviously the absence of infectious virus, 
but the necessity of using conventional DNA transfection methods and 
lack of efficient gene delivery has to be taken into account.

The rapid generation of high-titer (109 to 1010 infectious particles/
mL) virus particles and the broad host range has made alphavirus-
based gene expression suitable for a number of applications. In this 
context, especially SFV vectors have been used for the expression of 
topologically different proteins [14,19]. Particularly, the expression 
of membrane proteins has been very successful indicated by the 
expression of G protein-coupled receptors both at high levels [20] and 

in large numbers [21]. Moreover, they have demonstrated neuron-
specific gene expression in primary neurons [22], in hippocampal 
slice cultures [23] and in vivo in rodent brain [24]. The local high-level 
expression of β-galactosidase in the striatum and amygdale of rat brain 
without any detectable adversity compared to control animals [24] 
suggested potential use of alphavirus-based delivery for research and 
even therapy. Additionally, replication-proficient SFV vectors based on 
the avirulent strain A7(74) have been used for gene delivery in primary 
neurons and in hippocampal slices [25]. Interestingly, the expression 
was highly glial cell specific at 37°C, but at 31°C the GFP expression 
was similar to the wild type phenotype demonstrating neuron-specific 
(up to 94%) expression. Further development has included using 
oncolytic SFV vectors against lung cancer [26] and osteosarcoma [27] 
in mouse models. Recently, intravenous administration of oncolytic 
SFV-A7 provided therapeutic efficacy in nude mice with human 
glioma xenografts [28]. Furthermore, in the context of tumor therapy, 
SFV vectors have been encapsulated in liposomes to provide targeting 
of tumor tissue [29]. 

Alphaviruses and Neurological Disorders
Particularly, the favorable susceptibility of SFV particles in primary 

neurons in culture [22], in hippocampal cells [23] and in vivo [24] has 
made these vectors attractive in the research and potential therapy 
of neurological disorders. Additional encouragement was received 
from the confirmation of regression of human glioma xenografts 
in nude mice after intravenous administration [28]. One drawback 
with applying alphaviruses for therapeutic use is the relatively short 
duration of gene expression, due to the nature of non-integrating 
degradable RNA. This refers particularly to replication-deficient 
vectors. Engineering of replication-competent vectors have provided 
prolonged expression profiles and allowed re-infection of additional 
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Figure 1: Various types of SFV vectors used for heterologous gene expression. (A) Replication-competent vector: Full-length genome of SFV with an additional 
SFV 26S subgenomic promoter ( ) upstream of the foreign gene of interest. This vector system generates replication-proficient particles, which after infection produces 
new progeny and recombinant protein. (B) Replication-deficient vector: In this system, expression and helper vectors are co-electroporated in parallel to generate 
replication-deficient particles due to the packaging of only RNA carrying the packaging signal (PS). Infection results in recombinant protein expression, but no virus 
progeny. (C) DNA layered vector: The presence of a CMV promoter (►) allows direct use of plasmid DNA for cell transfection to generate recombinant protein.    
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adjacent cells. Another issue is the extreme expression level provided 
from the strong subgenomic alphavirus promoter [10]. To address 
the above shortcomings, novel vectors have been developed. For 
instance, mutant SFV vectors with enhanced and prolonged duration 
of gene expression have been engineered [30,31]. In attempts to reduce 
expression levels without the loss of gene delivery efficacy, mutations 
were introduced into the SFV 26S subgenomic promoter, which 
resulted in significantly lower gene expression [32].

In the context of applying alphaviruses for therapy in the CNS, SFV 
particles expressing EGFP and interleukin-10 (IL-10) were administered 
intranasally into Balb/c mice [33]. Enhanced IL-10 expression resulted 
in amelioration of experimental autoimmune encephalitis (EAE) and 
suggested that the noninvasive intranasal route is potentially successful 
for protein delivery. In another study on EAE, SFV vectors were 
employed to express tissue inhibitor of metalloproteinase-2 (TIMP-
2) and TIMP-3 [34]. Intraperitoneal delivery generated TIMP-2 
expression throughout the brain and resulted in the inhibition of EAE 
development. Although SFV-based TIMP-3 expression resulted in 
reduced disease it was not statistically significant. These findings may 
provide the basis for novel treatment of CNS autoimmune disorders 
such as multiple sclerosis.   

Another example of an approach to treat a CNS disorder has 
been to deliver transforming growth factor beta 1 (TGF-beta1) 
intraperitoneally by an avirulent SFV vector [35]. Studies in mice with 
EAE, a model for multiple sclerosis, demonstrated the presence of 
TGF-beta1 mRNA in the CNS after intraperitoneal administration by 
in situ hybridization and RT-PCR. A significant reduction in disease 
severity was observed suggesting a promising approach for treating 
autoimmune disorders in the CNS. Recently, studies on virus-induced 
demyelination have served as a model for multiple sclerosis [36]. CNS 
inflammation and primary demyelination caused by SFV infections was 
evaluated in wild type and γδ T cell knock-out (KO) mice. Although 
inflammation and demyelination were similar for the two groups the 
γδ T cell KO animals did not exhibit extensive remyelination even after 
35 days post-infection. Immunization of γδ T cell KO mice with an 
SFV E2 peptide led to elevated antibody production and accelerated 
remyelination and thereby enhanced recovery and repair of the CNS.

An interesting delivery approach to rat brain, albeit not for treating 
CNS disorders has been SFV-mediated gene therapy of RG2 rat glioma 
[37]. Rats with gliomas were treated with SFV particles expressing IL-
12 via an implanted cannula. Treatment with 5 x 10e7 particles showed 
70% reduction in tumor volume, whereas the higher dose of 5 x 10e8 
particles generated an 87% reduction. Alphaviruses have also proven 
their excellent efficacy in CNS delivery after intravenous [28], intranasal 
[33] and intraperitoneal [34] administration, but their application in 
treating neurological disorders might to some extent be limited by 
the transient nature of expression. Therefore, other viruses such as 
adeno-associated viruses (AAV) and lentiviruses providing long-term 
expression profiles might be more suitable for these applications [2]. 
However, new development in gene silencing with the discovery of 
RNA interference (RNAi) and micro-RNA (miRNA) has provided 
new possibilities for therapeutic intervention also for neurological 
disorders [38]. For instance miR-9 and miR-128 are up-regulated in 
patients with Alzheimer’s disease [39,40]. Similarly, other miRNAs 
have been associated with Parkinson’s disease [41], Huntington’s 
disease [42], spinocerebellar ataxia [43] and frontotemporal dementia 

[44]. Although there is very little experience of applying alphavirus 
vectors for RNAi and miRNa delivery the idea is attractive for treating 
neurological disorders. Mutant and oncolytic vectors with prolonged 
duration of expression profiles might improve efficacy. Liposome 
encapsulated SFV particles have demonstrated targeting properties and 
also protection against recognition by host immune defense systems 
and might facilitate re-administration of therapeutic agents. 

Alphaviruses have to some extent been applied for stem cell 
research. In this context, lentiviral vectors were targeted to stem cells 
by incorporation of the membrane-bound human stem cell factor 
(hSCF) and the Sindbis virus-derived fusogenic molecule (FM) [45]. 
This approach resulted in efficient targeting of cells expressing CD117, 
a type III cell surface transmembrane tyrosine kinase receptor, which 
naturally binds hSCF. In another study, neurotrophic Sindbis virus was 
verified in a role for survival motor neuron (SMN) protein [46]. It was 
demonstrated that SMN protected primary neurons and differentiated 
neuron-like stem cells from virus-induced apoptosis. In contrast, in 
cultured cell lines no protection was observed.

Interestingly, alphaviruses have been shown to cause encephalitis, 
deymelinating and spinal motor diseases, which has resulted in 
extensive research to treat these maladies. For instance the spread of 
neuroadapted Sindbis virus (NSV) to motor neurons and the spinal 
cord leads to severe hind limb weakness in mice [47]. It provides a 
model for human encephalomyelitis in humans. Because naoloxone, 
a opioid receptor antagonist, has previously been shown to block 
microglial-mediated neurodegeneration, the drug effect was evaluated 
after NSV infection. Naloxone treatment prevented paralysis and 
increased the survival of motor neurons. Due to the targeting of 
microglial responses similar therapeutic benefit may occur in humans. 
In another study, mice were subjected to pre-, co- or post-treatment 
with cationic liposome-DNA complexes (CLDCs) challenged with 
lethal Western equine encephalitis (WEE) virus [48]. Pre-treatment 
provided a significant protection and therapeutic effect was obtained 
up to 12 h after WEE challenge. CLDC treatment significantly increased 
IFN-gamma, TNF-alpha and IL-12 levels in the serum. This suggested 
that strong non-specific activation of innate immunity is capable of 
eliciting protective immunity against lethal alphavirus strains and 
providing prophylactic protection.  

Aerosol exposure of macaques to VEE was assayed for changes in 
global gene expression [49]. Major histocompatibility complex (MHC) 
class I transcripts were induced in the brain and lungs, whereas the 
expression of S100b, a factor associated with brain injury, was down-
regulated. Not surprisingly, cytokine-mediated signals and caspases 
were also affected. This approach provides useful information for 
host cell responses after aerosol alphaviruses exposure, which will be 
valuable in understanding and treating CNS disorders.

Conclusions
Alphavirus vectors have demonstrated excellent capacity of 

generating extreme levels of heterologous gene expression in a 
broad range of host cells both in vitro and in vivo. Furthermore, 
efficient delivery after intravenous, intraperitoneal and intranasal 
administration can provide highly efficient delivery to the CNS. 
These features make alphavirus attractive candidates for therapeutic 
interventions of neurological disorders. SFV vectors have been 
evaluated in studies on demyelinating disease, a model for multiple 
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sclerosis. Furthermore, the promising gene silencing achieved by 
delivery of RNAi and miRNA sequences could present an interesting 
approach for the treatment of CNS disorders in the future. Research 
on the involvement of alphaviruses in certain CNS orders will further 
improve the understanding of possibilities in both prophylactic and 
therapeutic intervention. 
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