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Abstract 
Nature killer (NK)/T cell lymphoma, nasal type, and aggressive NK-cell leukemia are rare tumors with higher 

prevalence in Asia, Central and South America, which are etiologically related to the Epstein Barr virus (EBV). 
Proteins encoded by EBV genes and non-coding viral RNAs expressed on the infected cells are involved in 
immune deregulation and cell transformation and lymphomagenesis occur as a consequence of multiple 
oncogenic events. Complex chromosomal abnormalities are frequent and loss of chromosomes 6q, 11q, 13q, 
and 17p are recurrent aberrations. In accordance, many genes are differentially expressed, often due to gene 
deletion, mutation or methylation. These include, among others, tumor suppressor genes and oncogenes, as 
wells as genes involved in cell signal transducer pathways, cell survival and apoptosis, cell cycle, cell motility 
and cell adhesion, as well as in cell communication through cytokine networks. Consequently many biochemical 
pathways are affected in NK-cell neoplasms, which could contribute to cancer development and progression, 
as well as to disease manifestations. This review focuses on the molecular and biochemical mechanisms by 
which EBV induces NK-cell lymphomagenesis, disrupting genes and molecules involved in crucial biological 
processes. Improving the knowledge in this subject will help to better understand the disease biology and clinical 
manifestations and to develop new treatment approaches for the NK-cell malignancies.
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features of the NKTCL and ANKCL [18]. Herein, we review the 
molecular and biochemical mechanism involved in oncogenesis and 
disease manifestations of these aggressive NK-cell neoplasms.

Mechanisms involved in NK-cell oncogenesis

Although the pathogenesis of the NK-cell tumors remains 
poorly understood, some insights have been gained in the recent 
years concerning the mechanisms involved in oncogenesis and 
disease progression [43-45]. In accordance, disruptions of molecular 
mechanisms and cell signaling pathways involved in NK-cell 
maturation may lead to the development of NK cell malignancies [43]. 
Multiple genes involved in crucial biological processes are differentially 
expressed in NK-cell neoplasms, often due to deletions, mutations 
or abnormal methylation patterns (Table 1). However, in NK-cell 
tumors, where necrosis usually associates with tissue infiltration by 
mesenchymal cells and reactive inflammatory cells, it is often difficult 
to directly attribute the molecular alterations to the tumor cells without 
confirming it with biochemical or immunohistochemical studies.

Chromosomal and genomic abnormalities

Despite the difficulties in obtaining representative NKTCL 
biopsy samples, several cytogenetic, genetic and genomic studies, 
using Comparative Genomic Hybridization (CGH) and loss of 
heterozygosity techniques, were performed [45-53]. Although genetic 
abnormalities specific for NKTCL and ANKL have not yet been 
identified, complex chromosomal abnormalities occur in a large 
fraction of cases, abnormalities of the chromosome 6 being the most 
frequent [46]. Cytogenetic abnormalities are seen in most patients 
and include pseudodiploidy in about half, hyperdiploidy in about 
one third, and hypodiploidy in about a tenth of cases [46]. Frequent 
cytogenetic aberrations are loss of chromosome 6q, 11q, 13q, and 17p 
and a common deletion of 6q in the target area 6q21-25 was identified 
[46,52]. An array-based CGC analysis revealed clear genetic differences 
between ANKCL and extranodal NKTCL, suggesting that these are two 
distinct diseases [53]. In accordance, recurrent aberrancies in NKTCL 
are gain of 2q, and losses of 6q16.1-q27, 11q22.3-q23.3, 5p14.1-p14.3, 
5q34-q35.3, 1p36.23-p36.33, 2p16.1-p16.3, 4q12, and 4q31.3-q32.1, 
whereas those recurrently found in ANKCL are gain of 1q and losses of 
7p15.1-p22.3 and 17p13.1 [53]. Most of the implicated genes have not 
been identified so far.

Tumor suppressor genes and oncogenes

Two 6q21 regions are frequently deleted in NKTCL [54]. One of 
these regions includes POPDC3 (Popeye Domain Containing 3), PREP 
(Prolyl Endopeptidase), PRDM1 (PR Domain Zinc Finger Protein 1, 
also known as BLIMP1, B-lymphocyte-induced Maturation Protein), 
AIM1 (Absent in Melanoma-1) and ATG5 (Autophagy related 5), 
whereas the other region includes LACE1 (Lactation Elevated 1) and 
FOXO3 (Forkhead Transcription Factors of the O Class Type 3) genes. 
Most of these genes are down-regulated in NK-cell neoplasms and 
are therefore considered as possible tumor-suppressor genes, whereas 
other act as oncogenes.

Tumor suppressor genes: FOXO3 (6q21) and PRDM1 (6q21) were 
identified as tumor suppressor genes having a potentially critical role 
in the biology of NKTCL and ANKCL as re-expression of PRDM1 and 
FOXO3 genes in NK-cell lines suppress NK-cell proliferation [55,56].

FOXO are class O forkhead family of transcription factors (FOX), 
which share the ability to be inhibited and translocated out of the 
nucleus on phosphorylation by proteins such as AKT/PKB (Protein 

PDGF: Platelet-Derived Growth Factor; PDGFR: Platelet-Derived 
Growth Factor Receptor; PDGFRA: Platelet-Derived Growth Factor 
Receptor Alpha; PI3K: Phosphatidylinositol 3 Kinase; PI9: Protease 
Inhibitor Type 9; PKB: Protein Kinase B; POPDC3: Popeye Domain 
Containing 3; PRDM1: PR Domain Zinc Finger Protein 1; PREP: Prolyl 
Endopeptidase; PTEN: Phosphatase and Tensin Homolog; PUMA: p53 
Upregulated Modulator of Apoptosis; RNA: Ribonucleic acid; SDF-1: 
Stromal Cell-Derived Factor-1 (CXCL12); STAT: Signal Transducers 
and Activators of Transcription; STK15: also known as BTAK or Aurora 
Kinase A (AURKA); TGF: Transforming Growth Factor; Th: T Helper; 
Th1: T Helper Type 1; Th2: T Helper Type 2; TIA-1: T-cell-Restricted 
Intracellular Antigen; TNF: Tumor Necrosis Factor; TNFAIP3: Tumor 
Necrosis Factor Alpha-Induced Protein 3 also known as A20; TNFR: 
Tumor Necrosis Factor Receptor; TP53: Tumor Protein p53; TP73: 
Tumor Protein p73; TRAF: TNF Receptor Associated Factor; uPAR: 
Urokinase-Type Plasminogen Activator Receptor; VCAM-1: Vascular 
Cell Adhesion Molecule Type 1 (CD106); VEGF: Vascular Endothelial 
Growth Factor; vIL-10: viral homologue of Interleukin 10; WHO: 
World Health Organization.

Introduction
Natural killer (NK) cell neoplasms are rare diseases that are much 

more prevalent in Central and South America and Eastern countries for 
reasons that are not completely clear. They comprise a limited spectrum 
of Epstein Barr virus (EBV)-related neoplasms [1-21], two of which were 
recognized by the World Health Organization (WHO) classification as 
distinct entities [22]: extranodal NK/T Cell Lymphomas, Nasal Type 
(NKTCL) [23] and Aggressive NK-Cell Leukemia (ANKCL) [24]. 
The histological hallmark of these aggressive tumors is a polymorphic 
neoplastic infiltrate with extensive angiotropism, vascular destruction 
and tissue necrosis.

There are two variants of NKTCL, the nasal and extranasal forms 
[1,10,14,25]. The nasal form primarily affects the upper aerodigestive 
trait, although dissemination may occur in advanced disease stages; 
the extranasal variant is frequently disseminated at the time of the 
diagnosis, most patients having multiple organs and tissues involved. 
Bone Marrow (BM) involvement at the diagnosis is uncommon [4,26], 
whereas the Hemophagocytic Syndrome (HS) is frequent, especially in 
patients with advanced disease [27].

Aggressive NK-cell leukemia is very rare and has a fulminant 
clinical course [2,28-32]. Patients often present with systemic 
symptoms, BM involvement, pancytopenia, hepatosplenomegaly and 
abnormal liver function, and frequently develop HS, multiorgan failure 
and disseminated intravascular coagulation [33-39].

The oncogenic properties of the EBV have been recognized for 
almost fifty years, when the virus was discovered inside cultured 
Burkitt’s lymphoma cells [40]. In Europe and North America, the 
primary neoplasms associated with EBV are B-cell lymphomas and 
nasopharyngeal carcinomas, probably reflecting the primary targets of 
EBV infection, which are B cells and tonsillar epithelial cells [41,42]. 
NK-cell lymphomagenesis results from multiple oncogenic events 
occurring in EBV-infected NK-cells, which involve proteins encoded 
by EBV genes and non-coding viral RNAs expressed on the infected 
cells. The oncogenic events include deletion, mutation or methylation 
of genes involved in cell signal transducer pathways, survival and 
apoptosis, cycle progression and division, motility and adhesion, as well 
as in cytokine networks.

We have recently reviewed the epidemiological and diagnostic 
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kinase B) in the PI3K (Phosphatidylinositol 3 kinase) signaling 
pathway thereby controlling a wide spectrum of biological processes 
[57,58]. FOXO3 triggers for apoptosis through up-regulation of genes 
codifying for pro-apoptotic proteins, such as BIM (Bcl2-like protein 
11) (2q13) [59] and PUMA (p53 up-regulated modulator of apoptosis, 
also known as BBC3, BCL2-binding component 3) (19q13.3-q13.4) 
or down-regulation of genes that codify for anti-apoptotic proteins, 
such as FLIP (FLICE-like inhibitory protein) [60,61]. In addition, 
FOXO3 signaling links ATM (Ataxia Telangiectasia Mutated) to the 
p53 pathway following DNA damage [62]. FOXO3 is also involved in 
protection from oxidative stress by up-regulating antioxidants such 
as catalase and manganese superoxide dismutase [63]. Deregulation 
of FOXO3 activity has been implicated in tumorigenesis in multiple 
cancers, for instance by an increase in AKT/PKB activity resulting from 
loss of PTEN (Phosphatase and Tensin homolog).

PRDM1 is a repressive transcription factor that is essential for 
the terminal B-cell differentiation and also plays a pivotal role in the 
negative regulation of NK-cell activation, by suppressing the release 
of Interferon (IFN)-gamma, and Tumor Necrosis Factor (TNF)-alpha, 
and beta through direct binding to conserved regulatory regions [64]. 
This gene is frequently inactivated in tumor NK-cells by a combination 
of monoallelic deletion, promoter hypermethylation and mutations 
resulting in truncated PRDM1 [65,66].

ATG5 (6q21) a gene essential for autophagy, and AIM1 (6q21), a 
gene implicated in melanoma, may also participate in oncogenesis, as 
ATG5 and AIM1 transcripts are also markedly reduced in both NK-cell 
lines and NKTCL tumor cells [45,66].

Down-regulated expression of the TNFAIP3 (tumor necrosis factor 
alpha-induced protein 3 gene, also know as A20) and HACE1 (HECT 

domain and ankyrin repeat containing E3 ubiquitin protein ligase 
1) suppressor genes, located on 6q21-23, may also play a role in the 
pathogenesis of NK-cell neoplasms, as both genes are frequently silenced 
in NKTCL through a combination of deletion and hypermethylation 
[45,67-69].

TNFAIP3 (6q23) was identified as a gene whose expression is 
induced by TNF-alpha, which codifies for a zinc finger protein and 
ubiquitin-editing enzyme, with both ubiquitin ligase and deubiquitinase 
activities; this protein has been shown to inhibit NFκB (nuclear factor 
κB) activation and TNF-mediated apoptosis and is involved in the 
cytokine-mediated inflammatory and immune responses [70,71]. The 
HACE1 gene (6q21) codifies for an E3 ubiquitin-protein ligase involved 
in Golgi membrane fusion and regulation of small GTPases, such as 
Rac1, thereby controlling cell migration [72,73].

Abnormalities of the TP53 and TP73 tumor-suppressor genes have 
also been described in a significant number of NKTCL cases [45,74-84].

Mutations in the TP53 gene (17p13.1), a well known tumor 
suppressor gene that codifies for p53, a protein that causes cells with 
damaged DNA to arrest at the G1 phase of cell cycle are frequently 
found in NK-lymphoma cells [74-81]. For instance, in one Asian series 
of 100 cases of nasal NKTCL, nearly half had TP53 mutations [81]. 
TP53 gene mutations have been associated with more advanced disease, 
suggesting a secondary event rather than a triggering mechanism [82].

Methylation of TP73 gene (1p36.3), which codifies for p73, a p53-
related protein involved in cell cycle arrest and apoptosis has been 
found in the majority of NKTCL and has been proposed as a biomarker 
to detect NKTCL involvement and metastasis [83,84].

Oncogenes: Abnormalities of the C-KIT (cellular homolog of the 

Table 1: Major molecular and biochemical mechanisms potentially involved in aggressive mature NK-cell neoplasms.

Function of the involved genes Functional status in NK-neoplasms Gene Genetic aberration References

Tumor suppressor genes Down-regulated

PRDM1 6q21-q22.1 (del6q21) [54-56,64-66] 
FOXO3 6q21 [55-63]
ATG5 6q21 [54,66]
AIM1 6q21 [45,54,66]
HACE1 6q21-23 [45,48,55]
TNFAIP3 (A20) 6q21-23 [55]
TP53 17p13.1 [82]
TP73 1p36.3 [84]

Cell signaling transducing pathways Up-regulated

STAT3 17q21 [96,97]
JAK2 9p24 [45,48]
IL-10 1q31-q32 [111,112]
AKT1/2/3 14q32.3/19q13.1/1q44 [45,48,54]
NOTCH1 9q34.3 [45,101]
Β-CATENIN (WNT) 3p22–p21.3 [48]
PDGFRA 4q11–q13 [45,48] 
PDGFA/B 7p22/22q12.3–q13.1 [48]

Cell survival en apoptosis Down-regulated

CCND3 6p21.1 [48]
SERPINB9 (PI9) 6p25 [132,133]
TNFAIP3 6q23 [48]
FAS 10q24.1 [102,103]

Up-regulated
SURVIVIN (BIRC5) 17q25.3 [74]
FASL 1q23 [102,103]

Cell division Up-regulated AURKA 20q13 [101]

Angiogenesis Up-regulated

MET or HGFR 7q31 [45,48] 
VEGFR2 4q12 [45,48] 
VEGFA 6q12 [45,48]
HIF1α 14q21–q24 [45,54]
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feline sarcoma viral oncogene v-kit), MYC (v-myc myelocytomatosis 
viral oncogene homolog), MAFB (V-maf musculoaponeurotic 
fibrosarcoma oncogene homolog), K-RAS (v-Ki-ras2 Kirsten rat 
sarcoma viral oncogene homolog) and β-catenin oncogenes have been 
described in a significant number of NKTCL cases [45,74,81,85-92].

The C-KIT proto-oncogene (4q11-q12) encodes a receptor tyrosine 
kinase (CD117) which is involved in normal hematopoiesis via 
interaction with the c-KIT ligand. Previous studies in nasal NKTCL 
performed in Asia revealed a variable frequency of cases with C-KIT 
gene mutations, depending on the country [81,85].

The MYC genes (8q24.21) encode for nuclear phosphoproteins 
(c-MYC, MYCN, and MYCL) that act as transcription factors to regulate 
expression of genes involved in cell cycle progression that codify for 
cyclins, such as CCNA2 (cyclin A2), and CDK (cyclin dependent 
kinases), such as CDKN1A and CDKN2B. Besides regulating genes 
involved in cell proliferation, they also control the complex networks 
of micro-RNAs and apoptosis mediators [86,87]. Although MYC 
expression appears to be up-regulated in NKTCL lymphoma cells, 
mutations, amplifications, and translocations of this oncogene have not 
yet been found [74].

Other studies have suggested that the inactivation of the cell 
cycle regulatory genes by DNA methylation could also contribute to 
tumorigenesis [88].

The MAFB gene (20q11.2-q13.1) codifies for MAFB, a 
transcription factor that plays an important role in hematopoiesis by 
repressing erythroid-specific genes in myeloid cells. Up-regulation of 
this oncogene was observed in NKTCL but also in T-cell and B-cell 
lymphomas [45,89].

The RAS and beta-catenin genes are implicated in various non-
hematological cancers, but also in some hematological malignancies.

RAS is a family of related small proteins with GTPase activity, 
involved in signal transduction. Mutations in specific codons of one 
of the three RAS genes, H-RAS, K-RAS, and N-RAS, giving rise to 
constitutively active RAS proteins, are found in a variety of non-
hematological tumors, but also in myeloid leukemia [90].

β- Catenin, an integral structural component of cadherin-based 
adherent junctions, exerts a crucial role in a multitude of biological 
processes. More specifically, β-catenin interacts with different 
transcription factors, being the key nuclear effector of canonical WNT 
signaling in the nucleus. Mutations in the β-catenin gene (3p21-3p22) 
resulting in imbalance in the structural and signaling properties 
of β-catenin have been implicated in non-hematological cancers, 
metastasis and angiogenesis [91]. Moreover, constitutive activation 
of the WNT/β-catenin pathway was observed in some hematological 
malignancies, such as chronic lymphocytic leukemia and mantle cell 
lymphoma [92].

Mutations of K-RAS and beta-catenin genes were examined in 
nasal NKTCL from Korea and Japan, using PCR-SSCP followed by 
direct sequencing. K-RAS and beta-catenin mutations were found in 
higher incidence in Japan as compared with Korea [81].

DNA repair

Cellular responses to DNA damage are mediated by a number of 
protein kinases, including ATM (Ataxia Telangiectasia Mutated), ATR 
(ATM And Rad3-Related) and CHK (Checkpoint Protein Kinases), 
which play an important role in DNA repair and chromosomal stability; 

these two kinase signaling cascades, the ATM-CHK2 and ATR-CHK1 
pathways, are activated by DNA double-strand breaks and single-
stranded DNA, respectively [93]. Alterations in the ATR gene resulting 
in an abnormal response to DNA single-strand break repair were also 
found in NKTCL, suggesting a role in lymphomagenesis [94].

Cell signaling transducing pathways

The STAT factors (Signal Transducers and Activators of 
Transcription), are transcription factors activated in response to 
cytokines or growth factors [95]. They act by a mechanism that 
requires tyrosine phosphorylation of the STAT proteins, as a result 
of their association with surface receptors having intrinsic tyrosine 
kinase activity, or through recruitment of members of the Jak (Janus 
kinase) family to activated surface receptors (Jak/STAT pathways) [95]. 
Constitutive activation of STAT factors, such as STAT3, has been shown 
to play a role in oncogenesis in a large variety of tumors, including 
NKTCL, this protein being localized in the nucleus of the tumor cells in 
the majority of the cases [96,97].

Other possible involved signaling pathways include those of 
the NOTCH (Notch homolog, translocation-associated), the NFκB 
(nuclear factor κB), and the WNT/ β-catenin [45,98-101].

The NOTCH signal cascade comprises the NOTCH transmembrane 
protein and their ligands, as well as intracellular proteins transmitting 
the NOTCH signal to the nucleus [98]. The NOTCH signaling pathway 
leads to activation of the PI3K (phosphatidylinositol 3 kinase)/PKB 
and down-modulation of PTEN expression. PI3K/AKT was found to be 
activated in NKTCL, and nuclear expression of phosphorylated-AKT was 
observed in the nucleus of the tumor cells in most NKTCL samples [45].

The NFκB, a master regulator that controls the expression of a 
number of genes, is also known to be activated in EBV-infected cells, 
through LMP-1 (EBV-encoded latent membrane protein type 1) and/
or TRAF (TNF receptor associated factor) signaling [100]. Signaling 
by the transcription factor NFκB involves its release from its inhibitor 
IκB, followed by its translocation into the nucleus. RelA, the protein 
constituting the most abundant form of NFκB, is detected in the nucleus 
of the neoplastic NK-cells, supporting the activation of this pathway in 
NKTCL [45,74]. In addition it has been disclosed that TNFAIP3 (TNF-
alpha-induced protein gene), an inhibitor of NFκB, is down-regulated 
in NKTCL [45]. Surprisingly, the NFκB pathway genes were not 
included in the NKTCL gene signature in another recent study [101].

Concerning the activation of the WNT/β-catenin signaling 
pathway, mediated by WNT proteins, a group of secreted lipid-modified 
signaling proteins, nuclear expression of β-catenin was not observed in 
the tumor NK-cells, making its significance ambiguous [45].

Cell survival and apoptosis

The disequilibrium between pro-apoptotic and anti-apoptotic 
signals probably contributes to the survival of the neoplastic NK-
cells [74,102,103]. In fact, although Fas (CD95) and Fas ligand (FasL/
CD95L) are frequently expressed in NKTCL cells, mutations of the FAS 
gene are observed in about half of cases, most likely inducing resistance 
to apoptosis [102,103]. These mutations are often frameshift mutations 
arising in the death domain, leading to Fas proteins that are unable 
to transduce the apoptotic signal [102,103]. More recently, survivin 
(BIRC5, baculovirus inhibitor of apoptosis repeat-containing 5), an 
inhibitor of apoptosis frequently involved in tumor oncogenesis, was 
found to be overexpressed in NKTCL [74].
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Cell division, chromosome segregation and cytokinesis

Aurora kinase A (AURKA, also called STK15 and BTAK), is a 
member of the Aurora/Ipl1p family of mitotically regulated serine/
threonine kinases, which are centrosome-associated and play 
an important role as regulators of chromosome segregation and 
cytokinesis, a process that ensure that each daughter cell receives the 
full genetic material [104,105]. Previous studies showed that AURKA 
is overexpressed in NK-cell neoplasms, being involved in the induction 
of centrosome amplification-distribution abnormalities [101]. In 
addition, overexpression of AURKA leads to increased degradation of 
p53, causing down-regulation of checkpoint pathways [106]. All these 
abnormalities can lead to centrosome amplification, chromosome 
instability, aneuploidy and propagation of genetic abnormalities, 
thereby inducing oncogenic transformation.

Angiogenesis

Angiogenesis is regulated by the coordinated action of various 
proteins with pro- and anti-angiogenic functions [107]. Pro-angiogenic 
factors include VEGF (Vascular Endothelial Growth Factor), FGF 
(Fibroblast Growth Factor), PDGF (Platelet-Derived Growth Factor), 
IGF (Insulin-Like Growth Factor), TGF (Transforming Growth Factor), 
CYR61 (Cysteine-Rich, Angiogenic Inducer 61), angiopoietins, and 
chemokines; anti-angiogenic factors include thrombospondin-1, 
angiostatin, and endostatin. Matrix metalloproteinases display a dual 
role in vascular development. NOTCH signaling affects remodeling of 
the primary vascular network into functionally and morphologically 
distinct arteries, veins, and capillaries.

Over-expression of the mRNAs transcribing for CYR61, a secreted 
protein that promotes the adhesion to endothelial cells, and VEGF, a 
signaling protein involved in both vasculogenesis and angiogenesis, is 
found in the vast majority of NKTCL cases by real-time quantitative 
PCR; expression of the CYR61 and VEGF proteins is detected in 
lymphoma cells by immunohistochemistry [108]. The expression of 
VEGF mRNA in NKTCL seems to be far more frequent than that of 
FGF mRNA, and CD44 expression is also detected in a considerable 
proportion of cases using immunohistochemistry studies, although 
these markers can not predict the angioinvasion potentiality of the NK-
cells [109]. Previous studies that combined gene expression profiling 
and array-based CGH analyses showed that NKTCL overexpress 
several genes related to vascular biology, including the PDGFR 
(Platelet-Derived Growth Factor Receptor) alpha gene (PDGFRA) [45]. 
These results were also confirmed by immunohistochemistry studies, 
suggesting that PDGFR is involved in the disruption of the angiogenic 
pathways observed in NK-cell neoplasms [110].

Cytokine networks

Cytokines, such as IL-9, IL-10, and IP-10 (IFN-gamma-inducible 
protein-10, CXCL10), have also been implicated in the pathogenesis 
of the NK-cell neoplasms [8]. Cytokine production may occur due to 
the effect of EBV-oncogenic proteins in the lymphoma cells and often 
act in an autocrine manner, taking an important part in the neoplastic 
cell proliferation and invasion. BCRF1, an open reading frame of EBV, 
codifies for a viral protein that exhibits extensive functional homologies 
with human IL-10, a pleiotropic cytokine with immunosuppressive 
properties. Previous studies showed that human IL-10 is frequently 
expressed on NKTCL tumor cells, whereas the expression of viral IL-
10 (vIL-10) seems to be variable [111,112]. In addition, the neoplastic 
NK-cells often express IL-9 and IL-9 receptors suggesting an autocrine 
loop [113]. Other genes codifying for cytokines and cytokine receptors 

that map to regions with recurrent aberrations include the IL-6 receptor 
(IL6R) (1q21.3) and the TNF receptor (TNFRSF21) (6p12.3) genes [45].

Mechanisms underlying disease manifestations

NK-cell neoplasms are recognized by their ability to invade the blood 
vessels and to destroy the tissues, but also to induce an uncontrolled 
macrophage activation that culminates with the development of the 
HS. Such disease manifestations are probably related to the chemotaxis 
and adhesion properties of the neoplastic NK-cells, to the release of 
cytotoxic proteins, as well as to their ability to produce proteases and 
Th1 cytokines [114-146] (Figure 1).

Cell motility and tissue invasion

NKTCL tumor cells were shown to over-express invasion-
associated genes and proteins, including those related to proteolysis, 
cell motility and chemotaxis. These include genes codifying for matrix 
metallopeptidases and their inhibitors, cathepsins and chemokines, 
among others [114-129].

Proteolytic enzymes: Tumor invasion and metastasis are facilitated 
by the up-regulation of various types of proteases, which induce the 
escape of cancer cells from the primary site, by breaking down the 
connective tissue and basement membrane, such as metalloproteinases 
and cathepsins both of which appear to be affected in NKTCL [114-124].

Matrix metalloproteinases (MMP, 1 to 28) are zinc-dependent 
endopeptidases capable of degrading extracellular matrix proteins, such 
as collagen and gelatin, being also able to process a number of bioactive 
molecules and thereby regulating cell growth, migration, invasion and 
angiogenesis [114,115]. Among them, MMP-2 (Gelatinase A) and -9 
(Gelatinase B) have been associated with cancer [116]. The activity 
of MMP is inhibited by tissue inhibitors of metalloproteases (TIM, 
1 to 4) [117]. The unbalance of the expression of MMP and TIMP 
may contribute to the extensive necrosis observed in NKTCL, as well 
as to the tendency of these tumors to disseminate locally [120-123]. 
For instance, on a study in which the expression of MMP-1, -2, -3, -9, 
-11, -13 and TIMP-1 and -2 was evaluated by immunohistochemistry 
revealed that NKTCL cells and fibroblasts were positive for MMP-1 
and MMP-11 in most of the cases, whereas MMP-2, -3 and -9 were 
expressed in neoplastic cell in between 30 to 65% of the cases; TIMP-1 
was presented mainly in the epithelium and TIMP-2 was poor expressed 
of the all cases [120]. Another study revealed that most NKTCL were 
MMP-9+, expression of MMP-2 being also noted in some cases [121]. 
In addition, nasal NKTCL usually have a strong expression of MMP-9 
as compared to nasal non-NKTCL [122]. NKTCL involving the upper 
aerodigestive tract over-express MMP-2 and MMP-9 genes as compared 
to non upper aerodigestive tract cases moreover, the MMP-9 expression 
is accompanied by an increased expression of uPAR (urokinase-type 
Plasminogen Activator Receptor) and MMP-2 and MMP-9 expression 
correlates with a poor prognosis [121,123].

In addition to metalloproteinases, well known to be secreted outside 
cells, there is increasing evidence that cathepsins (CTS), a group of 
lysosomal proteases that have a key role in cellular protein turnover, 
may also play an important role in the development and progression 
of malignant tumors [118,119]. NKTCL cells overexpress CTSB and 
CTSL, the genes that codify for cathepsins B and L, respectively and 
reduced expression of cathepsin D in NKTCL seems to be related to 
autophagic cell death [45,123,124].

Chemokines and chemokine receptors: Chemokines are a group of 
small (approximately 8 to 14 KD) structurally related molecules, which 
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are divided into 2 major subfamilies, CXC and CC [125]. They regulate 
leukocyte trafficking by interacting with a subset of 7-transmembrane, 
G protein-coupled receptors expressed on the cell surface and play 
fundamental roles in the development, homeostasis, and function of 
the immune system; they also have effects on endothelial cells, being 
involved in angiogenesis or angiostasis. Mature NK cells express a 
definite repertoire of CXC and CC chemokine receptors, including 
CXCR1 (CD181), CXCR3 (CD183) and CCR5 (CD195).

NK/T-cell lymphoma cells usually express CXCR3, whose main 
ligand is CXCL11 (IP9, IFN-gamma inducible protein type 9) [126,127]. 
Previous studies revealed that ANKL cells are positive for CXCR1 and 
CCR5, whose major ligands are CXCL8 (interleukin-8, IL-8) and CCL3 
(MIP-1alpha, macrophage inflammatory protein type 1 alpha), CCL4 
(MIP-1beta) and CCL5 (RANTES, regulated on activation, normal T 
cell expressed and secreted), respectively [128]. In addition, the serum 
level of IL-8, MIP-1alpha and MIP-1beta, are significantly elevated 
in ANKL patients and ANKL cells are positive for IL-8, MIP-1alpha, 
MIP-1beta and RANTES [129]. Moreover, NKTCL tissues over-express 
the genes codifying for several cytokines, including CCL2 (monocyte 
chemotactic protein-1, MCP-1), CCL8 (MCP-2), CCL18 (pulmonary 
and activation-regulated, PARC), CCL19 (EBI1 ligand chemokine, 
ELC), CXCL10 (IP10), CXCL12 (stromal cell-derived factor-1, SDF-
1), and CXCL9 (monokine induced by gamma interferon, MIG) [45]. 
Altogether, these data would suggest that the chemokine system plays 
an important role in determining tissue infiltration by NKTCL and 
inflammatory cells.

Angioinvasion, angiodestruction and tissue damage

Angioinvasion by the neoplastic cells, angiodestruction and tissue 
necrosis are characteristic features of NKTCL. Although the exact 
mechanism is unknown, previous studies revealed that the presence of 
cytotoxic granule proteins, and the expression of apoptosis related and 
cell adhesion molecules on the neoplastic NK-cells are relevant factors 
[129-134].

Cytotoxic molecules and pro-apoptotic proteins: NKTCL 
overexpress the genes codifying for cytotoxic granule molecules, 
including granzymes, perforin and cathepsins [45]. In addition, 
previous studies have shown that NKTCL tumor cells usually express 
cytotoxic molecules (TIA-1, granzymes and perforin), and that Fas 
Ligand (FasL) is expressed in the majority of the lymphoma cells, while 
Fas (CD95) is found both in lymphoma cells and non-neoplastic cells 
[130]. In addition, ANKCL patients have high serum levels of soluble 
FasL and ANKCL cells express the FasL protein [129]. Lymphoma 
cells from cases with angiodestruction also express frequently FasL, 
Fas, CPP32 (apoptosis-induced cysteine protease 32), the apoptosis-
promoting protein BAX, and the Ki67/MIB1 (mindbomb E3 ubiquitin 
protein ligase 1) nuclear proliferating marker, whereas in cases without 
angiodestruction, the neoplastic cells are frequently positive for FasL 
and BAX, and negative for Fas, CPP32, and Ki67/MIB1 [131].

Granzyme B-specific serine protease inhibitors, such as SERPINB9 
(also known as protease inhibitor type 9, PI9) protect effector cells from 
their own cytotoxic activity and may participate in tumor escape and 
loss of expression of PI9 on NKTCL tumor cells was described as a poor 
prognostic factor [132,133].

Figure 1: Main molecules involved in disease manifestations typically observed in aggressive NK cell neoplasms.
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Defensins are small cysteine-rich cationic peptides made by 
neutrophils with cytotoxic and microbicidal properties, which act by 
binding to the microbial cell membrane and forming pore-like defects 
[135]. Defensin beta 1 (DEFB1) is implicated in the resistance of 
epithelial surfaces to microbial colonization and there is evidence that 
the DEFB1 gene may function as a tumor suppressor gene, its expression 
being associated with a large number of cancers [136]. The fact that 
DEFB1 was found to be overexpressed in NKTCL, would suggest that 
this cytotoxic protein may also be involved in tissue damage [123].

Cell adhesion molecules: In that concerning Cell Adhesion 
Molecules (CAM), the neoplastic NK-cells frequently express the CD2, 
CD11a (lymphocyte function associated molecule type 1, LFA-1), and 
CD49d (integrin alpha 4) receptors and their ligands, CD58 (lymphocyte 
function associated molecule type 3, LFA-3, CD54 (intercellular 
adhesion molecule type 1, ICAM-1) and CD106 (vascular cell adhesion 
molecule type 1, VCAM-1). The frequency of CD2, CD54, CD58 
and CD106+ cases is higher among NKTCL with angiodestruction, 
as compared with those without [131]. Finally, the integrin subunits 
alpha2 (CD49b) and alpha M (CD11b) are expressed at a significantly 
higher level on lymphoma cells in NKTCL with angioinvasion than in 
those without [134]. The VCAM-1 gene is overexpressed in NKTCL 
tissues, in comparison to that observed in normal NK cells [45].

Macrophage stimulation and hemophagocytosis

The Hemophagocytic Syndrome (HS) results from an uncontrolled 
proliferation and activation of macrophages and usually occurs as 
a consequence of T- and NK-cell activation, with production of Th1 
cytokines, such as IFN-gamma and TNF-alpha [137]. It may result 
from genetic defects on cytotoxic T-cells (CTL) and NK-cells or rather 
may be secondary to infections, autoimmune diseases and malignancy, 
including NK-, T- or B-cell lymphomas. Previous studies have shown 
that IL-18, also known as interferon-gamma inducing factor (IGIF), is 
a potent pro-inflammatory cytokine produced by activated monocytes 
that act on NK-cells and CTL, enhancing the Th1 response and inducing 
the production of IFN-gamma, a cytokine that is crucial for monocyte/
macrophage activation [138]. This effect is balanced by the action of 
IL-10, a potent anti-inflammatory cytokine, as well as of the IL-18 
binding protein (IL-18BP), the natural inhibitor of IL-18 [139]. There is 
increasing evidence that both cytokines, IL-18 and IFN-gamma, relate 
to the genesis of the HS. In fact, patients with lymphoma-associated 
HS, and especially those with NK/T cell neoplasms, usually have high 
serum levels of IL-18 and IFN-gamma [33-35,140,141]. In addition, 
patients with HS usually show a severe imbalance between IL-18 and 
IL-18BP and recent studies in animal models demonstrate that the IL-
18BP reduces the severity of the HS, by decreasing hemophagocytosis 
and reversing organ damage [142,143].

Previous studies have shown that NKTCL, as other entities that 
frequently associate to HS, such as EBV-associated CNKCL, exhibit a 
high expression of IFN-gamma and certain chemokines, particularly 
those induced by IFN-gamma, such as IP-10 (CXCL10), MIG (CXCL9), 
as well as MIP-1alpha (CCL3) [144-146]. The fact that MIP-1alpha 
causes macrophage chemotaxis and IFN-gamma promotes macrophage 
activation, would suggest that these molecules may play an important 
role in the pathogenesis of the HS, by recruiting and activating the 
macrophages, which are induced to undergo phagocytosis.

Conclusion
Proteins encoded by EBV genes and non-coding viral RNAs 

expressed on the infected cells are involved in NK-cell lymphomagenesis 

and disease progression, which occur as a consequence of multiple 
EBV-induced oncogenic events. The genes affected include, among 
others, tumor suppressor genes and oncogenes, as wells as genes 
involved in cell signal transducer pathways, cell survival and apoptosis, 
cell cycle control and cell division, as well as cell motility, adhesion and 
signaling through cytokine networks, many of which are known to be 
involved in a wide variety of human cancers. These complex molecular 
and biochemical disturbances, not only justify the aggressiveness of the 
NK-cell neoplasms, but also explain most of the disease manifestations.
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