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Introduction
Several cases of septicemia in African Sharptooth catfish, Clarias 

gariepinus, have been submitted to our lab by the local fishermen in 
Qena, Egypt, who reported that such case, have recently increased in the 
small tributaries of the River Nile. Although there is no official data for 
the rates of infections and mortalities, our preliminary investigations 
indicated that main cause of such infections is Aeromonas. Genus 
Aeromonas causes serious problems in various fish and shellfish species 
that is characterized by septicemia and resulting in mass mortalities and 
high economic losses [1,2]. Out of the 24 reported species within the 
genus [3], only Aeromonas hydrophila, Aeromonas veronii, Aeromonas 
caviae, and Aeromonas jandaei are considered the main species that 
infect fish [4,5] causing Motile Aeromonas Septicemia (MAS).

There are many extracellular virulence proteins that contribute 
to the pathogenicity of Aeromonas spp. [6], including exotoxins 
such as haemolysins, cytotonic and cytotoxic enterotoxin [7,8] and 
aerolysin [9]. The cytotoxic enterotoxin (act) is aerolysin related with 
approximately 90% homology [10]. The act gene is a major virulence 
factor of Aeromonas that can create pores in the erythrocyte membranes, 
[11]. It possesses hemolytic, cytotoxic, and enterotoxic activities 
[12]. Aerolysin gene (aerA) is recorded to be the commonly regarded 
virulence gene produced by some strains of Aeromonas, so its detection 
proposed to be a reliable approach to investigate pathogenic Aeromonas 
strain. It is an extracellular, soluble, hydrophilic protein exhibiting 
both haemolytic and cytolytic properties [13,14] by pore formation, as 
it binds to eukaryotic cells and aggregates to creates unadjusted pores 
in the membrane of targeted cells leading to the destruction of the 
membrane permeability and lysis [15].

The precise and accurate identification and characterization of a 
pathogen, together with the detection of the prospect virulence traits 
are the corner stone for epidemiological investigations and accordingly 
designing the control programs and preventive measures. The current 
study aimed to investigate the species distribution of Aeromonas 
isolates among naturally infected African Sharptooth catfish in Qena, 
Egypt. The distribution of two extracellular virulence genes among the 
isolates was investigated as a means of assessing the pathogenicity to 
catfish based on the genetic profile. Additionally, a challenge study was 

conducted to further define the correlation between the genetic profiles 
of the isolates and their pathogenicity.

Materials and Methods
All experiments were done according to the recommendations listed 

in the care and use of fish in research, teaching and testing section in the 
guide to the care and use of experimental animals, Canadian Council on 
Animal Care (CCAC), Ottawa, Ontario, Canada [16].

Clinical examination and bacterial isolation
Fifty African Sharptooth catfish with average weight of 100 to 150g 

and total length of 23 to 27 cm showing signs of septicemia were submitted 
by the local fishermen to the Aquatic Diagnostic Laboratory, Faculty of 
Veterinary Medicine, South Valley University. Fish were caught from small 
tributaries of the River Nile at Qena Governorate, Egypt. Inoculations 
from the kidneys and spleen were made on tryptic soya broth, TSB (Oxoid, 
England), and incubated at 28°C for 24 hours. Then, the broth cultures 
were streaked on Aeromonas selective agar-base, ASA (Biolife, Italy) and 
incubated at 28°C for 24 hours, where green colonies with dark centers were 
presumptively considered to be Aeromonas [17].

Conventional identification of the suspected isolates

Conventional phenotypic identification was conducted according 
to Austin et al. [18] based on the morphological, biochemical and 
metabolic characters. It included Gram stain, oxidase, catalase, indole 
(Kovac´s method), voges-proskauer, methyl red, H2S production, 
esculin hydrolysis, acid and gas production from glucose, motility using 
semisolid agar, growth on 6 and 10% sodium chloride, and resistance to 
150 g/ml of vibriostatic agent 0/129 (Oxoid).
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Abstract
The aim of this study was to investigate the dominant species of Aeromonas in naturally infected African 

Sharptooth catfish, Clarias gariepinus, in Qena, Egypt and the distribution of two virulence genes among the isolates 
to assess their pathogenicity. Twenty-five isolates of Aeromonas were recovered from infected fish showing signs 
of septicemia. Restriction-fragment-length-polymorphism (RFLP) analysis of the 16S-rDNA amplified products 
demonstrated that the specie isolated were Aeromonas hydrophila (56%) and Aeromonas veronii (44%). Isolates 
were screened for the cytotoxic enterotoxin, act, and aerolysin, aerA, genes. The act gene was detected only in 
A. hydrophila, while the aerA gene was more frequently found among all isolates. Catfish challenged with an A. 
hydrophila isolate that have both the act and aerA genes showed higher mortalities (80.9%) and more severe signs 
of septicemia than those challenged with an isolate that lacks both genes studied.
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Molecular identification of the suspected isolates to the genus 
level

Bacterial DNA was extracted from the suspected isolates using 
the Gene JET genomic DNA purification kit (Thermo Scientific, EU) 
according to the manufacturer recommendations and then kept at 
-20°C until the time of use Polymerase chain reactions (PCR) were 
conducted to amplify a gyrB-gene target of approximately 1100 base 
pair (bp) using Aeromonas-specific primers [19]. Amplicons were 
analysed using 1.5% agarose gel electrophoresis in Tris-acetate EDTA 
(TAE) buffer, stained with ethidium bromide (50 μl/L) and visualized 
on UV transilluminator system (MultiDoc- It, UVP, UK).

Molecular identification of the suspected isolates at the spe-
cies level

Polymerase chain reactions were conducted to amplify a 
hypervariable segment of the Aeromonas 16S-rDNA of about 1500 
bp using genus-specific primers as per Borrell et al.  [20]. Amplicons 
were subjected to restriction-fragment-length-polymorphism (RFLP) 
analysis with BstSNI and MboI restriction enzymes (Invitrogen, USA) 
as per Ghatak et al. [21], and the digestion products were analysed 
using 1.5% agarose gel electrophoresis as previously described.

Detection of virulence genes in the Aeromonas isolates

To investigate the distribution of two virulence genes, act and aerA, 
among the Aeromonas isolates, a PCR study was conducted using the 
primers listed in Table 1 and the protocol described by Hu et al.  [22]. 
Amplicons were analysed using 1.5% agarose gel electrophoresis as 
previously described.

Pathogenicity of the A. hydrophila isolated to catfish

African Sharptooth catfish with average body weight of 100 ± 5 
g and total length 25 ± 3 cm were obtained from a private fish farm 
with no history of Aeromonas septicemia and were acclimated for 2 
weeks in fiber glass aquaria supplied with dechlorinated tap water and 
aeration, at the wet laboratory, Department of Fish Diseases, Faculty of 
Veterinary Medicine, South Valley University. Two strains, one strain 
with act+aerA+ and another one with act-aerA- genotypes were used in 
experimental infection of catfish. Acclimated catfish were divided into 
4 groups with 7 fish each in a completely randomized design. The first 
group was intra-peritoneally (I/P) injected with 0.5 ml of 6 × 106 cfu/
ml of act+aerA+ A. hydrophila. The second group was I/P injected with 
act-aerA- A. hydrophila with the same dose as above. The third group was 
I/P injected with 0.5 ml of sterile saline (sham control), and the fourth 
group was un-injected as a negative control. The entire study was 
done in three replicates where clinical signs, post mortem lesions, and 
mortalities were recorded daily for up to two weeks. Moribund catfish 
were bacteriologically examined to re-isolate the causative Aeromonas 
strain from the internal organs. Identification of re-isolated bacteria 
was conducted by the molecular approaches as described above.

Results
Clinical examination and bacterial isolation

Collected catfish showed the signs of bacterial septicemia that 
included exophthalmia, skin ulceration, abdominal distension, 
scattered haemorrhages on the body surface and muscles, congestion of 
the fins, and fin rot. Internally, there were accumulations of yellowish 
or bloody ascetic fluids with friable, congested and enlarged organs.

Conventional identification of the suspected isolates

Bacteriological examination of the catfish resulted in recovery of 
25 isolates were suspected to be Aeromonas based on their morphology 
on the ASA. Based on the conventional phenotypic, morphologic and 
biochemical characterization of the isolates, all the 25 isolates were 
presumptively identified as Aeromonas, although they showed variable 
results for esculin hydrolysis and gas and H2S production on TSI (Data 
not shown).

Molecular identification of the suspected isolates

Using the gyrB primers resulted in amplification of targets of all 
the 25 isolates giving amplicons of 1100 bp as shown in Figure 1. In 
addition, 16S-rDNA targets of the isolates were amplified and used 
for RFLP analysis. Restriction digestions of the 16S-rDNA amplicons 
with BstSNI resulted in two patterns of digestions, where only 14 
(56%) amplicons were digested giving two fragments of 1104 and 
462 bp length as shown in Figure 2 and their corresponding isolates 
were identified as A. hydrophila, while the other 11 (44%) amplicons 
remained uncut. Digesting these remaining 11 amplicons with MboI 
resulted in five fragments of about 618, 445, 219, 160 bp, and a smaller 
fragment of less than a 100 bp in length as shown in Figure 3 and their 
corresponding isolates were identified as A. veronii.

Detection of virulence genes in the Aeromonas isolates

Primers targeting the cytotoxic enterotoxin (act) and aerolysin 
(aerA) genes resulted in amplicons of 232bp and 301bp respectively, 
(Figures 4 and 5), and revealed that the act gene was found only in A. 
hydrophila with rate of 2/14 (14.3%) isolates (Table 2) while aerolysin 
(aerA) gene was present in 17/25 (68%) isolates, out of which 9 isolates 

Figure 1: Amplifying a 1100 bp fragment of gyrB-gene of clinical isolates of 
Aeromonas using Aeromonas-specific primers. Lane 1 and 16: 100 bp ladder, 
Lane 2-15 and 17- 27: Clinical isolates of the present study, Lane 29: Negative 
control (No DNA).
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were A. hydrophila with rate of 9/14 (64.3%), (Table 2). Based on the 
distribution of the two genes, the 25 isolates were classified into four 
genotypic groups as act+aerA+ (2/25, 8%), act+aerA- (0/25, 0%), act-

aerA+ (15/25, 60%), and act-aerA- (8/25, 32%).

Pathogenicity of the A. hydrophila isolated to catfish

The A. hydrophila isolate with the act+aerA+ genotype caused 
80.9% average mortalities of the fish challenged. The clinical signs 
and post-mortem findings seen on fish challenged included scattered 
hemorrhages allover different parts of the body, sloughing and 
congestion of the caudal fin, and hemorrhages and deep skin ulcers 
at the caudal peduncle, and severe abdominal distention. Post 
mortem examination revealed the presence of severe inflammatory 
response with hemorrhages in the abdominal cavity, hemorrhages and 
congestions in ovaries, liver, kidney and spleen, while other fish showed 
pale coloration of the liver. Challenging the catfish with the same dose 

of the other A. hydrophila isolate (act-aerA- genotype) resulted in only 
54% average mortalities where the clinical signs and lesions seen were 
less severe than those observed with the other isolate (act+aerA+).

Figure 2: Restriction digestion of 25 Aeromonas spp. 16S-rDNA amplicons 
(1500 bp) with BstSNI restriction enzyme. Lane 1 and 16: 100 bp ladder, Lanes 
3-6, 9, 12-14,17, 19-21, 25, and 27: Digested Aeromonas hydrophila showing 
two fragments of 1104 and 462 bp length. Other Aeromonas spp. amplicons 
(1500 bp) were uncut (Lanes 2, 7, 8, 10, 11, 15, 18, 22-24 and 26).

Figure 3: Restriction digestion of Aeromonas veronii 16S-rDNA amplicons (1500 
bp) with MboI restriction enzyme.  Lane 1: 100 bp ladder; lanes 2-12: Digested A. 
veronii showing 618, 445, 219, 160 and less than 100 bp fragments.

Figure 4: Detection of enterotoxin (act) gene in 25 Aeromonas spp. isolates 
showing a 232 bp amplicons in positive strains (Lanes 21 and 25). Lanes 1 and 
16 are 100 bp ladder.

Figure 5: Detection of aerolysin (aerA) gene in 25 Aeromonas spp. isolates 
showing a 301 bp amplicons in positive strains (Lanes 2, 4, 8-14, 17, 18, 21-23 
and 25-27). Lanes 1 and 16 are 100 bp ladder.
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Discussion
The distribution of Aeromonas isolates among infected African 

Sharptooth catfish was studied and their pathogenicity to catfish based 
on the genetic profile was assessed to investigate natural infection 
incidences reported with losses in the catfish in small tributaries of the 
River Nile at Qena governorate, Egypt. Fish pathogenic aeromonads 
are ubiquitous inhabitants of the aquatic ecosystems [23] making their 
interactions with fish uncontrolled [24]. Motile aeromonads are not 
uncommon in wild fishes. It was reported that gizzard shad (Dorosoma 
cepedianum) of Potomac River (Maryland, USA) had motile Aeromonas 
septicemia because of spawning stress [25]. Also, Paniagua et al. [26], 
were able to recover Aeromonas isolates from the River Porma, Leon, 
Spain that were identified as A. hydrophila, A. sobria and A. caviae.

To investigate the dominant pathogenic Aeromonas spp. in 
Sharptooth catfish in this study, accurate and definitive identification 
of the isolates is essential. Correct identification of the pathogen is 
crucial for the epidemiological studies, tracing-back disease outbreaks, 
and designing the appropriate control programs and treatment. In 
the present study a combination of conventional morphologic and 
metabolic characters was used to presumptively identify 25 isolates as 
Aeromonas spp. but was not conclusive in identifying the isolates to the 
species level. The genus identity of the isolates was, however, confirmed 
by amplifying the housekeeping gene, gyrB, using Aeromonas-specific 
primers [19]. All the 25 isolates were accurately identified to the 
species level as A. hydrophila and A. veronii by RFLP of the 16S-rDNA 
gene using a combination of two restriction enzymes. RFLP has been 
shown to be suitable for routine laboratory practices giving more 
easily recognizable DNA-band patterns to differentially identify the 
clinically important Aeromonas to the species level [20,27]. The minor 
deviations observed in the sizes of the digested fragments in case of A. 
veronii from those reported by Ghatak et al. [21] may be due to strain 
differences of the bacteria isolated in the present study from those 
previously investigated [21].

Aeromonas hydrophila and A. veronii were not only the dominant, 
but in fact the only aeromonads isolated from catfish in the present 
study. A. hydrophila is one of the predominant aeromonads in fish [28] 
and has been associated with great fish mortalities around the world [3]. 
Also, previous studies showed that A. hydrophila and A. veronii were 
the most prevalent aeromonad species found in fish and water [4,24]. 
In another study, A. veronii was the most common species isolated 

from fish and water environment, while A. hydrophila isolates were 
significantly more frequent in diseased fish than in healthy ones [22]. 
On the other hand, A. sobria was the dominant Aeromonas isolated 
from diseased fish in Spain [29].

The pathogenicity of Aeromonas spp. can be evaluated using the 
virulence determinants as genetic indicators [30]. In the present study, 
PCR assays have been used for the detection of two major Aeromonas 
virulence determinants (act and aerA) to assess the pathogenicity of 
the isolates. The cytotoxic enterotoxin gene, act, is one of the primary 
genes that makes Aeromonas pathogenic [31]. Also, the presence of 
hemolytic gene aerolysin, aerA, is an irrefutable indication of virulence 
in pathogenic A. hydrophila [32,33].

In this study, 25 Aeromonas isolates were classified into four 
genetic groups by defining their respective act and aerA genes 
(act+aerA+, act+aerA-, act-aerA+, and act-aerA-). Interestingly, the act 
gene was detected only in A. hydrophila isolates of the present study 
and was less frequent (14.3%) than in other reports where act was the 
most frequently found enterotoxin gene [34]. Furthermore, 65% of 
Aeromonas strains out of 350 clinical and environmental isolates were 
positive for act/hlyA/aerA [30]. Also, a wide variety in the combinations 
of virulence factors were reported in the Aeromonas isolates [34]. On 
the other hand, the distribution of the aerA gene among the Aeromonas 
isolates of the present study was higher (64.3%) than that of the act 
gene. Generally, aerA is widely distributed among Aeromonas isolates 
[35,36].

Virulence is essentially related to disease and pathology and 
subsequently should be evaluated in terms of morbidity and mortality 
of the host, thus in-vivo challenge studies is crucial to investigate 
pathogenicity [37]. In this study, as A. hydrophila was the dominant 
Aeromonas isolated, and thus was used in experimental infection of 
catfish. Challenging catfish with the A. hydrophila strain which has 
both of virulence genes (act+aerA+) caused higher mortalities and 
severe clinical signs when compared to those caused by the less virulent 
strain (act-aerA-). The act gene has the ability to lyse red blood cells by 
creating pores in the erythrocyte membranes [11,38]. This may explain 
the external and internal haemorrhages with septicemia seen on catfish 
challenged in the present study. In addition, the act gene has cytotoxic 
as well as tissue damage activities which affected the liver, kidneys, and 
other internal organs in the challenged catfish, herein, making them 
congested and friable. Furthermore, the ascites noticed in the present 
study may be due to activation of proinflammatory cytokines by the 
act [39]. On the other hand, the hemolytic and cytolytic activities of 
the aerolysin gene [40] found in some strains of A. hydrophila, may 
explain the bloody ascites and internal tissue damage associated with 
the challenge of catfish in the present study.

Interestingly, A. hydrophila strain that lacks the two virulence genes 
(act-aerA-) produced less mortalities (54%) and less severe signs than 
those recorded with the virulent strain (act+aerA+). Previous studies 
reported that an act-isogenic mutant was significantly attenuated in a 
mouse model [39], and the 50% lethal dose of act mutants in mice was 
1.0 × 108, compared to 3.0 × 105 for the wild-type Aeromonas, where 
reintegration of the wild type act gene in these mutants resulted in 
complete restoration of the virulence in mice. Similarly, inactivation 
of the aerA gene resulted in a nine-fold increase in LD50 in the suckling 
mouse model [40].

Although the act and aerA genes are major virulence determinants 
of Aeromonas, they are not the only virulence genes reported to 
contribute to the pathogenicity during infections. This was supported 

Target 
genes Primer sequence Product 

sizes/bp Reference

gyrB
F 5´ TCCGGCGGTCTGCACGGCGT 3 ´

1100 [19]
R 5´ TTGTCCGGGTTGTACTCGTC 3´

16S-rDNA
F 5' AGAGTTTGATCATGGCTCA 3'

1502 [20]
R 5' GGTTACCTTGTTACGACTT 3'

act gene
F 5´ GAGAAGGTGACCACCAAGAAC 3´ 232 [22]
R 5´ AACTGACATCGGCCTTGAACTC 3´

aerA gene
F 5´ AACCGAACTCTCCAT 3´

301 [22]
R 5´ TTGTCCGGGTTGTACTCGTC 3´

Table 1: Primers used in the current study.

Genes A. hydrophila 
(n=14) A. veronii (n=11) Total (n=25)

act gene 2 (14.3%) 0 (0%) 2 (8%)
aerA gene 9 (64.3%) 8 (72.7%) 17 (68%)

Table 2: The distribution of act and aerA virulence genes in Aeromonas hydrophila 
and Aeromonas veronii isolates.
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by the mortalities and signs seen in the present study associated with 
the strain that lacks both act and aerA genes. Virulence of Aeromonas is 
complex and not necessarily because of a particular virulence gene but 
likely requires the interaction of several virulence genes [36]. Synergy 
between virulence determinants may occur, where the act gene in 
A. hydrophila is iron regulated [39] that could be unregulated by the 
action of the aerA gene releasing iron from haemolyzed RBCs.

Conclusion
The present study clearly shows that A. hydrophila is the dominant 

Aeromonas infecting catfish in Qena, Egypt. A. hydrophila harbor 
many virulence factors where act and aerA genes play a major role in 
inducing lesions and diseases in catfish.
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