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Introduction
Adult (non-embryonic, postnatal somatic) stem cell is an 

undifferentiated cell found among differentiated cells in a tissue or 
organ that has the ability to renew itself (Multipotency) [1]. 

Growing attention has focused on organ specific adult stem cells, 
both to better understand how injured organs regenerate and as a 
therapeutic target for disease modulation [2,3]. It was originally thought 
that the adult mammalian stem cells were only present in organs such 
as blood, skin, gut, testes and the respiratory tract, which have high cell 
turnover rates. It was proven, however, that most if not all, adult organs 
contain stem cells, or at least can produce stem cells in culture [4,5]. 

Adult stem cells derived from the bone marrow have been used for 
more than 40 years for treatment of hematological disorders. Since the 
identification of the first adult mouse bone marrow stem cells, it was 
shown that transplantations of the Haemopoeitic stem cells (HSCs) 
isolated from the bone marrow, could reconstitute the depleted bone 
marrow following irradiation [6].

Following this discovery, Friedenstein in 1974 noticed another cell 
type in the bone marrow explants, initially called the fibroblast colony-
forming cells, now referred to as Marrow-derived or Mesenchymal Stem 
Cells (MSCs) [7]. In contrast to HSCs, MSCs can be grown more easily 
and can differentiate into mesoderm-derived tissues, while HSCs can 
re-constitute the haemopoeitic system. MSCs can be selectively grown 
into bone cells (osteocytes) [8], fat cells (adipocytes) [9] and cartilage 
cells (chondrocytes) [10] which made them an attractive choice for 
bone and cartilage tissue engineering as autologous transplants [11,12]. 
Moreover, they are now considered a routine medical procedure in 
treating leukemia patients in addition to HSCs [13].

The discovery of adult stem cells in the CNS was first inferred 
from the evidence of neuronal turnover in the olfactory bulb and 
hippocampus [14,15]. This discovery of what was called afterwards 
Neuronal Stem cells (NSCs) in an organ that was previously thought to 
be largely immutable following embryogenesis, opened new avenues of 

investigation in regenerative medicine concerning the role of such stem 
cells in Parkinsonism and Alzheimer's diseases [16,17].

In this review, we highlight some of the particularly promising 
sources of potent adult stem cells; the glandular tissues derived 
ones, elucidating their importance and future potentials in diseases 
management. 

Pancreas Derived Stem Cells (PSCs)
Pancreas is a unique organ with a closely integrated admixture 

of exocrine and endocrine tissues. In the view of the success of 
pancreatic islet transplantation trials, especially after development of 
the Edmonton Protocol in 1990 and its publish in 2000 [18,19], beta-
cell stem or progenitor cells were seen as a potential source for the 
preparation of a transplantable insulin-producing tissue [20].

Thus, several adult islet/beta-cell progenitors derived from pancreas, 
liver, and bone marrow, were studied [21]. Moreover, it was proven 
that the pancreas have Pancreas-derived Multipotent Precursor cells 
PMPs as described by Seaberg, that express both neural and pancreatic 
precursor markers [22]. Possible progenitors have been hypothesized to 
reside within the pancreatic ductal epithelium [23], acinar tissue and/or 
pancreatic small cells [24].

Although the transplantation of islet grafts containing higher 
numbers of ductal epithelial cells results in a better clinical outcome 
[25], several in vitro attempts to isolate beta-cell progenitors thought 
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to reside within the human ductal and acinar epithelium have been 
inconsistent till today [26-29]. 

Earlier, Choi followed by Seeberger proved that stem cells isolated 
from different parts of the adult pancreas are able to cross-lineage 
boundaries in vitro, in addition to its differentiation into endodermal 
and mesodermanl cells [30,31]. Also, the exocrine acinary part of the 
pancreas, particularly periacinary or dedifferentiated acinary cells, was 
considered to be another source of stem cells [32].

Surprisingly afterwards, Kruse et al. proved that cells isolated 
from the exocrine parts of the adult pancreas have a remarkable ability 
for self-renewal together with a great plasticity potential. These cells 
were able to differentiate into various cell types representing all three 
germ layers. Those cells demonstrated (i) typical stem/progenitor cell 
markers (Alk. Phos., SSEA-1, Oct-4, CD9, Nestin, Pax6, CD44, alpha-
fetoprotien), (ii) have the potential to differentiate into lineages of all 
three germ layers in vitro, (iii) clonal analysis revealed that even cell 
lines derived from a single cell have stem/progenitor cell properties, 
(iv) external stimuli can activate the generation of certain cell types 
(e.g: alpha-smooth muscle actin upon retinoic acid stimulation). Those 
cells were called Pancreatic Stellate Cells based on their morphological 
appearance or more commonly Pancreatic Stem Cells (PSCs) [33,34].

In a study that compared two stem cell populations (Skin versus 
Pancreatic stem cells) concerning their phenotypic characterization, 
stem cells characteristics and differentiation across lineage boundaries, 
it was surprisingly proved that the Skin-derived human adult stem cells 
share many features with the Pancreatic-derived human stem cells, this 
opened the gate for a new way of tackling those PSCs concerning their 
medical applications and their potential role in skin regeneration and 
wound healing [35]. In this view, those cells were then successfully 
tested for their potentials in wound healing [36], and for their ability 
to enhance the wound vicinity vascularity [37]. Also they were used for 
defective myocardial tissue repair proving a superior intra-myocardial 
homing of PSCs in comparison to MSCs therapy [38].

Salivary Glands Stem cells 
Salivary glands are derived from the endoderm and the ectoderm 

that participate in organogenesis [39]. They consist of many cell types, 
including duct epithelium, acinar, mesenchymal, and neuronal cells 
[40]. Acinar cells secrete amylase into the digestive tract. This feature 
resembles the pancreatic exocrine system. Moreover, Salivary glands 
have been described as a source of stem cells in mice and rats following 
tissue damage [41,42] and there have been experimental evidences that 
stem cells can be isolated from intact, non-damaged rat submandibular 
glands [43]. The existence of salivary gland stem cells has been 
postulated, although it remained unclear in which compartment of 
the gland they reside. Some authors suggested the intercalated ducts, 
whereas others favored the theory that MSCs are generally present in a 
perivascular niche [44]. 

In 2008, Rotter et al. [45] published the first paper to describe the 
isolation and characterization of adult human stem cells from normal 
parotid gland, these cells followed an amplification period of three to 
five passages. 

As a trial to salvage the function of the Salivary gland specially in 
patients with head and neck irradiation, Bone marrow-derived stem 
cells (BMCs) were previously suggested as an easy accessible source 
for multipotent stem cells that could potentially transdifferentiate and/
or repair other non-hematopoietic organs [46-49], including salivary 
glands  [50].

However, the use of BMCs in solid tissue repair is surrounded by 
controversies and limited effects. Transplantation of salivary gland stem 
cells was then proven to be a more adequate and an elegant way for 
therapy after successful isolation of stem cells from both human Parotid 
and submandibular glands [51]. 

Salivary gland cancers are relatively rare but constitute a highly 
significant public health issue due to the lack of effective treatments. In 
particular, patients with mucoepidermoid carcinoma or adenoid cystic 
carcinoma, the two most common salivary malignancies, have low 
long-term survival rates due to the lack of response to current therapies. 
Considering the role of Cancer Stem Cells (CSCs) in resistance to 
therapy with other tumor types, it is possible that this unique sub-
population of salivary gland stem cells is involved in the resistance of 
salivary gland tumors to treatment [52]. A deeper understanding of 
the underlying cellular biomechanics of the salivary glands and the 
potential of their stem cells may be a good option to treat post-tumors 
radiation-induced Xerostomia [53].

Due to their large number and superficial distribution in the 
labial mucosa, Minor salivary glands were recently proposed as an 
easily accessible source of adult stem/progenitor cells for regenerative 
therapies of glandular organs with parenchymal pathology [54]. In 
a novel study, pulse chase strategy allowed the identification of slow 
cycling, label retaining cells (LRC) of minor salivary glands that 
preferentially localize in the basal layer of the lower excretory duct, 
with few in the acini possessing stem cells characteristics. Engraftment 
of isolated salivary glands LRC in vivo demonstrated their ability to 
differentiate into CK5 (basal layer marker) and CK8 (luminal layer 
marker) positive structures [55].

Still, in the salivary glands research field, a single stem cell has not 
been identified that gives rise to all epithelial cell types within the gland. 
It is also not known whether a number of different lineage-biased stem 
cell populations or subtypes exist and how these differ from progenitor 
cells [56,57].

Sweat Glands Stem cells
Skin is a readily accessible tissue for the isolation of adult autologous 

stem cells in contrast to most of the other tissues. The human body is 
covered with several million sweat glands. Two major types of sweat 
glands exist in the Human skin; eccrine and apocrine. The eccrine 
glands, which are widely distributed over the human body, have ducts 
that open directly onto the skin surface enabling them to secrete water 
and salts. In contrast, the apocrine sweat glands, which are present in 
hairy areas, are appendages of the hair follicle and release their fluid 
through the follicle’s orifice. In addition, apocrine sweat glands shed off 
their necrotic cell parts in the form of an oily substance [58,59].

Extensive Lineage tracing with transgenic mice lines has been used 
to track epithelial progenitors and their progeny [60,61]. Recently, the 
existence of multipotent and unipotent progenitors in the sweat glands 
was proven using transgenic mice [62], and through tracing the Nestin-
positive multipotent stem cells directly isolated from human sweat 
glands specimens [63].

Former studies using lineage tracing and mouse models proved 
the role played by both the epidermis and the hair follicles stem cells 
contributing in the wound repair [64-68]. 

Due to the abundance of sweat glands in relation to hair follicles in 
the majority of human skin areas, it has been hypothesized that another 
source of progenitors and/or stem cells within the sweat apparatus 
(duct and gland) can contribute to the skin wound repair [69-71].
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Interestingly, new mouse models permitted definitive assessment 
of the source of stem cells in wound healing process. Marked cells from 
the eccrine sweat ducts migrated upward to repair the epidermis within 
3 days after a superficial scratch wound. Intraepidermal sweat ducts 
were reconstructed within 2 weeks. Notably, these reconstructed ducts 
were derived from cells of the sweat apparatus and not the epidermis. 
Moreover, only basal progenitors within the sweat ducts, and not the 
secretory portion of the glands, responded and proliferated to repairing 
the duct orifice after injury with restoration of sweating [62]. These 
results provided compelling evidence supporting the notion that 
the sweat duct is the growth center which repairs the ductal orifice 
extending through the epidermis to the skin surface [72].

Another study readdressed this issue using the human skin. By 
immunohistochemistry and computer-assisted three-dimensional 
reconstruction, researchers concluded that eccrine sweat glands 
contribute significantly to the reepithelialization after partial-thickness 
wounds. This opened the gate for enormous wide range potential 
clinical applications, namely in cases of extensive burns and massive 
skin loss [73].

In the last decade, in vivo transplantation had been used to assess 
the regenerative potential at a single-cell level for various ectodermal 
appendages as a trial for an innovative management of burns. 
Intriguingly, despite their unipotent behavior in the adult gland, when 
myoepithelial cells are purified from adult sweat glands, they recreate 
the adult sweat glands. These findings suggest that the myoepithelial 
cells retain multipotent (bipotent) potential that can be unleashed when 
challenged to de novo morphogenesis [72].

Mammary Gland Stem Cells (MaSCs)
Over 50 years ago, researchers postulated the existence of multipotent 

mammary stem cells due to the fact that mammary epithelium is able to 
undergo multiple rounds of proliferation, differentiation and apoptosis 
with pregnancy. Experiments revealed that neither the developmental 
state nor the reproductive history of the gland had a significant impact 
on the longevity of the mammary transplants [74,75]. 

The study of mammary stem cells biology in the mouse actually 
began with the pioneering studies of Deome et al. when a serial 
transplantation of mammary tissues into the cleared mammary fat pad 
of syngenic mice was done [76-78]. They demonstrated that the adult 
mammary gland contained cells that were capable of reconstituting a 
complete and functional mammary gland with normal ductal tree and 
hormonal response in the epithelium-divested fat pad of the transplant 
recipient [79].

Subsequent studies supported the old notion of the cells residing 
throughout the entire intact epithelial tree, that are capable of 
regenerating an entire mammary gland, and that they persist through 
various developmental states [80].

A strategy was used to isolate MaSCs relied upon a feature believed 
to be a key mechanism of DNA replication during stem cells division. 
During their division, certain adult stem cells preferentially retain 
one of their DNA strands throughout multiple divisions in order to 
protect against the formation of deleterious mutations that occur with 
replication [81,82]. By performing pulse chase experiments with DNA 
labels, Smith et al. showed that there was a population of cells within the 
mammary gland, which retained their DNA label through asymmetric 
segregation of DNA strands. These cells were still actively dividing and 
featured stem cell characteristics [83]. 

However, It was not until 2006 that self-renewing multipotent stem 
cells were successfully isolated from the mammary gland by fluorescent 
activated cell sorting (FACS), detecting the cell surface markers CD24 
(heat stable integrin) and CD29 (β1-integrin) in mouse mammary 
tissue [84,85]. CD49f (α6-integrin) and EpCAM positive cells were then 
isolated from the human mammary tissues [86,87]. The CD29 protein 
is not just a surrogate marker for MaSCs but is actually functionally 
important, as CD29 ablation in the basal compartment is reported to 
effectively reduce MaSC activity [88]. 

Another study showed that with the use of a GFP reporter driven by 
the s-SHIP promoter, GFP+ replicating active MaSCs can be identified 
in cap cells at puberty and basal alveolar bud cells in pregnancy, but 
not in adult virgin animals, or in mammary tissues during lactation or 
involution stages [89].

A major limitation of both the morphological and the label retention 
methods is that they do not allow easy isolation of large numbers of pure 
MaSC populations for use in in vitro or in vivo assays [90]. With respect 
to the human mammary gland, identification of authentic MaSCs is 
considered a greater challenge due to the difficulty in obtaining normal 
tissue samples and the lack of an ideal in vitro reconstitution system. 
Nevertheless, various attempts have been made to characterize human 
MaSCs both in vitro and in vivo [91]. 

As a trial to unravel this mystery, taking into consideration the 
analogous embryonic development of both mammary glands and sweat 
glands from ectodermal appendages [92], a latest study applied the 
already established isolation and propagation protocols used for salivary 
and sweat gland-derived stem cells, to the harvest of MaSCs from the 
mammary tissue of human donors via conventional cell culture, using a 
similar way to the older technique of breast milk-derived stem cells [93], 
demonstrating a consistent isolation, propagation and identification of 
CK19+ nestin-positive MaSCs and with characterization of the cell 
populations derived from both genders [94].

Lacrimal Gland Derived Stem Cells
A relatively new and particularly unique field of stem cells research 

due to the rarity of the needed in vitro human specimens for study. 

The lacrimal gland is made up of acini, ducts, nerves, myoepithelial 
cells, and plasma cells secreting a tear film interface between the 
external environment and the ocular surface [95]. Approximately 80%, 
of the gland are the acinar cells, which secrete electrolytes, water, and 
proteins [96].

Dry eye syndrome (DES) is caused by inadequate quantity or 
quality of tears. Although there are numerous well-known tear 
substitutes that can be used to temporarily lubricate the eye, there is 
actually no curative treatment for the dry eye syndrome [97,98]. Cell 
therapy involving replacement of the gland is a promising alternative 
for providing long-term relief to such patients [99].

After an experimentally induced inflammation, Samantha et al 
previously reported an increasing number of stem/progenitor cells 
present in the murine lacrimal gland during the repair phase. These 
cells were found to be nestin positive, and some of them expressed 
α-smooth muscle actin (α-SMA), suggesting a common source of stem 
cells between myoepithelial cells and acinar cells in the lacrimal gland 
[100,101].

Shortly afterwards, the same research group suggested that an 
Epithelial-Mesenchymal transition (EMT) is induced during the repair 
of the lacrimal gland to generate Mesenchymal stem cells (MSCs) 
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that migrate to the site of injury initiating repair, followed then by the 
activation of Mesenchymal-Epithelial Transition (MET) to form acinar 
and ductal epithelial cells with the contribution of several transcription 
factors (Snai1, Snai2, ZEB1 and ZEB2) [102-104].

While lacrimal gland cultures from animal sources are well 
established [105,106], similar evidence from humans is limited. Thus, a 
newly established study documented what could be the first successful 
method of isolating and culturing functionally competent fresh human 
lacrimal gland cells, using a cocktail of collagenase and hyaluronidase 
with Matrigel substrate. The established cultures were maintained in 
vitro for 30–35 days, providing evidence for the presence of putative 
stem cells in the tissues that express ABCG2 and ALDH1 stem cell 
markers. In addition, the cultures lead to the formation of spheres 
similar to the well documented Salispheres [106] and Prostaspheres 
[107] in their cellular organization [99,108].

The promising discovery of stem cells in the lacrimal gland is an 
important finding on the path to salvage a damaged gland in the future.

Major Debates and Hurdles
Neo-genesis versus self-duplication of Pancreas derived stem 
cells

It is worth to be mentioned that in the past several years a wealth 
of new data on the origin of differentiated cells in the embryonic and 
adult pancreas have been accumulating. Before the era of genetic 
lineage tracing, we were inclined to accept the histological evidence 
of neogenesis, particularly following injury [109]. This view became 
more skeptical and extremely debatable once the lineage tracing studies 
revealed that the pre-existing β-cell could account for both growth 
and regeneration [110,111].  It was shown that Ductal cells do not 
generate endocrine cells following streptozotocin (STZ)-induced β-cell 
ablation, Solar and colleagues failed to observe β-cell regeneration from 
ductal cells following alloxan-mediated β-cell ablation and subsequent 
treatment with epidermal growth factor and gastrin [112].

Moreover, compelling opposing evidence showed that pancreatic 
duct ligation (PDL) could induce Ngn3-dependent islet neogenesis. 
Ngn3 is not normally expressed in the adult pancreas, even after 
pancreatectomy. As a regulator of pancreatic endocrine formation, 
Ngn3 expression was shown to be initiated in duct cells, and persisted 
into new islet cells, boosting the insulin dependent β-cells formation. 
[113,114]. Combining techniques, Chung et al. reported a recovery 
of β-cell mass within two weeks after alloxan administration when 
combined with PDL [115]. However, the origin of β cells in this so-
called “alloxan+PDL” model was not tested through the use of genetic 
lineage tracing studies [116]. 

Two major concerns remain; first, not knowing the exact triggering 
stimulus of the endocrine differentiation in utero or in adults following 
PDL makes it hard to design rational culture conditions for optimization. 
Second, most pancreatic cell preparations are contaminated by pre-
existing β-cells. Survival and expansion of those β-cells during culture 
will make it hard to detect true neogenesis. This might imply that a 
phenomenon widely interpreted as neogenesis is actually nothing but 
an expansion of the pre-existing islet cells in vitro, or else that islet 
precursors express a marker, NCAM, generally assumed to be specific 
to the differentiated endocrine cells [117].

Radiotherapy and Salivary Glands

Regretfully, most of the head and neck cancer patients are of old 

age and have been suggested to respond dramatically to the deleterious 
effects of radiation on the salivary glands [118]. 

Moreover, a reduction in the salisphere-forming capability of cells 
from salivary gland of old age is reported [119]. Combined with the 
unfortunate fact that prior to radiotherapy, only a small piece of tissue 
from the patient could be obtained makes it essential to multiply the 
cells before transplantation, and it is therefore of utmost importance to 
solve the problem of lacking protocols that safely permit this. 

Current in vitro culture, self-renewal, and differentiation assays 
open new possibilities for the screening of novel factors and genes 
that may be useful tools for stem cells amplification. The involvement 
of Notch signaling pathway has been implicated in postnatal salivary 
gland development and regeneration, and the protective effects of both 
KGF treatment and the transiently activated Wnt pathway against 
radiation-induced damage of the salivary glands have been suggested 
[120,121]. 

Although consensus is that some form of the salivary gland cellular 
therapy is feasible to increase the quality of life of head and neck cancer 
patients particularly post radiotherapy, considerable hurdles facing 
the development of a cellular therapy based upon a prolonged in vitro 
culture that can affect the expression of cell surface markers, which 
define this hierarchy [122]. 

Generally, Radiotherapy treatment schedules with curative 
intent last between 5 and 7 weeks, not including the extra time 
required for biopsy of the salivary glands pre-treatment. In an ideal 
situation, transplantation should be performed as soon as possible 
after radiotherapy, before tissue fibrosis kicks in, which is likely to be 
detrimental to cell engraftment. Thus, cells will probably be cultured 
briefly during this 5–7 weeks period and then undergo cryopreservation 
till the desired time point. Both manipulations techniques carry their 
own challenges [53,123].

Mammary gland stem cells (MaSCs) and Tumor-genesis

Studies using avian retrovirus-mediated introduction of oncogenes 
into a small subset of somatic mammary cells suggest that polyoma 
middle T antigen (PyMT) preferentially transform stem/progenitor 
cells. These observations suggest that stem/progenitor cells in 
the mammary gland may be especially susceptible to oncogenic 
transformation. Whether more differentiated cells may also be 
transformed by particular oncogenes is actively debated; it is presently 
unclear whether stem cells or differentiated mammary cells are more 
susceptible to transformation by individual oncogenes [124].

A common long time debate with all forms of stem cells, but 

CSC Marker Associated Tumor Type(s)
CD133 Brain, Colon, Liver, lung, Ovarian, pancreas, prostate
CD44 Colorectal, head and neck squamous cell carcinoma,   

Liver, ovarian, Prostate        
CD24** Breast, Pancreas
CD90 Breast, liver, Lung
CD34 AML, Lung
CD117 Lung, Ovarian
CD20 Melanoma
ALDH Breast, Liver

** CD24 is a common marker between normal Mammary gland stem cells (MaSCs) 
and Cancer stem cells (CSCs)
Table 1: Commonly used markers for CSCs as suggested by Fabian et al. with 
established breast tissue markers seen among them [127].

http://www.ncbi.nlm.nih.gov/gene/17967
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particularly crucial with MaSCs is that the normal mammary stem 
cells share the cancer stem cells (CSCs) several important properties, 
including the ability to self-renew and to undergo differentiation (Table 
1). It was proven that the transcriptional programs that control luminal 
and basal lineage identity in the normal mammary epithelium as well 
as the progenitor and stem cell function, are active in breast cancers and 
show distinct associations with different disease subtypes. Also active 
in some tumors is the epithelial to mesenchymal transition (EMT) 
program, which endows carcinoma, cells with mesenchymal as well as 
stem cell traits [125].

There has been lots of controversy about the nature of the cells that 
serve as targets of transformation [126]. Therefore, it is of an urgent 
importance to properly identify, label and characterize the MaSCs and 
study their differentiation potentials in response to various deleterious 
stimuli as a trial to understand the pathogenesis of breast tumors, in 
order to provide innovative solutions for breast cancers, meanwhile 
avoiding transfusing patients with a tumor generating time bomb.

Future Perspectives
Due to expanding nature of the field and the accumulation of vast 

new information about them, the need is exponentially growing to 
focus separately on the adult gland-derived stem cells as a continuous 
supply of stem cells and to our knowledge; this is the first review that 
takes that matter into consideration. 

The available different forms of adult gland derived stem cells 
are not fully understood regarding their mode of action, characters, 
fully discriminating individual type markers (Table 2) and long-
term effects, which is yet to be investigated. Nevertheless, they offer 
possible new supply for treatment of multiple medical problems (eg: 
B-cell deficiency, lacrimal glands dysfunction, salivary tumors, burns 
and skin regeneration). Still, the techniques and methods for practical 
application of such innovative treatments are far from optimization, 
which makes it invaluable to have more focused future trials on 
exploring their potentials and to optimize their medical use. 
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