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Introduction
The heart is under constant regulation to maintain cardiac output 

to meet different needs of tissue perfusion under different conditions. 
Acutely, the regulation is mediated by the sympathetic/ β-adrenergic 
system (SAS) and the vagal/parasympathetic system. The SAS system 
is activated to exert positive chronotropic, inotropic, and lusitropic 
effects on the heart when a greater need of cardiac output is imposed. 
Chronic activation of SAS contributes to the development of cardiac 
dysfunction and arrhythmias. Although the roles of the SAS system in 
cardiac physiology and pathophysiology have been studied for decades, 
many questions remain and new discoveries have been made during 
the past decade. 

SAS and Cardiac Function Regulation in Normal Heart 
Physiology

Adrenergic agonists, such as epinephrines and norepinephrines 
are released when the SAS is excited and then bind to the β-adrenergic 
receptors (β-ARs, including β1 (75%), β2 (25%), the existence of 
β3-AR in the heart is still in debate). The binding of β-AR agonists 
dissociates Gβγ from Gαs, which in turn activates the adenylyl cyclase 
(AC) that catalyzes the production of cyclic-AMP (cAMP) from ATP. 
Subsequently cAMP activates PKA that phosphorylates multiple targets 
in cardiac myocytes: the L-type calcium (Ca2+) channel (LTCC), the 
phospholamban (PLB), the ryanodine receptor (RyR), and troponin I, 
causing the increase in cardiac contractility (inotropy) and relaxation 
rate (lusitropy) [1]. In addition, cAMP directly [2] or indirectly via 
PKA enhances pace making currents in the heart to increased heart 
rate (chronotropy) [3]. PKA also phosphorylates metabolic enzymes 
(e.g., phosphorylase kinase) to increase the metabolic rate to match the 
enhanced demand of energy of the stimulated heart. Lastly, activated 
PKA is able to regulate gene expression via the activation of cAMP 
response element binding (CREB) protein, a transcription factor and 
other cAMP response element modulators (e.g., CREM). 

The β-adrenergic signaling can be shut off once the SAS system is 
not excited by multiple mechanisms: catecholamines in the extracellular 
milieu can be decreased by metabolism or reuptake by norepinephrine 
transporter on the sympathetic nerve ends [4]; the β-ARs can be 
desensitized by PKA or G-protein coupled receptor kinase (GRK)-
dependent phosphorylation and internalization [5]. Intracellular cAMP 
is returned to normal level by cAMP hydrolysis by phosphodiesterases 
(mainly PDE3 and PDE4) [6]. GRK2 is able to phosphorylate both 
β1-AR and β2-AR, followed by the binding of arrestin [7], which 
is able to recruit PDE4 to further limit local cAMP increase [8]. The 
internalization of β2-AR requires PI3K association with the agonist-
bound β2-AR [9]. At last, the PKA-mediated phosphorylation is 
removed from its target molecules by protein phosphatases (PP1 and 
PP2A in the heart).

It had been thought β-AR signaling was well studied, but recently it 
has been demonstrated that cAMP/PKA signaling is far more complex 
than what we have conceived:

1. β2-AR dually couples to both Gs and Gi [10] and the effects of β2-

AR activation can be switched from Gs-PKA to Gi [11] to activate PI3K 
and Akt, which exerts anti apoptotic effect opposing the proapoptotic 
effect of β1-AR [12]. In addition, β2-AR stimulation causes ERK1/2 
phosphorylation in a Gi-dependent manner. The β2-AR also couples to 
and regulates Na+/H+ exchanger [13]. 

2. The cAMP/PKA signaling is compartmented spatially by a couple
of mechanisms: 1) the adrenergic receptors locate at specific membrane 
domains such as caveoli, where ACs, PKA and their target molecules 
are also concentrated [14]. A-protein anchoring proteins (AKAPs) 
serve as a scaffolding protein to organize a signalosomes comprised of 
β-AR, AC, PKA, PDEs and LTCC etc [15]. PDEs in close vicinity of AC 
and PKA limit the local concentration of cAMP. 

3. There is another cAMP sensor, exchange protein directly activated
by cAMP (EPAC), in the heart. EPAC1 is highly expressed in the heart 
but EPAC2 is not [16]. Both PKA and EPAC have similar affinities to 
cAMP, indicating that EPAC may play a role in normal physiology [17]. 
EPAC1 seems to play a role in mediating β-AR stimulated increase in 
myocyte Ca2+ transients and contractions in a PLCε-dependent manner 
[18]. However, this finding cannot be always repeated and needs further 
investigation [19]. EPAC activates while PKA suppresses PKB/Akt to 
affect myocyte survival [20]. Like PKA, EPAC signaling can be spatially 
and temporally regulated by PDE and AKAP [21]. Both EPAC and PKA 
promote PDE4D3 activity to attenuate cAMP signaling [22]. 

4. The β-AR/AC/cAMP/PKA pathway interacts with many other
signaling pathways. The activation of β-ARs is also able to activate 
Ca2+/calmodulin-dependent kinases II (CaMKII) [23] through PKA-
dependent mechanism [23] or independent mechanisms [24,25].

SAS Signaling in Cardiac Pathophysiology
Chronic activation of the SAS is a cause for the progression of 

heart failure (HF) [26,27]. The level of the activation of the SAS system 
evaluated by the increased blood catecholamine concentration [28] or 
the nerve activities [29] is closely correlating with the severity of HF 
[26]. It is believed that enhanced SAS activity is beneficial to maintain 
the normal hemodynamics initially but gradually causes adverse 
molecular, cellular and structural remodeling to further weaken the 
heart [30]. Chronic adrenergic stimulation (e.g., chronic isoproterenol 
infusion [31,32], sustained high intracellular cAMP concentration 
[33], and over expression of β-ARs [34] or Gαs [35] or PKA [36]) 
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of the heart in animal models leads to HF. Currently, myocyte death 
caused by high adrenergic drive is linked to intracellular Ca2+ overload 
and the activation of CaMKII [37-41]. CREB activation by increased 
intracellular cAMP/PKA activity is involved in cardiac myocyte 
hypertrophy and apoptosis [42]. Inhibition of CREB reduces cardiac 
myocyte hypertrophy but promotes cardiomyocyte apoptosis [42]. 
EPAC activated by elevated cAMP is also able to induced cardiac 
myocyte hypertrophy via Rac-dependent activation of the calcineurin/
NFAT pathway in cardiac myocytes [43].

β1-AR density decreases in failing hearts. β2-AR maintains its 
density but is uncoupled from Gs, probably due to increased GRK2 
and GRK5 activities in HF [44]. Concomitantly, the expression Gi is 
increased in failing hearts [45] and thus uncouples Gαs from β2-AR. 
These changes decrease β-AR stimulation induced cAMP production 
and eventually the adrenergic responsiveness and exercise tolerance in 
failing hearts [46]. Currently it has been conceived that the decreased or 
blunted β-adrenergic response is a protective mechanism to avoid some 
detrimental effects (e.g., myocyte death) of heightened catecholamines 
because β-blockers is able to further protect failing hearts [47]. There 
is polymorphism of β-ARs which could affect the progression of heart 
disease [48]. In the failing human heart, the coupling of ACs to β-AR is 
decreased [49,50].

Since chronic SAS activation plays such an important role in HF 
progression, the blockade of β-ARs has been developed into a standard 
therapy according to the Guidelines of ACC/AHA [51] and HFSA 
[52]. Large randomized controlled clinical trials with bisoprolol [53], 
metoprolol succinate [53] and carvedilol [54] have provided clear 
evidence of reducing mortality and morbidity and improving CHF 
symptoms by β-blockers. The efficacy of β-blockers is affected by the 
etiology (more effective in dilated cardiomyopathy than in ischemic 
cardiomyopathy [55]) with large patient-to-patient variation probably 
because of the polymorphism of β-ARs [48]. The cellular and molecular 
mechanisms of β-blockers are not clearly understood but could be 
related to lowering the heart rate [56] and normalizing adrenergic 
responsiveness by restoring β-AR density [57], reducing Gi expression 
[58] and the early transient activation of GRK2 [59]. On the other
hand, β-adrenergic agonists, PDE inhibitors and AC agonists can only
be used as acute positive inotropic drugs for stabilizing hemodynamics
[60]. Administration of PDE inhibitors for a long term in HF patients
increases mortality and morbidity [61,62]. Since β2-AR/Gi activation
protects myocytes from apoptosis through a PI3K/AKT-dependent
mechanism, the co-application of β1-blockers with β2-agonist has been
explored and shown predicted protection effect in HF animal models
[63,64]. In addition, Gi activation exerts anti arrhythmia effect [65,66].
Despite that, to date, there is no clinical trial adopting this strategy
because early clinical trials with a β2-AR agonist, fenoterol, were not
successful. GRK inhibition is also studied for potential treatment of HF
aiming to restore the blunted adrenergic response [67,68]. Inhibiting
GRK2 [69,70] or disrupting PI3K/GRK2 interaction with βARKct has
been shown to prolong survival, attenuate cardiac hypertrophy and
mitigates heart failure development [71] in animal models of heart
failure [72-74]. Most recently, we have shown that PKA inhibition by
PKI could be a novel therapy for HF treatment [75].

Conclusion
Since the SAS plays such important roles in cardiac physiology and 

pathophysiology, further studies to elucidate the novel aspects of this 
system and targeting novel molecules for heart disease prevention and 
treatment are warranted.
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