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Abstract
Endothelial integrity or homeostasis is not only essential for regulating arterial activity and vascular tone under 

physiological conditions, but also critical for triggering various cardiovascular diseases including atherosclerosis and 
balloon angioplasty if such a balance has been impaired. Moreover, endothelial cell development and differentiation 
are key steps during embryogenesis and involves co-ordinations of diverse signaling molecules and transcription 
factors. Therefore, characterizing the molecular mechanisms underlying endothelial differentiation and development 
will not only improve our understanding of pathogenesis of vascular disease, but also facilitate our ability in generation 
of vessels cells from pluripotent stem cells for therapeutic purpose. MicroRNAs, a class of small, non-coding RNAs, 
have been extensively implicated in the regulation of various aspects of biological processes such as embryonic 
development, tissue/organ homeostasis, and metabolism, as well as almost all the human disease, particularly 
cancers and cardiovascular diseases. Accumulating evidence has implicated that microRNAs play an important role 
in regulation of endothelial development, phenotype and function. In this review, we will summarize new findings from 
recent studies in this field and discuss our current understanding of how microRNAs regulate endothelial development 
and differentiation from stem cells.

Keywords: MicroRNA; Stem cells; Endothelial; Blood vessel; Non-
coding RNA

Introduction
Vascular system forms an extensive network in a living organism 

to deliver oxygen and nutrients to cells/tissues throughout the body. 
It is one of the first organ systems to develop and is fundamental for 
embryonic development and adult life. The Endothelial Cells (ECs) line 
the internal surface of the entire vascular system and form the barrier 
between circulating blood and the rest of the vessel wall. Endothelial 
cells serves to prevent thrombosis and regulate arterial activity 
through synthesis and release of numerous vasoactive molecules. The 
endothelium is thus considered as a dynamic and heterogeneous organ 
with secretory, metabolic, synthetic and immunological functions 
[1]. Vasculatures are established in two distinct, but close associated 
processes: vasculogenesis and angiogenesis [2]: initial vasculogenesis 
generates a primitive network of vessels through de novo formation 
of endothelial cells from precursor cells called angioblasts. Subsequent 
angiogenesis then leads to vessel expansion with further EC sprouting 
and branching. Maturation of the blood vessel involves the recruitment 
of mural cells to enwrap nascent ECs tubules for stabilization and 
remodeling. Further specialization of the endothelial cells into arteries, 
veins, capillaries and lymphatic vessel ensures the proper functioning 
of the vasculature.

During mammalian embryonic development, the establishment 
of endothelial cells occurs both extraembryonically and 
intraembryonically. In the yolk sac, mesodermal precursors of both 
hematopoietic and endothelial lineage differentiate into a cluster of cells 
called blood islands, where the inner cells gives rise to hematopoietic 
cells and the outer cells differentiate into endothelial cells [3]. The 
subsequent coalescence of blood islands and formation of lumina 
lead to a primitive vascular plexus. Within the embryo, endothelial 
precursor cell called angioblasts migrate and differentiate to form 
the primordial aorta. Simultaneous migration of angioblasts from 
presomitic cranial mesoderm form endocardial tube in the pericardial 
area [4]. The commitment of EC lineage from its precursors involves 

co-operative interaction of many different signaling molecules and 
transcription factors (for reviews, see Ref [5,6]). The understanding 
of molecular mechanism of EC differentiation will greatly benefit 
regenerative medicine for treating certain vascular disease like 
atherosclerosis, dissections and aneurysms. Various methods have 
been descried to generate endothelial cells from pluripotent stem cell, 
which include Embryonic Stem Cells (ESCs) and induced Pluripotent 
Stem Cells (iPSCs), but often with limited efficiency [7]. Thus, new 
techniques and refined protocols are still in need to produce sufficient 
number of desired cell type for regenerative medicine. 

MicroRNAs (miRNAs) are small, non-coding RNAs that play 
important regulatory roles in various aspects of development, 
homeostasis and disease by pairing to the mRNAs of protein-coding 
genes as negative or positive posttranscriptional regulators [8-10]. In 
mammals, approximately 30% of protein-coding genes are regulated by 
microRNAs [11]. miRNA are transcribed into primary miRNAs (pri-
miRNAs), which is first processed in the nucleus into an intermediate 
form (pre-miRNA) by the microprocessor protein complex composed 
of an RNase III enzyme Drosha and its cofactor DGCR8. The pre-
miRNAs are then transported via export in 5 into the cytoplasm and 
further processed by another RNase III enzyme Dicer to form mature 
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miRNAs. One strand of the mature miRNAs base-pair imperfectly 
with the 3’ Untranlated Region (UTR) of target mRNA by forming 
an ribonucleoprotein known as the RNA-Induced Silencing Complex 
(RISC), which contains the Argonaute protein Ago2. RISC complex 
finally repress mRNA translation and/or induce mRNA degradation, 
with the latter playing a predominant role [12]. Over the past several 
years, there has been an increasing amount of evidence suggesting 
that miRNAs are implicated in regulation of EC development, 
phenotype and function [13,14]. It has been suggested that miRNAs 
play a divergent role in EC development and differentiation from stem 
cells: some can maintain stem cells pluripotence, while other promote 
their differentiation into specific lineages depending on the targets it 
regulates. In this review, we will discuss the emerging findings to show 
the functional involvements of microRNAs in regulation of endothelial 
development and differentiation and signal pathways involved. In 
particular, we will highlight the individual miRNAs which have been 
recently identified as the modulators of endothelial differentiation and 
vasculature development. 

Dicer and Endothelial Differentiation and Fucntion 
The global effect of miRNAs on vascular development comes 

from knock-out studies of the miRNA processing enzyme, Dicer 
[15]. Zebrafish embryos lacking dicer1 undergo a relative normal 
morphongeneis during the first week due to maternal Dicer activity, 
but went into growth arrest and died afterwards [16]. Mutants for 
both maternal and zygotic dicer (MZdicer) undergo axis formation but 
display abnormal morphogenesis during gastrulation, brain formation, 
and heart development associated with lack blood circulation 
[17]. However, MZ dicer mutants still developed endothelial and 
hematopoietic precursor cells as their lineage markers fli-1 and scl were 
expressed. In mouse, deletion of dicer led to lethality at embryonic day 
(E)7.5 before formation of primitive streak, due to loss of pluripotent 
stem cells [15]. Hypomorphic dicer mutants (Dicerex1/2) of mouse 
embryo also displayed retarded phenotype and died between E12.5 
and E14.5 [18]. Formation of blood vessels in embryo and yolk sacs 
are compromised in dicerex1/2 mutants, with altered expression of VEGF 
with its receptor FLT-1 and angiopoiten receptor Tie-1. In consistence 
with this observation, another line of mouse mutant with hypomorphic 
dicer1 (Dicerd/d) resulted in female infertility caused by impaired 
growth of new capillary vessels in the corpus luteum [19]. 

The generation of two EC-specific Dicer knockout mouse lines, 
conditional Tie2-Cre; Dicerflox/flox mice and the tamoxifen-inducible 
VECad-Cre-ERT2; Dicerflox/flox mice, facilitate study on endothelial-
derived miRNAs in EC differentiation and function [20]. These two 
mouse lines were hypomorphic for Dicer expression since Dicer levels 
were reduced but not abolished. As a result, newborn litters were viable 
and overtly normal. EC-specific Dicer hypomorphs showed significant 
reduction in angiogenic behavior with exogenous VEGF treatment, 
and displayed defects in postnatal angiogenesis in response to limb 
ischemia and wound healing [20]. Dicer silencing in ECs increased the 
expression of anti-angiogenic factor Thrombospondin-1 (Tsp1), and 
transfection with components of the miR-17-92 cluster, rescued the 
defect in EC proliferation and morphogenesis. In Human Microvascular 
Endothelial Cells (HMECs), the knockdown of Dicer reduced capillary 
sprouting and tube forming by silencing of critical target miRNAs like 
lef-7f and mir-27b [21,22]. Also, knocking down of Dicer in ECs altered 
the expression of several key molecules regulating endothelial functions 
such as Tie-2/TEK, KDR/VEGFR2, Tie-1, endothelial nitric oxide 
synthase and interleukin-8 [22]. However, Drosha siRNA-transfected 

ECs does not reduce migration or angiogenesis in the in vivo Matrigel 
plug model [21]. This is probably because of the alternative miRNA-
processing pathway without Drosha-mediated cleavage [23]. 

miRNA and Endothelial Differentiation
miRNAs are well-established masters to control the self-renewal 

and differentiation program of ES cells [24,25]. Dicer or DGCR8-
deficient ESCs display a significant defective in cell differentiation [26-
28], which is further supported by the finding that dicer1-knockout 
mice die at early stages of development [15]. Numerous miRNAs have 
been shown to promote ESC differentiation into various cell lineages, 
including cardiomyocytes [29], endothelial cells [30], smooth muscle 
cells [31], skeletal muscle cells [32], Neuronal Progenitor Cells (NPCs) 
[33] etc. It has been reported that such cell lineage specifications 
mediated by miRNAs involves the repressing of the stem cell self-
renewal program by inhibiting core pluripotent factors including 
homeobox protein Nanog, Sex-Determining Region Y (SRY)-box 
containing gene 2 (Sox2), Octamer-Binding Protein 4 (Oct4) and 
Krueppel-like factor 4 (Klf4) [31,34-36], as well as the induction of 
lineage-specific gene expression program [29,31]. Conversely, ESC-
specific cell cycle-regulating miRNAs inhibit ESC differentiation and 
maintain ESC pluripotency [37]. Introduction of these miRNAs like 
miR-291-3p, miR-294, and miR-295, together with the core pluripotent 
factors Oct4, Sox2 and Klf4, substantially enhanced the efficacy of 
reprogramming towards iPSCs [38] . 

Roles of several miRNAs have been carefully examined in regulating 
vascular development, angiogenesis and endothelial functions through 
fine-tuning signaling pathway like VEGF, Notch and Slit/Robo 
signaling, and those include miR-126 [39,40], miR-221[41], miR-132 
[42], miR-218 [43,44], miR-23~27~24 clusters [45], miR-27a/b [46], 
miR-92 [47], etc.(Refer to Ref [14] for a thorough review). Among 
them, miR-126 is the most extensively studied for its role in maintaining 
vessel integrity and directing angiogenesis. Targeted deletion of miR-
126 in mouse endothelium led to partial embryonic lethality and leaky 
vessels, due to loss of vascular integrity and defects in endothelial cell 
proliferation, migration, and angiogenesis [40]. MiR-126 enhance 
VEGF signaling by inhibiting negative regulators spout-related protein 
SPRED1 and phosphoinositol-3 kinase regulatory subunit2 (PIK3R2) 
[39,40]. Moreover, miR-126 in zebrafish can be induced by blood flow 
in the aortic arch, thereby facilitating VEGF-dependent angiogenic 
remodeling [48]. However, miR-126 does not control endothelial 
lineage commitment, as evidenced by no increase in CD31-positive 
endothelial cells or endothelial genes expression with miR-126 
overexpression during ES cell differentiation [39]. It rather inhibits 
hematopoietic differentiation from the common hematopoietic and 
endothelial progenitors called hemato endothelial cells, and may thus 
tip the balance to endothelial lineage [49]. This is also supported by 
the partial but not full embryonic lethality with miR-126 deletion [40]. 
Thus, although miR-126 are enriched in endothelial cells and Flk-1+ 
mesodermal endothelial progenitors [50], miR-126 does not specify 
endothelial lineage, but rather regulates angiogenesis and EC functions 
like maintaining vessel integrity and controlling vascular inflammation 
[51].

Though many of the aforementioned miRNAs have been shown 
to regulate proper EC functions, little is known about their role in 
EC differentiation. In order to explore the potential roles of miRNAs 
in endothelial differentiation, researchers used different protocols 
to induce EC differentiation from ESCs and have identified sets of 
miRNAs that may share a role [30,52,53]. Among them, some are 
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associated with angiogenesis (let-7b, 7f, miR-126, 130a, 133a, 133b, 
210, and 296), while others impaired angiogenesis (miR-20a, 20b, 221, 
and 222) [54]. However, many of them have not been directly tested as 
whether being able to direct EC differentiation. In this review, we only 
summarize those microRNAs with a definite role in modulating EC 
differentiation (Figure 1). 

miR-21

Identified as one of the first mammalian microRNAs, microRNA-21 
(miR-21) has been extensively studied and was found to be dysregulated 
in many pathological conditions including cancer, organ fibrosis and 
cardiovascular disease [55]. miR-21 is highly expressed in almost all 
kinds of cancers and therefore considered as an oncomiR. Many of the 
target genes identified for miR-21 are well-known tumor suppressors, 
such as Phosphatase and Tensin Homolog (PTEN) [56], Programmed 
Cell Death 4 (PDCD4) [57], RECK [58], RhoB [59], Bcl-2 [60], sprouty 
1/2 [61], Tropomyosin [62], Maspin [63] and so on. Recent studies 
have also revealed the critical role of miR-21 in mediating diverse 
pathological process in cardiovascular disease, including cardiac 
fibrosis [64], myocardial infarction [65,66] and ischemia/reperfusion 
[67], endothelial-to-Mesenchymal Transition (EndMT) [68], and 
in advanced peripheral arterial disease [69]. Moreover, miR-21 has 
been implicated in angiogenic process [70], possibility via regulating 
endothelial progenitor cell senescence [71] and Angiogenic Progenitor 
Cells (APCs) dysfunction [72]. 

The involvement of miR-21 in regulating stem cell self-renewal 
and differentiation originate from a genetic study on deletion of the 
neuronal repressor REST (RE1-silencing transcription factor) in 
ESCs [73]. REST is expressed at high levels in mouse ESCs, with its 
heterozygous deletion causing loss of self-renewal ability and increased 
expression of markers specific for multiple lineages. Among many of the 
REST-suppressed miRNAs, miR-21 was shown to specifically inhibit 
self-renewal of mouse ES cells, and reduce expression of pluripotent 
factors Oct4, Nanog, Sox2 and c-Myc. Later studies showed miR-21 
is able to regulate monocyte derived dendritic cell (MDDC) [74] and 

granulocytic cell differentiation [75], suggesting its role in repressing 
stem cell self-renewal and promoting differentiation. This was further 
confirmed in another report showing miR-21 regulates adipogenic 
differentiation through the modulation of TGF-β signaling in adipose 
tissue-derived mesenchymal stem cells [76]. Overexpression of miR-
21 significantly weakened TGF-β-induced inhibition of adipogenic 
differentiation through repressed TGFBR2 expression and downstream 
SMAD3 phosphorylation. Importantly, one recent study on endothelial 
differentiation from iPSCs also indicated a role of miR-21 in regulation 
of endothelial differentiation and angiogenesis by modulating TGF-β 
signaling pathway [77]. Overexpression of miR-21 in pre-differentiated 
iPSCs induced the capillaries formation in vitro and in vivo, and an 
increase of TGF-β2 mRNA and secreted protein. TGF-β2, in turn, 
promotes iPSCs differentiation towards endothelial lineage through 
SMAD3-dependent pathway. Moreover, miR-21 targets PTEN/Akt 
pathway during EC differentiation, and PTEN inhibition is required 
for miR-21 mediated EC differentiation from iPSCs. 

miR-200 family

The miR-200 family consists of five members: miR-200a, miR-200b, 
miR-200c, miR-141 and miR-429. These five miRNAs are located in two 
separate chromosomal clusters with the miR-200b-200a-429 cluster at 
chromosomal location 1p36 and miR-200c-141 cluster at 12p13. The 
seed sequences between the two clusters differ in only one nucleotide. 
By targeting E-box-binding homeobox (ZEB) transcription factors, 
the miR-200 family negatively regulate Epithelial-to-Mesenchymal 
Transition (EMT) [78], which is crucial for embyrogenesis and certain 
pathophysiological conditions like wound healing, organ fibrosis and 
carcinoma progression [79]. ZEB factors mediate EMT by suppressing 
epithelial and inducing mesenchymal proteins expression, resulting in 
breakdown of cell polarity, loss of cell-cell adhesion and acquisition of 
cell motility. Notably, miR-200 expressions are also transcriptionally 
repressed by ZEB factors, forming a double-negative feedback loop 
[80]. This reciprocal loop, depending on the environmental trigger, 
may switch between the EMT and the reversal process of EMT called 
Mesenchymal–Epithelial Transition (MET).

It is now known that EMT is associated with stem-cell properties 
and can increase tumor-initiating capacity of cancer cells [81-83]. Since 
miR-200 family functions as antagonist to EMT, reduced expression of 
miR-200 are observed in normal mammary stem cells, breast cancer 
stem cells (CSC) and embryonic carcinoma cell lines [82]. miR-200 are 
up-regulated during ESC differentiation [83,84], and overexpression 
of miR-200 suppress expression of stem cell factors Bmi1 and Sox2 in 
CSCs and mouse ESCs, resulting in stem cell differentiation [82,83]. 
In addition, in neural stem/progenitor cells, miR-200 was required to 
promote cell-cycle exit and neuronal differentiation through directly 
targeting Sox2 and the cell cycle regulator E2F3 [85]. 

It has been suggested that miR-200 regulates cancer stem cell 
properties through the epigenetic mechanisms [86,87]. The conversion 
of breast cancer cells from a non-stem to a stem-like phenotype is 
accompanied by the dysregulation of miR-200 family gene expression, 
with the decreased expression levels of both miR-200 clusters. 
Interestingly, the miR-200b-200a-429 cluster was silenced through 
histone modifications mechanism mediated by Polycomb Repressive 
Complex 2 (PRC2) whereas the repression of miR-200c-141 cluster 
was regulated by another epigenetic modification-DNA methylation 
[88]. Inhibition of miR-200 promotes cancer stem cells formation by 
targeting Suz12 and modulating Suz12 binding, H3-K27 trimethylation 
and Polycomb-mediated repression of the E-cadherin gene, and [89]. 

Figure 1: MicroRNA-mediated EC differentiation. Both miR200c and miR-150 
promote EC differentiation by transcriptionally de-repressing ZEB1 expression, 
while miR-21 enhances EC differentiation through inhibition of PTEN/Akt 
pathway. Moreover, miR-21 also indirectly enhanced TGF-β2 production, 
resulting in EC gene activation in a SMAD3-dependent manner. However, 
miR-181a/b and miR-99b mediate EC lineage specification through yet 
uncharacterized mechanism.
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However, the action of miR-200 family on normal stem cell self-
renewal or differentiation remains controversial. Maintenance of miR-
200 expression stalls differentiating ESCs at the Epiblast-Like Stem Cell 
(EpiSC) stage [90], and overexpression of miR-200c in human ESC 
inhibited Embryonic Body (EB) formation and repressed the markers 
for all three blastoderms, partially through targeting transcriptional 
factor GATA binding protein 4 (GATA4) [91]. miR-200c, together 
with miR-302s, and miR-369s, can directly reprogram mouse and 
human somatic cells into iPSCs [92], suggesting a role of these miRNAs 
in stem cell pluripotency. During OSKM (Oct4, Sox2, Klf4 and c-Myc)-
induced iPSCs generation, miR-200 mediate BMP-driven epithelial-
to-mesenchymal transition, which is essential for iPSCs formation at 
early stage [93]. Furthermore, Oct4 and Sox2 can bind to the promoter 
regions of mir-141/200c and mir-200a/b/429 cluster, respectively, 
to induce the transcription activation of miR-200 with subsequent 
suppression of ZEB protein, thus facilitating MET in reprogramming 
[94]. 

On the other hand, our recent study has firmly demonstrated that 
the miR-200c-ZEB feedback loop plays an important role in endothelial 
differentiation from human ESCs in vitro and in vivo by targeting 
ZEB1 [30]. Importantly, ZEB1 has been identified as a repressor for 
EC-specific gene expression in these processes, and miR-200c de-
represses such inhibitory effect by inhibiting ZEB1 transcription, and 
thus promotes endothelial lineage differentiation. Moreover, by using 
the Matrigel-CD146+ EC-committing cells mixture mice implantation 
model, we observed that blocking ZEB1 signaling could rescue the 
inhibitory effect of miR-200c inhibition on in vivo vasculogenesis 
[30]. Finally, in this study we have demonstrated for the first time that 
miRNA-200c-ZEB1 axis is a critical regulator for chick embryonic 
blood vessel formation by in vivo inhibition of miRNA-200C or −150 
in developing chick embryos. In the meantime, other researchers also 
reported that miR-200c promotes mesodermal specification while 
repressing neuroectodermal differentiation from ESCs [95], suggesting 
that miR-200c may play a cell-autonomous role in mediating EC 
differentiation from stem cells. Interestingly, miR-200b displays an anti-
angiogenic activity in tumor and in embryonic vascular development 
[96,97], partially through repressing the crucial endothelial lineage 
related transcription factor E26 oncogene homolog 1 (Ets-1) [98]. 
This may reflect the distinct functions and dynamic regulation of miR-
200 family members in EC differentiation, behaviors and embryonic 
vascular development at different stages. Further investigations into 
explaining such discrepancies and uncovering functional redundancy 
of different miR-200 family member in EC differentiation, embryonic 
vascular development and postnatal vasculogenesis/angiogenesis are 
urgently needed. 

miR-150 

miR-150 has been classically implicated in hematopoiesis 
by regulating cell differentiation in both lymphoid and myeloid 
lineage [99], and is considered as tumor suppressive gatekeeper in 
leukemogenesis [100] as demonstrated by its aberrant expression is 
critical for pathogenesis in a variety of hematopoietic malignancies. 
However, other studies showed miR-150 secreted via microvesicle from 
monocytes promoted endothelial cell migration and angiogenic ability 
[100,101], indicating miR-150 also plays a role in angiogenesis as well 
as EC differentiation. Such a notion has been nicely demonstrated in 
our recent study [30]. During EC differentiation from human ESCs, 
miR-150 expression was significantly increased. Over-expression 
of miR-150 promotes, while knockdown inhibits EC differentiation 

from human ESCs in vitro or in vivo. Interestingly, the functional 
involvement of miR-150 in EC differentiation seems similar to miR-
200c, in that miR-150 promotes endothelial lineage specification by 
transcriptionally repressing ZEB1 expression [30]. However, mice 
deficient in miR-150 are viable, fertile, and morphologically normal 
[102], indicating the signaling networks by which miR-150 mediates 
EC differentiation may not be essential for embryonic vasculogenesis, 
although such discrepancies could be attributed to the compensatory 
effects of other molecules in the miR-150 knockout mice. Thus further 
studies to examine the discrepancies existed in the literature and the 
functional redundancy of different miRNAs or other molecules in EC 
differentiation and vasculogenesis/angiogenesis would be warranted 
to fully understand the functional importance of miR-150 in in vivo 
vasculogenesis or blood vessel formation. 

miR-181

The miR-181 family is composed of six members: miR-181a1/2, 
miR-181b1/2, miR-181c, and miR-181d. They are expressed in a 
numbers of tissues like muscle, eye, brain, lung and the hematopoietic 
compartment [103]. miR-181 family members play critical roles 
in controlling cardiovascular inflammation by regulating critical 
signaling pathways such as NF-ĸB signaling and molecules relevant 
to endothelial cell activation [104,105] and immune cell homoeostasis 
[106-108]. 

The earliest evidence of miR-181 as a player in stem cell 
differentiation comes from a study showing miR-181 regulated B-cell 
development during hematopoietic lineage differentiation [109]. 
miR-181 also promotes myoblast differentiation through targeting 
the homeobox protein Hox-A1[110]. In ESCs, miR-181a and miR-
181b are expressed at low levels, but are sharply induced during 
differentiation [111]. Through downregulating expression of Cbx7, 
one of the polycomb repressive complex 1 (PRC1) component, miR-
181 causes loss of Cbx7/PRC1-mediated repression on lineage-specific 
genes and guide the embryonic cell toward lineage commitment[111]. 

In a recent study performing miRNA microarray during defined 
stages of EC differentiation from human ESCs, miR-181a and -181b 
were found to increase in a time-dependent manner during EC 
differentiation and peak in mature hESC-ECs [53]. Overexpression 
of miR-181a and -181b enhanced the expression levels of EC-specific 
markers, Pecam1 and VE Cadherin, increased nitric oxide production, 
and improved hES-EC-induced therapeutic neovascularization in a 
mouse model of peripheral ischemia. Knockdown of miR-181a and 
-181b significant reduced vascular endothelial markers at the transcript 
level and NO production but had no effect on the cell population 
expressing endothelial marker proteins [53], indicating miR-181a and 
-181b may not be essential for directing EC lineage differentiation. It 
is further corroborated in gene knockout study showing mice deficient 
for the microRNA clusters miR-181a1b1, miR-181a2b2, and miR-
181cd (containing Mir181c and Mir181d) do not displayed any obvious 
gross phenotypic abnormalities in terms of growth, development, or 
survival [108]. Additionally, miR-181a has been suggested to play an 
important role in lymphatic endothelial cell specification through 
targeting Prox1, a homeobox transcription factor which is essential for 
lymphatic endothelial cell fate [112]. 

miR-99 family 

The miR-99 family consists of miR-99a, -99b, and -100. They 
predominantly act as tumor suppressors by inducing cell cycle arrest 
[113] and inhibiting cell proliferation [114]. The miR-99 family also 
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modulates injury response like post-radiation DNA damage [115] and 
dermal wound healing [116]. miR-99b was co-identified with miR-
181 in the abovementioned study of EC differentiation from ESCs 
[53]. Like miR-181, augmentation of miR-99b induced EC-specific 
markers expression and nitric oxide generation, but its knockdown did 
not impact endothelial differentiation, implying that though capable 
to potentiate EC differentiation from pluripotent ESCs, miR-99 is not 
indispensible for EC differentiation.

Other miRNAs 

Another set of new miRNAs that may also play a role in endothelial 
differentiation has been identified by Yoo and coworkers [117-119], 
but none of them have been functionally characterized. Among them, 
miR-5739 and miR-6087 modulates the expression of endoglin [117, 
118], which is glycoprotein receptor of Transforming Growth Factor-β 
(TGF-β) expressed on endothelial cell. Authors reported that miR-
6078 targets E-cadherin (Cdh) gene [118], while miR-7641 suppressed 
expression of CXCL1 [119], a member of the CXC chemokine family 
known to promoting neovascularization, during EC differentiation 
from ESCs. 

Conclusion 
Although extensive efforts have been put into deciphering the 

molecular mechanism of EC differentiation in the past years, a 
comprehensive understanding of the exact differentiation program is 
still far from complete. It has been well established that co-coordinative 
actions of diverse transcription factors and signaling molecules 
are required for EC differentiation and vasculature development. 
Emerging evidence clearly suggests that various miRNAs also play an 
indispensable in these processes, adding another regulatory layer to EC 
gene regulation network. Since tissue engineering and stem cell therapy 
has enormous clinical implications for treating vascular disease like 
atherosclerosis and artery dissections, a better understanding of EC 
differentiation program will greatly facilitate the generation of vessels 
cells from pluripotent stem cells. Particularly, with the maturation 
of iPS technology, more seed cells are available for constructing bio-
compatible vessels or intravascular injection of vascular progenitor 
cells for therapeutic purpose. Importantly, it have been recently 
reported that fibroblasts can be reprogramed into endothelial cell and 
smooth muscle cells capable of generating tissue-engineered vessels 
which can, to some extent, substitute native vessels in vivo [120,121]. 
miRNAs play a broad role in multiple aspects of endothelial biology, 
and have been proven to be critical in mediating EC differentiation, as 
such modulating the expression levels of individual miRNAs in stem 
cells to generate unlimited functional endothelial cells in vitro will 
undoubtedly beneficial to cardiovascular regenerative medicine and 
have huge therapeutic implications in a variety of human diseases.
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