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Introduction
Acute Lung Injury (ALI) and the more severe Acute Respiratory 

Distress Syndrome (ARDS) together constitute the leading cause of 
death in critical care patients. Current figures estimate the number of 
cases annually in the US as 200,000 with a mortality rate of 40% [1]. ALI 
and ARDS are characterized by rapid onset respiratory failure following 
a variety of direct or indirect insults to the parenchymal or vasculature 
of the lungs that induces inflammation and damages the cells of the 
alveolar-capillary membrane. This damage results in flooding of 
the alveolar air-spaces with protein-rich fluid leading to severe gas 
exchange abnormalities [2]. 

The American-European Consensus Conference (AECC) on ARDS 
in 1994 defined ALI as respiratory failure of acute onset with (a) PaO2/
FiO2 ratio of less that 300mmHg, (b) bilateral infiltrates on frontal chest 
radiograph and (c) a pulmonary capillary wedge pressure of 18mmHg 
or less, or no evidence of left atrial hypertension. ARDS was defined 
identically except for a lower limiting value of less than 200mmHg for 
PaO2/FiO2. The arterial hypoxemia is caused by defective blood gas 
exchange due to accumulation of edema fluid in the distal airspaces of 
the lung. Carbon dioxide excretion is also abnormal which increases the 
respiratory rate, the minute ventilation rate and the work of breathing 
[3]. There are several clinical disorders associated with the development 
of ALI/ARDS including direct and indirect causes which are shown in 
(Table 1). The most common causes of ALI are pneumonia and sepsis. 
Many patients with ALI/ARDS also develop non-pulmonary organ 
failure such as cardiovascular or renal failure, abnormal liver function 
and haematologic abnormalities [3].

Pathogenesis of ALI/ARDS
During the initial phase of ALI, both the alveolar epithelium and 

capillary endothelium are damaged (either directly or indirectly). 
This disruption of the alveolar epithelial-endothelial barrier results in 
loss of barrier integrity and pulmonary edema, excessive neutrophil 
infiltration and release of pro-inflammatory cytokines and proteolytic 
enzymes. The increased neutrophil migration into the lung is an 
important feature, as ALI/ARDS is mostly an inflammatory disorder 
and neutrophils are believed to be the chief perpetrators of the 
inflammation [3]. Excessive neutrophil recruitment (to the alveolar 
and interstitial spaces) and activation (degranulation leading to release 
of proteases, reactive oxygen and nitrogen species, pro-inflammatory 
cytokines) contributes to the degradation of the basement membrane, 
apoptosis of alveolar type I and type II epithelial cells and increased 
permeability of the alveolar epithelial-endothelial barrier [1]. In 
addition to the neutrophils there is also emigration of macrophages 
which can amplify the injury by releasing inflammatory cytokines and 
pro-apoptotic molecules. This initial stage of ALI is often referred to 
as the exudative phase (1-4 days). The fibro-proliferative phase follows 
(days 4-14). The denuded epithelium is replaced by the formation of a 
proteinous hyaline membrane and alveolar spaces become filled with 
proliferating mesenchymal cells. At this stage the edema may start to 
resolve as proliferative alveolar type II epithelial cells begin to repair the 
barrier [4]. In some patients the edema and ALI will continue to resolve 
without fibrosis, however others will experience ongoing fibrosis with 
increased collagen and ECM deposition. An extended fibrotic response 
is associated with prolonged mechanical ventilation and increased 
mortality [1,3,5].
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Summary
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), have high 

mortality rates with few treatment options. An important regulatory factor in the pathology observed in ALI/ARDS 
is a disruption of the pulmonary endothelial barrier which, in combination with epithelial barrier disruption, causes 
leakage of fluid, protein and cells into lung airspaces. Degradation of the glycosaminoglycan, hyaluronan (HA), 
is involved in reduction of the endothelial glycocalyx, disruption of endothelial cell-cell contacts and activation of 
HA binding proteins upregulated in ALI/ARDS which promote a loss of pulmonary vascular integrity. In contrast, 
exogenous administration of high molecular weight HA has been shown to be protective in several models of ALI. 
This review focuses on the dichotomous role of HA to both promote and inhibit ALI based on its size and the HA 
binding proteins present. Further, potential therapeutic applications of high molecular weight HA in treating ALI/
ARDS are discussed. 
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Direct Indirect
Pneumonia Sepsis
Aspiration of gastric contents Hemorrhagic shock/Transfusion-Relat-

ed Acute Lung Injury (TRALI)
Breathing in smoke or toxic fumes Injury (TRALI)
Ventilator-induced injury Major trauma or burn injury
Near drowning Acute pancreatitis
Lung contusion Adverse drug reaction
Ischemia/reperfusion injury (eg. lung 
transplantation)

Fat embolism

Table 1: Causes of Acute Lung Injury.
The major causes of acute lung injury are listed based on whether they cause direct 
or indirect injury to the lung(5).
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Hyaluronan Metabolism in the Lung
Hyaluronan (HA) is composed of a linear repeat of disaccharide 

units consisting of D-glucuronic acid and N-acetylglucosamine and 
is the major non-sulfated glycosaminoglycan in the lung [6,7]. HA 
is a dynamic molecule that can differentially promote or inhibit lung 
pathology based on its molecular weight and accessibility to various 
hyaluronan binding proteins. In the lung HA is mainly located in the 
peri-bronchial and inter-alveolar/peri-alveolar tissue and the adult 
lung contains approximately 160mg of HA [8]. The prevalent form 
of HA in vivo, high molecular weight HA (HMW-HA), exists with 
a molecular weight >1 million Da [9,10]. Structurally, HMW-HA 
exhibits a random coil structure that can expand in aqueous solution 
[11]. Aqueous HMW-HA is highly viscous and elastic, properties which 
contribute to its space filling and filtering functions. The levels of HA 
are regulated, in part, by the opposing activities of HA synthases and 
hyaluronidases, although HA may also be degraded by reactive oxygen 
species. Proinflammatory cytokines including TNFa IL-1b and LPS 
induce HA production in vitro [12]. Increased HA and its degradation 
products are observed in animal models of chronic obstructive 
pulmonary disease (COPD), ventilator-induced lung injury and 
bleomycin-induced lung injury [13,14]. Further, increased HA levels 
are observed in bronchoalveolar lavage (BAL) fluid and/or plasma from 
patients with lung disorders such as pulmonary fibrosis, COPD, allergic 
alveolitis, asthma, interstitial lung disease, sarcoidosis and idiopathic 
pulmonary arterial hypertension [15-21]. Airway epithelial cells also 
have increased HA production in response to tunicamycin-induced 
endoplasmic reticulum (ER) stress [22]. 

Hyaluronan synthesis

HA is synthesized by at least three membrane bound hyaluronan 
synthases (HAS1, HAS2 and HAS3) which are well conserved 
evolutionally despite being located on separate chromosomes [23]. HA 
synthesis is unusual compared to other glycosaminoglycans, as it is 
made at the inner face of the plasma membrane and not inside the Golgi. 
The growing HA molecule is extended at the reducing rather than the 
non-reducing terminus and, as the polymer grows, it is extruded into 
the extracellular space via the membrane spanning domains of the HAS 
[24,25]. Although hyaluronan synthases catalyse the same reaction, the 
three enzymes differ in a number of ways including in the Km values for 
their substrates (D-glucuronic acid and N-acetylglucosamine) leading 
to differential rates of hyaluronan synthesis [26]. Secondly, HAS1 and 
HAS2 produce HA with a molecular weight > 500 kDa and HAS3 
produces a lower molecular weight (LMW) ≤ 500 kDa HA [27]. These 
differences could account for the multiple types of HA matrix secreted 
by different cell types [9]. HAS expression is altered in a number of 
lung pathologies. Of particular relevance to acute lung injury is a 
study by Bai et al. which utilized a HAS knockout mouse to study the 
role of HAS3 and LMW-HA in ventilator-induced lung injury (VILI) 
[28]. While they observed an increase in LMW-HA and neutrophil 
infiltration in control animals at high ventilation tidal volumes, no 
increase in LMW-HA was detected in the HAS3 knockout animals 
and neutrophil infiltration was decreased [28]. This study and others 
indicate that HA synthesis has a role to play in lung pathology. HAS 
levels are variable depending on the pulmonary cell type and particular 
disease state. Although HA synthesis and total HA concentration, are 
important in regulating lung function, we must also consider the fact 
that HA degradation by hyaluronidase enzymes and reactive oxygen 
species can alter downstream signaling pathways that directly affect 
lung function.

Hyaluronan degradation

HA is degraded by hyaluronidases to produce lower molecular 
weight fragments (<500 kDa) [29] .Six hyaluronidase genes encode 
HYAL-1,2,3,4, PHYAL1 (a pseudogene) and PH-20 [23]. A recent 
study by Hofinger et al, revealed that HA degradation by hyaluronidase 
enzymes may be pH dependent [30]. HA fragments are implicated 
in the progression of numerous lung diseases. HYAL-1 expression 
is increased in a rat model of monocrotaline-induced pulmonary 
hypertension leading to increased fragmentation of native HMW-HA 
and increased hyaluronidase activity in lung lysates [31]. In addition, 
HYAL-1 is increased in primary airway smooth muscle cells from 
asthmatic and COPD patients and these cells were found to degrade 
HMW-HA into 250 kDa fragments compared to 700 kDa for control 
cells [32]. A study by Dentener and colleagues found that HYAL-2 
expression is also increased in the lungs of patients with COPD while 
HAS2 is decreased [16]. In contrast, HYAL-1 levels are decreased in 
the lungs of patients with idiopathic pulmonary arterial hypertension 
[20]. However, hyaluronidases are not the only HA-degrading moiety 
in the lung and other factors, including reactive oxygen species, can 
account for the presence and potential regulating activity of lower 
molecular weight HA [33,34]. Excess lung ROS can be generated from 
a variety of exogenous (particulate air pollution, cigarette smoke) 
and endogenous (activation of phagocytes, stimuli-induced NADPH 
oxidase, mitochondrial electron transport chain, xanthine oxidase, 
lipid peroxidation) sources [35-39]. Cigarette smoke generated ROS 
can degrade HA. Recently, it has been reported by Monzon at al. that 
ROS can regulate the expression of HYAL-2 in primary airway epithelial 
cells [33]. This combination of ROS and HYAL-2 expression stimulates 
the appearance of ~75 kDa HA fragments in lung secretions. These 
authors speculate that ROS exposure leads to an initial direct effect on 
HA degradation by ROS followed by sustained effects through the up-
regulation of HYAL enzymes [33]. Further, human airway epithelial cells 
exposed to xanthine/xanthine oxidase have HA fragment accumulation 
which is blocked by addition of superoxide dismutase (SOD) or catalase 
[40]. In addition, the extracellular SOD knockout mouse has increased 
LMW-HA in the lung compared to wild type controls [41]. A recent 
study by Eldridge et al reported an increase in HA fragmentation (at 
4hrs) following pulmonary ischemia [ 42]. However they could not 
detect any increase in hyaluronidase activity and the fragmentation was 
reduced in animals given NAC anti-oxidant pre-treatment prior to left 
pulmonary artery ligation (LPAL). Based on these findings and their 
previous reports of increased ROS production following LPAL they 
concluded that that ROS generation contributed to HA fragmentation 
in the lung [42].

Hyaluronan and the endothelial glycocalyx

Hyaluronan is a major component of the endothelial glycocalyx, 
a negatively charged mesh of membrane glycoproteins, proteoglycans 
and glycosaminoglycans located on the luminal side of the endothelium 
in all vessels [43-45]. The glycocalyx is currently the focus of much 
research and is believed to have a number of important vasculoprotective 
functions in vivo, including a) regulation of vascular permeability (to 
water and proteins), b) modulation of leukocyte rolling and adhesion, 
c) transduction of shear stress leading to NO release and d) inhibition 
of coagulation [46-50]. The majority of the glycocalyx is located in the 
peripheral vasculature and most studies have focused on the glycocalyx 
in the microvasculature [51]. The glycocalyx acts as a molecular 
“sieve”, retaining proteins in the flowing blood which establishes an 
oncotic gradient across the glycocalyx itself, limiting the net outflow 
of filtrate from the blood to the interstitial space [52]. Degradation of 
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the glycocalyx leads to mycocardial edema in perfused rat hearts [53]. 
Although the role of the glycocalyx in maintaining fluid balance in the 
lung has not been extensively studied, a number of reports indicate 
that it does have a key role to play in homeostasis. An early report by 
Schneeberger and Hamelin in the mid 80’s indicated that disruption 
of albumin binding by the glycocalyx (and perhaps disruption of the 
glycocalyx itself) increased lung endothelial permeability to ferritin 
[54]. A number of other ALI precipitating disorders have been shown 
to disrupt the endothelial glycocalyx and increase free HA in the plasma 
[13]. Glycocalyx disruption has been reported in sepsis, after major 
surgery, hemorrhagic shock, ischemia/reperfusion and following LPS 
administration in animal models [13,55-60]. Using an animal models, 
Kozar et al. have shown that the endothelial glycocalyx was virtually 
ablated by hemorrhagic shock, a known cause of acute lung injury [57]. 
Restoration of the glycocalyx by plasma resuscitation led to decreased 
lung injury as measured by alveolar wall thickness, capillary congestion 
and cellularity [57]. These results would suggest that the glycocalyx and 
HA has an important role to play in maintaining endothelial barrier 
function in the lung and shedding of the HA glycocalyx could be a 
major factor contributing to the pathogenesis of ALI/ARDS.

Hyaluronan signaling

HA itself can directly influence cell behavior through binding cell 
surface receptors. In general terms HMW HA is regarded as mediating 
the homeostatic functions of HA, including tissue hydration, lubrication 
and acting as a support matrix for cells. However HMW HA may also 
be actively involved in regulating cell proliferation and differentiation. 
It has long been shown that HA molecular weight is an important factor 
regulating its signaling activities. HMW-HA can mediate EMT during 
heart valve formation via ErbB2, [61] induce COX-2 expression in 
endothelial cells via CD44, and enhance endothelial barrier function 
in the lung via CD44, the S1P1 receptor and Akt and Rac signaling [62-
65]. Following its degradation, however the signaling properties of HA 
are altered. LMW-HA is generally considered to be more “biologically 
active” than the native HMW HA. LMW-HA has been show to decrease 
endothelial barrier function, stimulate angiogenesis, cell migration 
and immune cell recruitment and induce expression of a host of 
inflammatory mediators in alveolar macrophages including MIP-1α, 
RANTES, Mig, IP-10 and PAI-1 via CD44, TLR2 and TLR4 [64,66-
70]. Therefore, the effects of HA are wide ranging and complex and are 
dependent, not only on concentration and molecular weight but also 
on the specific receptors expressed and cell type involved. In this review 
we have undertaken to examine the role of HA, and HA interacting 
proteins, as they apply to the spectrum of acute lung injury pathologies.

Hyaluronan binding proteins

Hyaluronan and its degradation products bind to a variety of 
hyaluronan binding proteins that exist in diverse locales including 
the blood, extracellular matrix, cell plasma membrane, cytosol and 
nucleus. The differential activities of HA are regulated in the lung, in 
part, through interactions with HA binding proteins including CD44, 
HABP2, TLR4/TLR2 and RHAMM. The role of these proteins in ALI/
ARDS and is discussed below (Table 2). As ALI has many etiologies a 
number of different animal models exist based on the clinical disorders 
associated with ALI/ARDS. The most widely used models include 
mechanical ventilation, administration of LPS and live bacteria, 
hyperoxia and bleomycin administration. A more complete review of 
the different animal models of ALI [71].

CD44
CD44 is a type 1 transmembrane glycoprotein expressed in a variety 

of lung cell types including pulmonary epithelial, fibroblast, endothelial 
and hematopoietic cells [72-75]. There are several CD44 isoforms, 
resulting from alternative exon splicing often occuring between exons 
5 and 15 leading to a tandem insertion of one or more variant exons 
(v1-v10, or exons 6 through exons 14) within the membrane proximal 
region of the extracellular domain. CD44 expression can be regulated in 
response to inflammatory stimuli such as LPS and cytokines including 
IL-1β and TNF-α and growth factors such as bFGF and VEGF [76-78]. 
The extracellular domain of CD44 contains clusters of conserved basic 
residues which are part of a HA-binding Link module common to HA 
binding proteins [75]. The cytoplasmic domain of CD44 functions 
to recruit regulatory proteins to the cell membrane and initiate HA-
mediated intracellular signaling. Some examples of signaling pathways 
and molecules activated by HA binding of CD44 include Rac activation 
leading to lamellipodia formation, ERM and merlin proteins, Src 
and ROCK [64,73,79,80]. The importance of CD44 in the lung has 
been demonstrated through the use of the CD44 knockout mouse in 
multiple models of lung disease including inflammation, vascular leak 
syndromes and non-infectious lung diseases which are discussed below.

CD44 and non-infectious lung injury

 Intratracheal administration of bleomycin is an important model for 
non-infectious lung injury and fibrosis [71]. Bleomycin causes an acute 
pulmonary epithelial cell injury and inflammatory response which later 
subsides and develops into lung fibrosis [71]. Lung CD44 expression 
is increased in the initial acute inflammatory response along with a 
transient increase in HA concentration in the lung interstitium [81]. In 
the CD44 knockout mouse, the bleomycin-induced acute inflammatory 
response persists leading to excess immune cell recruitment to the 
lungs, excess inflammatory cytokine production, decreased TGFa 
activation, progressive HA fragment (< 500 kDa) accumulation and 
ultimately death [82]. In humans, CD44 is up-regulated in the lungs of 
patients with acute alveolar fibrosis. Treatment of lung mesenchymal 
cells isolated from these patients with anti-CD44 antibody attenuated 
migration and invasion into a fibrin matrix [83]. This study did not 
examine HA localization, concentration or molecular weight in the 
lungs of these patients. As the principal ligand for CD44, any alterations 
in HA size or concentration could greatly influence CD44 signaling.

HA Binding Protein Associated Lung Pathology Refs

CD44

LPS-induced lung injury 
Non-infectious lung injury
Pneumonia
Pulmonary Vascular Leakiness
Hyperoxia

(65, 85)
(81, 83)
(89)
(65, 86)
(91)

HABP2

LPS-induced lung injury
Ventilator-induced lung injury
ARDS
Pulmonary Vascular Leakiness

(101)
(101)
(102)
(101)

TLR4/TLR2

LPS-induced lung injury
Non-infectious lung injury
Ventilator-induced lung injury
Ozone-induced lung injury
Hyperoxia

(8)
(69, 92)
(110)
(121, 130)
(131)

RHAMM Non-infectious lung Injury (115)

Table 2: Hyaluronan binding proteins and their associated lung pathologies
Table summarizing the HA binding proteins discussed in this review, their associa-
tion with various ALI-related lung pathologies and corresponding references.
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CD44 and lipopolysaccharide (LPS)-induced lung injury

LPS is an potent endotoxin from Gram-negative bacteria that, 
when administered intratracheally, produces an inflammatory reaction 
characterized by disruption of epithelial/endothelial barriers and 
leakage of fluid, protein and immune cells into lung airspaces [84]. 
Recently, it has been demonstrated by our laboratory and others that 
CD44 knockout mice have increased bronchoalveolar lavage (BAL) 
protein and HA concentration and exaggerated inflammatory cell 
recruitment of both macrophages and neutrophils with LPS-induced 
lung injury [85,86]. CD44 knockout mice also have increased NF-
κB nuclear translocation and cytokine production. In this model of 
intratracheal administration of LPS, it appears that CD44 acts as a 
negative regulator to limit the in vivo response to LPS and prevent 
excessive tissue damage [86]. However, a report from Hollingsworth 
et al. appears to challenge this, as they observed decreased macrophage 
infiltration and chemokine secretion in their model of aerosolized LPS-
induced inflammation. These differences are likely accounted for by 
the different modes of delivery (intratracheal versus aerosolized) and 
lower LPS concentration leading to a milder inflammatory response 
and faster resolution. One common finding in all of these studies is the 
increased concentrations of HA in the BAL fluid of CD44 knockout 
mice. 

CD44 and pneumonia

Pneumonia is a disease characterized by inflammation of the 
parenchyma of the lung and alveolar edema and is the sixth leading 
cause of death in America [87,88]. In animal models of pneumonia 
using live Escherichia coli and Streptococcus pneumoniae bacteria, 
CD44-deficient mice had increased expression of the neutrophil 
chemoattractant proteins, KC and MIP-2 [9,82]. However, it was 
only in the E. coli model of pneumonia where CD44-deficient mice 
exhibited increased neutrophil migration and edema formation [82]. 
Patients with eosinophilic pneumonia have increased levels of HA and 
soluble CD44 in BAL fluid and increased numbers of CD44 expressing 
eosinophils in BAL [89]. The increase in CD44 is reported to be due to 
a local increase in IL-5 production in the lung [89]. Unfortunately, the 
authors in this study did not examine the size of HA in the BAL or its 
effect on other cell types such as neutrophils or macrophages.

CD44 and hyperoxia

Hyperoxia is often used as a treatment to increase tissue oxygenation 
during ALI but can also lead to further lung damage, even in healthy 
tissue [90]. A recent study by Van der Windt et al. reports that CD44 
has a protective role in hyperoxia induced lung injury [91]. The 
report indicates that CD44 knockout mice have increased mortalilty 
compared to WT animals and exhibit higher levels of necrosis in their 
lungs, particularly the bronchiolar tissue. Although both groups of 
mice have increased numbers of neutrophils in BALF after 24hrs of 
hyperoxia, CD44 knockout mice have significantly higher numbers of 
neutrophils compared to control mice [91]. CD44 knockout mice also 
have increased levels of HA in BAL fluid but unfortunately the size of 
this HA was not determined. No changes were observed in the levels of 
osteopontin, another CD44 ligand [91]. This data suggests that CD44 
is protective for the lung epithelium during hyperoxia by limiting the 
neutrophil response and preventing HA buildup in the lung. The role 
of other HA binding receptors, such as TLR4 which may modulate the 
functions of CD44 in the lung, should also be considered in this context 
considering TLR4 knockout mice are more susceptiable to hyperoxia 
injury [92].

CD44 and pulmonary vascular leakiness

Endothelial cells (EC) make up ~30% of lung tissue and disruption 
of the EC barrier is a critical feature of inflammation as well as an 
important contributing factor to ALI[21,93]. We have demonstrated 
that human pulmonary EC express the CD44 isoforms, CD44s 
(standard form) and CD44v10 [64]. In vitro models of pulmonary EC 
barrier function indicate that HMW-HA (~1 million Da) activates 
CD44s signaling and promotes barrier enhancement through its 
interaction with the S1P1 receptor and activation of Rac1 signaling 
leading to cytoskeletal reorganization while HA fragments (~2.5 KDa) 
activate CD44v10 signaling and induce barrier disruption via S1P3 
and Rho signaling [64]. In animal models, pulmonary vascular leak 
caused by intraperitoneal administration of IL-2 is attenuated in CD44 
knockout mice and by CD44 antibody blockage [94,95].

HABP2
Hyaluronic acid binding protein 2 (HABP2), also called FSAP 

(factor VII activating protease), is a HA binding extracellular serine 
protease involved in the extrinsic pathway of blood coagulation via 
activation of factor VII and fibrinolysis via activation of pro-urokinase 
type plasminogen activator (pro-uPA) [96-99]. It is expressed as a single 
amino acid chain proenzyme that undergoes autocatalytic cleavage 
upon binding of a ligand [100]. The mature enzyme consists of trypsin-
like catalytic domain, linked via disulfide bond to the kringle domain 
and three epidermal growth factor (EGF)-like domains. The second and 
third EGF-like domains form the polyanion binding domain (PABD) [99]. 

HABP2 and lung injury with pulmonary vascular leakiness

Intratracheal LPS administration produces an inflammatory 
reaction characterized by disruption of epithelial and endothelial 
cellular barriers with leakage of fluid, protein and immune cells into 
lung airspaces [84]. Although mainly produced in the liver, we and 
others have demonstrated that the pulmonary endothelium expresses 
HABP2 which is upregulated with lung injury [101,102]. HABP2 
promotes LPS- and HA fragment (~2,500 Da)-mediated human 
pulmonary endothelial cell barrier disruption through a mechanism 
that involves protease-activated receptors (PAR) and inhibits HMW-
HA-mediated endothelial barrier protection in vitro [101]. We 
determined the contribution of vascular HABP2 to lung injury in mice 
by inhibiting HABP2 through intravenous administration of HABP2 
siRNA and observed attenuation of LPS-induced ALI. In addition, 
vascular inhibition of HABP2 expression attenuates pulmonary 
vascular hyper-permeability, in a mouse model of ventilator-induced 
lung injury, demonstrating an important role of HABP2 in the development 
of ALI [101].

HABP2 and acute respiratory distress syndrome (ARDS)

 HABP2 levels and activity are increased in the BAL fluid of 
mechanically ventilated patients with early ARDS compared with 
patients with cardiogenic pulmonary edema or healthy controls [102]. 
In patients who died from ARDS, immunohistochemical analysis 
of excised lungs revealed HABP2 levels are increased in alvealor 
macrophages, bronchial epithelial and pulmonary endothelial cells 
[102]. This suggests a role for HABP2 in the pathogenesis of ARDS.

TLR4/TLR2
Toll-like receptors (TLR) sense exogenous and endogenous danger-

associated molecular motifs and produce inflammatory responses 
[103]. Structurally, TLR contain an extracellular leucine-rich repeat 
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domain (LRR) and a cytosolic Toll/IL-1 receptor homology domain 
(TIR) [103]. TLR4 and TLR2 are the principal receptors for bacterial cell 
wall components. TLR4 is the major receptor for LPS and can also bind 
HA, HMGB1, oxidized lipoproteins and oxidized phospholipids since 
these molecules contain features of “pathogen-associated molecular 
patterns (PAMPs)” [104]. TLR2 mediates cell responses to lipoproteins 
and lipoteichoic acid from Gram-positive bacteria and mycobbacteria 
[105]. Following ligand binding the TLR adaptor molecule MyD88 
is recruited to the signaling complex. This adaptor then promotes 
association with other downstream signaling molecules including 
IRAK, TRAF and TAK-1 which ultimately results in activation and 
nuclear translocation of NF-κB. TLRs are also reported to have a role 
in regulating non-infectious lung injury [106]. Interestingly, CD44 and 
TLR4 are shown to be physically associated in a signaling complex 
following exposure to HA [107].

TLR4 and lipopolysaccharide (LPS)-induced lung injury

Intratracheal administration of LPS induces a lung inflammatory 
reaction. Inhibition of TLR4 in animal models protects against LPS-
induced lung injury [108-110]. TLR4 knockout animals show decreased 
neutrophil infiltration and have decreased levels of TNF-α, IL-1β, and 
IL-6 [111]. A TLR4 blocking antibody is reported to decrease lung 
inflammation in a rabbit model of LPS-induced injury in mechanically 
ventilated animals [110]. In humans, TLR4 loss-of-function mutations 
attenuate inhaled LPS-induced lung injury [112]. Interestingly, CD44 
deficient mice have decreased expression of negative regulators of 
TLR including IL-1R-associated kinase M (IRAK-M), Toll-interacting 
protein (Tollip) and TNFa-induced protein 3 (A20) [8]. Muto et al. go 
one step further in their model of the septic response to LPS by showing 
that pretreatment with HMW-HA (with a range of molecular weights 
up to 500 kDa) is protective against LPS induced shock [113]. CD44 
knockout mice are not protected in this model [113]. This indicates that 
CD44 and HA play an active role in regulating TLR4 signaling events. 
Alveolar macrophages isolated from both control treated and CD44 
knockout mice have differences in TNF-α and IL-6 expression, with 
HA pretreated control macrophages showing decreased expression 
following LPS exposure. HA treated macrophages also have increased 
expression of the TLR4 negative regulator TNF-α-induced protein 3/
A20 [113].

TLR4/TLR2 and non-infectious lung injury

Intratracheal bleomycin treatment causes enhanced pulmonary 
epithelial cell apoptosis, exaggerated lung injury and impaired 
inflammatory cell migration in the double TLR2/TLR4 knockout 
mouse, results similar to blocking HA with the Pep-1 peptide in 
bleomycin-treated wildtype mice [69]. In addition, induction of 
inflammatory cytokine expression by HA fragments (~135 kDa) is 
completely blocked in double TLR2/TLR4 knockout mouse peritoneal 
macrophages and reduced in TLR4 knockouts [69]. Using a model 
of lung inflammation induced by LMW-HA (200 kDa) administered 
directly to the trachea, Zhao et al. report that TLR4 acts as a negative 
regulator [92]. The authors found an increase in neutrophilic infiltration 
and red blood cells in BAL fluid of TLR4 knockout animals. They report 
TLR deficiency essentially increases LMW-HA induced lung injury due 
to an imbalance in the ratio of pro- and anti-inflammatory mediators 
in the lungs of TLR4 knockout animals. TLR4 knockouts had increased 
IL-1β, MIP-2, TNF-α, and IL-6 levels in BAL fluid following LMW-
HA administration, and can be rescued by pre-treatment with IL-1RA 
[92]. These results are somewhat at odds with those reported by Jiang 
et al. where TLR4 knockout reduced MIP-2 expression by peritoneal 

macrophages [69]. This difference may be accounted for by the cell 
specific effects of TLR4 and HA. Scheibner et al. report that TLR2 but 
not TLR3 or TLR5 (TLR4 was not examined) is required for peritoneal 
macrophage activation and MIP-1α expression by LMW-HA (200 
kDa), which can be blocked by HMW-HA (6,000 kDa) [114].

RHAMM
The receptor for HA-mediated motility (RHAMM) is found in 

diverse cellular locales including the cell surface, cytosol, mitochondria 
and nucleus(75). RHAMM activates ERK1/2 and regulates mitotic-
spindle integrity. RHAMM is alternatively spliced like CD44 and these 
two HA binding proteins are often co-expressed in pulmonary cells 
[72]. In some cases, RHAMM may compensate for CD44 function 
[72].

RHAMM and non-infectious lung injury

As stated previously, one common animal model for non-infectious 
lung injury is intratracheal administration of bleomycin. RHAMM 
expression is increased in lung macrophages with bleomycin treatment. 
Intraperitoneal injection of anti-RHAMM antibody attenuates 
bleomycin-induced lung macrophage recruitment and reduction of 
alveolar septae thickening and early indications of lung fibrosis 
[115].

Therapeutic Potential of Hyaluronan
Although HMW-HA (≥ 1 million Da) is produced endogenously 

and is an integral component of the extracellular matrix, synovial fluid 
and vitreous humor, recent attention has been focused on the use of 
exogenously administered HMW-HA in a variety of diseases including 
lung disease [116,117]. In vitro, exogenous administration of HMW-
HA inhibits ROS, nitrotyrosine and inflammatory cytokine production 
as well as promotes immune tolerance [118-120]. In addition, excess 
production of endogenous HMW-HA in mice overexpressing HAS2 in 
airway epithelia protects against bleomycin-induced lung injury and 
ozone-induced airway hyperresponsiveness [69,121]. 

As discussed earlier HA forms a major part of the vascular glycocalyx 
[43]. Loss or disruption of the glycocalyx leading to increased vascular 
permeability and edema and may be a contributing factor in ALI. 
Repair of the glycocalyx and restoration of vascular barrier function 
could potentially be beneficial in the treatment of ALI. Previous studies 
have shown restoration of the glycocalyx by plasma resuscitation in 
animal models of hemorrhagic shock [57]. Other studies have shown 
that perfusion of HA can restore the glycocalyx following degradation 
with by hyaluronidase or in response to ischemia/reperfusion injury 
[122,123].

Exogenous HMW-HA and lipopolysaccharide (LPS)-induced 
lung injury

We have recently demonstrated that intravenous administration 
of HMW-HA (~1 million Da) four hours after intratracheal 
administration of LPS provides protection against lung injury in mice 
[86]. This is in agreement with Nadkarni et al. who demonstrated pre-
treatment of hamsters with aerosolized HMW-HA protects against 
endotoxin-induced lung injury [124]. Interestingly, these authors 
noted that treatment with aerosolized HMW-HA after endotoxin 
treatment actually enhanced lung inflammation indicating the timing 
and route of administration are important determinants of HMW-HA’s 
effectiveness.
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Exogenous HMW-HA and sepsis/ventilator-induced lung 
injury

Intraperitoneal administration of HMW-HA (1.6 million Da) 
18 hours prior mechanically ventilation with a low tidal volume (7 
ml/kg) and carotid artery administration of LPS (to induce sepsis) 
protects rats from lung injury [125]. In these same studies, intravenous 
administration of HMW-HA at the same time as initiation of ventilation 
also protected from lung injury [125]. Interestingly, the use of 35 kDa 
HA showed partial protection in these models, but to a lesser extent 
that HMW-HA. Our laboratory has also demonstrated intravenous 
administration of HMW-HA protects from ventilator-induced lung 
injury in mice [21].

Exogeneous LMW-HA and cigarette smoke-induced lung 
injury

Smoking is a well known cause of lung injury which can lead to 
the development of emphysema and chronic pulmonary obstructive 
disease (COPD). Cigarette-smoke is believed to induce an imbalance 
in the protease-antiprotease levels in the lung [126]. This imbalance, 
which develops due to increased inflammatory cell recruitment, 
activation and release of protease enzymes (including elastase), leads 
to proteolytic breakdown of the extracellular matrix and the elastin 
fibers. Breakdown of the elastin fibers can lead to alveolar distention 
and rupture a prominent feature of emphysema and COPD [127]. 
Although HA itself does not inhibit protease activity, studies by Cantor 
and Turino have shown that it may be protective against elastin fiber 
breakdown. They have shown that aerosolized LMW HA (150kDa) 
binds or closely associates with the elastin fibers and may physically 
protect them from degradation by proteases [127,128]. A clinical trial is 
currently underway to determine the use of hyaluronan as a treatment 
in COPD.

Concluding Remarks
ALI and ARDS affects approximately 200,000 people annually in 

the US alone with a mortality rate of up to 40%. Although there are 
numerous clinical disorders associated with the development of ALI/
ARDS it is regarded as an inflammatory condition which damages the 
lung epithelium and endothelium leading to an increase in permeability 
and pulmonary edema. Despite what is currently known about the causes 
and pathogenesis of ALI/ARDS there are no specific therapies available. 
Current treatment strategies are focused on mechanical ventilation and 
fluid management [129]. New therapies and treatment strategies are 
therefore urgently needed. The role of HA and its degradation products 
in the lung is complex. HA and HA binding proteins are involved in 
a number of processes including inflammation and barrier function. 
The expression of HA binding proteins is upregulated in many ALI 
models along with increased HA turnover by hyaluronidase enzymes 
and reactive oxygen species. The HA metabolic pathway is therefore 
an attractive and novel therapeutic target. Preliminary results have 
already indicated that HMW HA can be used to repair the damaged 
vascular glycocalyx and also to protect against LPS and ventilator 
induced lung injury, while LMW HA may protect against proteolytic 
damage in emphysema. More research is needed to fully understand 
the complexities of HA in acute lung injury and how signaling by 
multiple HA binding proteins integrate together in the lung and are 
altered in response to injury. However from the reports published thus 
far hyaluronan may offer a therapeutic benefit as a treatment in acute 
lung injury.
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