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A good bioavailability is a prerequisite for the function of drugs 
and thus is considered as an important standard to evaluate the quality 
of drug products. However, with the emerge of precision medicine [1], 
a good bioavailability becomes far less enough for assessment of drugs 
intended to be delivered into specific tissues, cells, or even organelles, 
especially for drugs with serious side effects such as anticancer drugs. 
The purpose of this commentary is to discuss the use of drug delivery 
systems, especially liposomes, to solve the problem of non-specific 
distribution of free anticancer drugs through passive or active tumor 
targeting. 

Liposomes are artificially prepared vesicles composed of a 
biocompatible lipid bilayer and/or a concentric series of multiple 
bilayers that enclose a central aqueous compartment. Agents can 
be encapsulated in the aqueous compartment or intercalated in the 
bilayer membrane. The protective and solubilizing effect of liposomes 
can significantly improve the solubility, stability and blood circulation 
time of drugs. For example, the circulation time of sphingomyelin and 
cholesterol-based vincristine liposomes Marqibo® is 6.6 hours (1.36 
hours for free vincristine) [2,3] and that of PEGylated doxorubicin 
liposomes Doxil® can be as long as more than 350 hours [4]. Besides, 
due to the enhanced permeability and retention effect (EPR), liposomes 
can be passively targeted to tumors, allowing the loaded drugs more 
available to tumor cells thus further enhancing anticancer efficiency 
of drugs. Furthermore, modifiability of liposomes make the more 
active and precise targeting possible. Owing to all of these advantages, 
liposomes become the most successful drug delivery system with more 
than 12 drugs in routine clinical use, most of them are for cancer 
treatment, such as paclitaxel liposome for injection, doxorubicin 
liposomes (Doxil®, Caelyx®, Myocet®, Doxorubicin Hydrochloride 
Liposome Injection), vincristine liposomes (Marqibo®), irinotecan 
liposomes (Onivyde®), daunomycin liposomes (DaunoXome®), 
cytarabine liposomes (DepoCyt®), mifamurtide liposomes (Mepact®), 
etc. 

At the same time, many more passive as well as active targeting 
liposomal products have progressed into clinical trials, e.g. thermo 
sensitive doxorubicin liposome Thermodox®, irinotecan liposomes 
(LE-SN38®, CPX-1® and MM-398®), tumor endothelial cells targeting 
paclitaxel cationic liposomes EndoTAG-1®, cisplatin liposomes 
(Lipoplatin®, SPI-007® and LiPlaCis®), and vinorelbine liposome 
Alocrest®, etc. Among which, MM-398® has completed its Phase III 
study for the treatment of metastatic pancreatic cancer this year while 
the Phase III studies of Thermodox® and Lipoplatin® are recruiting. 
Besides, it should be pointed out that there are also several ligand-
targeted liposomes are in different phases of clinical trials. As reviewed 
by Van der Meel R et al. [5], oxaliplatin liposome MBP-426 and tumor 
suppressor protein loading liposome SGT-53 are both designed to 
target transferrin receptor on tumor cells via the ligand transferrin 
and single-chain antibody fragment (scFv) respectively. Doxorubicin 
liposomes MM-302, Anti-EGFR ILs-DOX, 2B3-101 can actively target 
human epidermal growth factor receptor-2 (HER2), epidermal growth 

factor receptor (EGFR) and glutathione transporters on blood-brain 
barrier (BBB) via coupling of scFv antibody fragments, Fab′ fragments 
of the anti-EGFR mAb cetuximab and glutathione (GSH) respectively. 
In addition, there are another two liposomes (MCC-465 with the 
conjugation of F(ab′)2 of the human GAH antibody and Lipovaxin-
MM modified with melanoma antigens) are undergoing clinical trials 
as well. Most of formulations presented excellent targeting effect in 
preclinical studies and desirable response rate in clinical trials. For 
example, anti-EGFR ILs-DOX showed superior cancer cell association 
and internalization than ligand-lacking control formulations in vitro 
and significantly inhibited tumor growth in EGFR-overexpressing 
tumor xenograft models. Besides, it can even overcome multidrug 
resistance in drug resistant tumor xenograft model. In a phase I study 
of anti-EGFR ILs-DOX, among 26 patients with EGFR-overexpressing 
advanced solid tumors, one patient showed complete response, one 
partial response and ten patients had stable disease lasting 2-12 months. 
Because of encouraging results like this, many of ligand-targeted 
liposomes are recommended for further studies. However, as most of 
the ligand-targeted liposomes use proteins or antibodies as ligands, 
there are many potential problems for these formulations as this kind 
of ligands is easily to degrade in blood circulation and formulations will 
need strict storage conditions as well. 

Our lab has done a lot of works on ligand-targeted liposomes as 
well. The difference is that we replace proteins and antibodies with 
stable peptides or small molecular compounds because these ligands 
show better stability while the targeting effects remain desirable. As the 
main goal of our research is to treat glioma, we modified liposomes 
with one or more peptides/small molecules which can target BBB or 
blood-brain tumor barrier (BBTB) and glioma cells. Among tested 
ligands, the PEGylated liposomes with dual peptide ligands [6], DCDX 
and cyclic RGD (cRGD), show most promising prospect. DCDX is a 
D-peptide ligand of nicotine acetylcholine receptors (nAChRs) on
the BBB [7], and cRGD is a ligand of integrin highly expressed on the
BBTB and glioma cells [8]. Both peptides are proved to stable in blood. 
Through the modification, liposomes can actively target both brain
capillary endothelial cells and tumor neogenetic vessel cells, effectively
traversing BBB and BBTB monolayers and targeting glioma cells. As a
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result, drugs encapsulated in dual ligand liposomes present better anti-
glioma effect with prolonged median survival of nude mice bearing 
glioma compared with free drug and non-dual ligands liposomes (36.5 
days for dual ligand liposomes, 28 days for free drug and 29 days for 
non-dual ligands liposomes). 

Except for our researches, studies by other groups also confirmed 
the effectiveness of peptide modification for tumor-targeted liposomal 
drug delivery. Reported formulations include multifunctional 
tandem  peptide  R8-c(RGD) modified liposomes [9], tumor-
penetrating peptide (RGERPPR) attached liposomes [10], angiopep-2 
and tLyP-1 dual ligand liposomes [11], etc. We believe that with 
researches going on, the benefits we can get from peptide modified 
liposomes will be greater.

All the encouraging results of liposome researches confirm that 
tumor active targeting liposomes as a kind of formulation with great 
possibility of translating into clinical applications, bring some hope 
for the treatment of cancer. However, as our knowledge of liposomes, 
tumor biology and interactions of liposomes in the body is still limited, 
to advance the applicability of ligand-targeted liposomes, further 
studies on in vitro/in vivo characterization of liposomes, receptor 
expression levels on various cancer cells and ligand-receptor reactions 
are needed [5].
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