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Abstract

It was proposed a physiologically and experimentally confirmed explanation of Fåhraeus-Lindqvist-effect in
capillaries using osmotic profiles of erythrocyte deformability. It was shown the dose-dependent changes of the
erythrocytes deformability after forming artificial water pores (nystatin) and occlusion (PbCl2) of available.The effect
was conditioned by interchange of the liquid phases between the erythrocyte and plasma in shear flow.
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Introduction
The effect of hematocrit changes in small vessels with a diameter

less than 150 microns (R.Fåhraeus-effect) and reducing blood viscosity
with decreasing size of the vessel (R.Fåhraeus-T.Lindqvist-effect) [1],
first described by the authors in 1931, caused attention to theoretical
researches and practical modeling. So, erythrocytes in axial cylindrical
flow tube slide in the surrounding layer of plasma. This leads to poor
marginal zone cells, which accelerates the movement of the liquid
core. Thus, the effect is due to the displacement of red blood cells in
shear flow and the plasma acts as a lubricant layer [2-4]. These
conclusions are consistent with modern hydrodynamics concepts, but
the redistribution of particles in the bloodstream does not change the
ratio of the solid and liquid phases. The real reason for the change in
hematocrit and plasma viscosity the blood flowing in small vessels,
remains enigmatic. We aimed to elucidate the physiological
mechanism of changes in hematocrit and blood viscosity due to
increased shear stress and the associated process of deformation
changes of erythrocytes.

Materials and Methods
As is known, the most important determinants of the deformation

properties of red blood cells are the internal viscosity of the contents
or the degree of hydration of hemoglobin, the ratio of surface area to
volume, or S / V, and the degree of rigidity of the membrane. In our
opinion, the degree of deformability depends also on the presence of
lipid membrane pores through which the liquid phases can be
exchanged between the internal and external environments of cells in a
changing shear stress.

The studies were carried out by method of gradient
ektacytometry[5]in installation of its own production. The shear rate
and shear stress in the gap Couette with viscosity 10 cP at 100 rev/min
correspond to 1.050 S-1 and 10.5 N/m2, which are close to the
conditions of the blood flow in the capillaries [6,7]. Osmotic
deformability profile or osmoskan characterizes changes deformability
index Ie versus the osmolality of the suspension medium. Light
intensityathigh(A) andsmall(B)axes of the first diffraction ring was
measured, and the elasticity (A-B/A+B) or Iewas calculated. On the

chart were identified several characteristic points: Omax-osmolality at
which the highest Ie corresponds to isotonicity value in blood, Omin-
osmolality at which the minimum Ieobserved, it is an accurate measure
of the surface-to-volume ratio of erythrocyte population (S/V), and
Imin- deformability in the point of isotropic erythrocyte swelling.

We used 10 laboratory Wistar rats. The blood was collected after
decapitation, heparin used as an anticoagulant (100 U/ml). After
centrifugation at 600 g for 10 min the plasma was removed, and the
erytrocytes were washed once with HEPES-buffered physiological
solution (in mM): 145 NaCl, 7.5 KCl, 10 glucose and 10 HEPES at pH
7.4. Water channels were blocked by HgCl2 (SIGMA-ALDRICH) in
concentrations of 2(10-5-10-3) on the phosphate buffer. Erythrocytes
and buffer with various concentrations of HgCl2 were mixed in equal
proportions and were incubated in 1 hour at 25°C. Water channels in
the erythrocytes were formed with help of polyene antibiotic Nystatin,
which interacts with membrane sterols, increases water, electrolyte
and non-electrolyte permeability of cholesterol-lipid bilayer and
causes the formation of pores with a radius of 0.36-0.37 nm. Nystatin
(SIGMA-ALDRICH) was dissolved in dimethyl sulfoxide. Incubation
of washed erythrocytes with nystatin(2.10-6-10-5)Мwas carried out in
30 minutes at 25°C. The final solvent concentration in the test medium
was less than 0.01% [9]. Experiments were conducted with a
suspension of erythrocytes after removal of the supernatant. The data
are expressed as mean ±SD. Comparisons between the deformability
indexes of red blood cell treated with and without drugs were made by
paired T-test. P values <0.05 were considered significant.

Results
These experiments were presented in Figures 1 and 2. There was a

clear dose-dependent increase of both the indicator Imin and the Imax
depending on the number of pores formed in erythrocyte
membranes(Figure 1), whereas Figure 2 showed a dose-dependent
decrease in the ability of red blood cells to deform both at isotropic
swelling and in isotonic zone depending on the number of blocked
pores.Numerical values of the deformability index Imin as result of the
impacts with nystatin and mercuric chloride were shown in Table 1.
As was seen from the table, Imin significantly increased when
increasing the number of hydrophilic pores in the membrane of
erythrocyte and start falling at their blockade.Numerical valuesofIein
isotonic region were shown in Table 2. IntegraldeformabilityIe was
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increased significantly with increase in the number of hydrophilic
pores and decreased with their blockade. These concentrations of
reagents did not destroy the erythrocyte membranes and have
demonstrated the picture of quality changes in deformation properties
of red blood cells in model experiments.
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Figure 1: Osmotic deformability profiles of erythrocytes before and
after incubation with nystatin. Curves 2-6 represent samples with a
progressive increase in the concentration of nystatin: 1- control, 2-1
µM, 3-2 µM, 4-5 µM, 5-10 µM, 6-20 µM.
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Figure 2: Osmotic deformabilityprofiles of erythrocytes before and
after incubation with HgCl2.Curves 2-4 represent samples with a
progressive increase in the concentration of HgCl2: 1-control, 2-20
µM, 3-50 µM, 4-100 µM.

Nystatin HgCl2

Control, n=5 0,167±0,008 Control, n=5 0,102 ± 0,007

1 mcМ, n=5 0,187±0,008 20 mcМ, n=5 0,088 ± 0,005

2 mcМ, n=5 0,190±0,008 50 mcМ, n=5 0,081 ± 0,005*

5 mcМ, n=5 0,200 ± 0,008* 100 mcМ, n=5 0,063 ± 0,004***

10 mcМ, n=5 0,212 ± 0,009***

20 mcМ, n=5 0,219 ± 0,010**

Table 1:Imin values in experiments with nystatin and HgCl2. * -P<0.05;
**-P<0.01; ***- P<0.001. Note: The reliability of differences in relation
to the control.

Nystatin HgCl2

Control, n=5 0,575 ± 0,007 Control, n=5 0,528 ± 0,010

1 mcМ, n=5 0,588 ± 0,008* 20 mcМ, n=5 0,517 ± 0,008*

2 mcМ, n=5 0,617 ± 0,009*** 50 mcМ, n=5 0,502 ± 0,008**

5 mcМ, n=5 0,613 ± 0,012**** 100 mcМ, n=5 0,475 ± 0,006***

10 mcМ, n=5 0,612 ± 0,008***

20 mcМ, n=5 0,608 ± 0,010**

Table 2: Ie values in experiments with nystatin and HgCl2

Discussion
Biological membranes form extended bulk bilayer structures with a

relatively small microviscosity and thickness combining the protein
and lipid components with different properties. Barrier and
mechanical properties of the cellsare defined its continuity. Membrane
lipids possessing mesomorphism reside in the crystalline and liquid
states, which differ in packing density and mobility of the protein
molecules.The phase transitions lead to an increase in mobility of the
acyl chains in bilayer, to an increase their angle of inclination and to a
reducing of packing density. The lateral mobility of membrane
proteins is increased, increasing the likelihood of their associates. The
native structure of the bilayer can be brokenin the process of life with
the formation of structural
defects.Thewaterpermeabilityofmembranesisveryhigh. It is assumed
that it can pass through the temporary structural defects formed
during thermal vibrations tails of fatty acids.These defects (kinks)
provide the ability to move across the membrane not only water, but
also other small hydrophilic molecules (oxygen, carbon dioxide).

When red blood cell is placed in a hypoosmotic conditions, water
rushes into the cell by concentration gradient, the volume increases,
and it takes the form of an isotropic sphere before hemolytic stage.
Fundamentally at this point deformation properties of the membrane
does not play a significant role, erythrocytes is undeformable
structure.However, a shear stress in the Couette cell tends to change
the spherical shape. While maintaining the volume, the change of the
form can occur as a result of increase in surface areaonly, becausea
sphere has a maximum volume for the given surface. But the extension
module (dilatation), determines the properties of the lipid bilayer as a
two-dimensional incompressible fluid is so large that for all non-
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destructive deformation of the erythrocyte surface area remains
unchanged, and the membrane under physiological conditions
inextensible [10]. The shear forces cause the rise of the hydrostatic
pressure. The volume is reduced due to output a liquid suspension
through hydrophilic pores.Thus, the erythrocyte has an ability to
change its shape in shear flow due to the exchange of the liquid phases
between of its content and suspending medium (in pointOmin).The
extent of these changes depends on the number of the liquid phase
output from the erythrocyte, i.e. on the number of the liquid pores.
The method developers [11] in the study of cell populations isolated by
density gradient have shown that not all cells reach a critical volume in
the same osmolarity.Accordingly, they explain residual deformability
of erythrocytes in terms of polymorphism. However, the authors did
not consider the possibility of exchanging liquid phases in the
deformation of cells.In our opinion the erythrocyte polymorphism
modifies the width of the inversion zoneonly and to a lesser extent the
residual deformability.Meanwhile, in anemic states, particularly in
sickle cell anemia, ektacytometry shows the perverse behavior of
osmoskanes, especially in point Omin[12-15].Our years of research
suggests that at the native state the deformability in the inversion point
is significantly lower than when various impacts, whether pathology or
stress.

As seen from the figures, the deformability in inversion point (Imin)
increases with the concentration of the antibiotic in the suspension
medium and is reduced when using a blocking agent. However, the
osmoskane picture also is changing. Thus, the formation of additional
pores in membranes (see Figure 1) is violated native osmoregulation
and the shape of erythrocytes. The hydration of hemoglobin is
increased due to water ingress into the cell.Point Omin is shifted into
hyperosmotic zone, indicating that the erythrocytes are swelling. As
for the shift point Omaks, this is a consequence of increase in the
degree of a hemoglobin hydration and shift of characteristic
pointO’ofright wing of the osmoskane.When the pores are blocked
(see Figure 2), there is a "conservation" of the inner aqueous phase and
the osmoskanе profile does not change.However, the membrane is
"loaded" with heavy metal salt and becomes rigid, as evidenced the
Omax reduction.

The data of these experiments are shown in a narrow range of
concentrations of mercuric chloride and nystatin with minimally
noticeable effect. The concentrations of reagents used in the paper do
not destroy the membrane and demonstrate the picture quality
changes of deformation properties of red blood cells in model
experiments.Increasing the concentrations, according to a qualitative
change in the osmoskanepatternes, causes severe disturbance of
osmoregulation systems and marked hemolysis.

Conclusion
Evolving shear stress in vessels smaller than 150 microns causes

stimulated reshaping oxygen carriers. As a consequence of these

changes, the liquid phase is moved by the pressure gradient from the
capillary lumen into the erythrocyte. The hematocrit and the blood
viscosity in the vessel are reduced. These transformations are
reversible. When the erythrocyte leaves capillary, the shear
deformations are reduced, cell shape is restored and the water re-
enters inside. Using labeled media and fluorescent dyes, as well as
experiments with cooking buffers on heavy water and subsequent
stress by passing the erythrocyte suspension through a Millipore filters
or by syringe hopefully confirms our conclusion.
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