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Introduction
Cardiovascular disease including stroke is the leading cause of 

death and disability worldwide [1-4] and an enormous economic 
burden to our societies [1,3,5-7]. Prevention by better diagnosis and 
drug treatment could provide a huge saving for the health care cost 
worldwide. Despite advancement in modern cardiovascular medicine, 
the prevalence of hypertension, ischemic heart disease (IHD) and 
stroke is still on the rise, and that finding an optimum therapy to slow 
disease progression remains a therapeutic challenge. 

The importance of adenosine and adenosine 5’-triphosphate (ATP) 
in regulating many biological functions has long been recognized, 
especially for their effects on the cardiovascular system [8-17]. It 
is known that adenosine and ATP are key factors in regulation of 
coronary blood flow [12,18-20], inhibiting platelet aggregation [21], 
protection of myocardium [17,22-24], neuromodulation [25-32], 
attenuating tissue necrosis [14,33], ischemic preconditioning [34-39], 
immunomodulation [40], energy metabolism [16,41-43], and perhaps 
other functions as well (e.g. pain mediation) which maintain the 
homeostasis of the cardiovascular system. In respond to ischemia, ATP 
is broken down to release adenosine. The activity of adenosine is very 
short lived because it is rapidly taken up by myocardial and endothelial 
cells, red blood cells (RBC), and also rapidly metabolized to inosine 
and subsequently to hypoxanthine, adenine, S-adenosyl homocysteine 
(SAH), and other adenine nucleotides [8,18,44,45]. In our laboratory, 
we have been studying the potential of circulatory concentrations 
of adenosine and ATP, and their metabolites as biomarkers for 
cardiovascular protection and as targets for anti-ischemia drugs for 
several years [46-49]. It has been postulated that adenosine and ATP 
may be used as sensitive biomarkers to quantify myocardial and 
endothelial ischemia [8,44,50], and for monitoring therapeutic effects 
of anti-ischemia drugs [46,48,51-53]. More recently, we have shown 
that exercise improves cardiovascular hemodynamic and increases 
RBC concentrations of ATP and guanosine 5’-triphosphate (GTP) in a 
rodent model, particularly in the rats pre-treated with diltiazem (DTZ) 
[47,54,55], which was not observed in non-exercise rats [49]. The 
increase of circulatory concentrations of adenosine and ATP could be 
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Abstract
Previous studies have shown that red blood cell (RBC) concentrations of adenine 5’-triphosphate (ATP) may 

be a key factor for post exercise effects responsible for cardiovascular protection. To test this concept further, we 
investigated the effect of isoproterenol on ATP metabolism in RBC using a freely moving rat model in vivo. Sprague 
Dawley rats were given either isoproterenol (30 mg/kg) or saline by subcutaneous (sc) injection. Blood samples 
were collected sequentially for up to 6 hours for measurement of adenine nucleotides in the RBC. Hemodynamic 
recordings were collected throughout the experiment. We have found isoproterenol induced 50% mortality under the 
experimental condition. It decreased systolic blood pressure (SBP) and diastolic blood pressure (DBP) immediately 
after the injection by -64 ± 22 and -64 ± 20 mmHg in less than 15 min, and increased HR steadily by +158 ± 59 
bpm at the end of the experiment. Isoproterenol also increased RBC concentrations of adenine 5’-monophosphate 
(AMP) from 0.04 ± 0.01 to 0.28 ± 0.23 mM (+500%). The rats died had much greater breakdown of ATP to adenosine 
5’-monophosphate (AMP) in the RBC than those surviving from the injury (p<0.05 for all the comparison). 

key factors for exercise preconditioning and a mechanism responsible 
for cardiovascular protection [17,34,56,57]. In order to study the 
importance of ATP metabolism in RBC in cardiovascular toxicity, we 
studied the effect of cardiovascular injury induced by isoproterenol 
on cardiovascular hemodynamic and RBC concentrations of adenine 
nucleotides in a freely moving rat model in vivo [58,59].

Materials and Methods 
Chemicals

Authentic standards of Purine nucleotides including ATP, 
adenosine-5’-diphosphate (ADP), AMP, and isoproterenol 
hydrochloride were purchased from Sigma-Aldrich Chem Co. (St. 
Louis, MO, USA). Solvents were HPLC grade, and all other chemicals 
were reagent grade (Fisher Scientific, ON, Canada).

Animal study

The protocol followed the Canadian Council on Animal Care 
guidelines and was approved by the Dalhousie University Committee 
on Laboratory Animals. Sprague Dawley rats (SDR) with a carotid 
artery catheter Weighing between 250 and 320 g were used. They were 
acclimatized at the Carleton Animal Care Centre with free access to 
food and water for 48 hours before experiment. During experiment, 
each rat was kept in a freely moving caging environment with free 
access to drinking water (Figure 1). In the treatment group (n=10), 
after an hour settling in the cage, isoproterenol hydrochloride (30 mg/
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kg) freshly prepared in normal saline (30 mg/mL) was administered 
by subcutaneous (sc) injection in the dorsal area of the rat. A separate 
group receiving normal saline was used as control (n=9). Four blood 
samples (0.3 mL each) were collected from each rat via an indwelling 
catheter before isoproterenol (labeled as 0, 0.05, 0.25, and 1 hour), 
and then 7 more samples after isoproterenol labeled as 1.2, 1.5, 2, 3, 
4, 5 and 6 hours. The blood samples were immediately mixed with a 
“Stopping Solution” for measurement of adenine nucleotides (ATP, 
ADP and AMP) [47]. Hemodynamic recordings including systolic 
blood pressure (SBP), diastolic blood pressure (DBP), and heart rate 
(HR) were collected continuously throughout the experiment using 
a TruWave disposable pressure transducer (Model PX601, Edwards 
Lifesciences Canada, Inc., Mississauga, ON, Canada) coupled to a 
Siemens hemodynamic monitor (Sirecust 400) and chart recorder 
(Siredoc) (Erlangen, FRG) [55]. The RBC samples collected were 
processed and lysed immediately using an ice cold 10% trichloroacetic 
acid. The lysate samples were stored at -80°C, and concentrations of 
ATP and other adenine nucleotides in the RBC were determined by 
a validated HPLC assay [47]. The rats which still survived at the end 
of the experiment (>5 hours after isoproterenol) were euthanized by 
cardiac puncture under general anesthesia with isoflurane.

Data analysis

Areas under the curve of RBC concentrations of ATP and other 
adenine nucleotides were calculated using trapezoidal method 
(Prism-5, Graphpad Software Inc., La Jolla, USA). Maximum (Cmax) 
and minimum (Cmin) concentrations of adenine nucleotides and 
hemodynamic variables (SBPmax and min, DBPmax and min, HRmax 
and min, etc.) were obtained directly from the observed data (Figure 
2). Hemodynamic and circulating biomarker variables between the 
control and isoproterenol treatment groups during the experiment 
were analyzed by student’s paired and unpaired t-test, and differences 
considered significant when p<0.05. In addition, possible relationships 
between biomarkers from the group mean data and individual rat data 
were assessed using Pearson Correlation and linear regression analyses, 
and considered significant at p<0.05 (Minitab Inc., Release 15.1, State 
College, PA, USA). 

Results 
Under the described experimental condition, isoproterenol 

induced 50% mortality within 5 hours after administration (p<0.05). It 
decreased SBP and DBP immediately after the injection (<15 min) by 
-64 ± 22 and -64 ± 20 mmHg (SBPmin and DBPmin), and increased
HR by +158 ± 59 bpm at the end of the experiment (p<0.05). Both
SBP and DBP rebounded to pre-treatment (baseline) level after 1-2
hours after injection (i.e. SBPmax and DBPmax) (p<0.05), and then
fell again for the remaining of the experiment. There was no rebound
from the HR response. In addition, isoproterenol also increased RBC
concentrations of ADP and AMP immediately after injection, with
corresponding decrease of ATP concentration (Figure 2). Two hours
after the isoproterenol injection, RBC concentrations of AMP and ADP
increased from 0.043 ± 0.0088 to 0.22 ± 0.19 mM (>400%) and 0.41 ±
0.067 to 0.75 ± 0.33 mM (>80%) (p<0.05 by paired t-test). The decrease
of ATP concentration in the RBC immediately after isoproterenol was
not statistically significant (1.97 ± 0.24 to 1.74 ± 0.45 mM; p>0.05 by
paired t-test).

The rats that died (victims) had greater increase of the AMP 
and ADP concentrations than those surviving ones (survivors) after 
isoproterenol (Table 1). However, due to the small number of animal in 
the study (n=10), the difference found between the victims and survivors 
was not statistically significant. The same difference would have been 

Figure 1:  In vivo animal model.

Figure 2: Cardiovascular effects of isoproterenol (30 mg/kg sc) vs. control 
(data are presented as mean ± SEM).

Figure 3: Effect of isoproterenol (30 mg/kg sc) on RBC concentrations of 
adenine nucleotides (data are presented as mean ± SEM).
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significant if a larger sample size (e.g. n=20) was used. There was no 
significant difference in the RBC concentrations of ATP between the 
dying and surviving rats before or after isoproterenol (Figure 3), nor any 
difference in the hemodynamic responses to isoproterenol (SBP, DBP, 
and HR) between the victims and survivors (Figure 4). The suvivors 
from the insult appeared to have higher baseline blood pressure (SBP 
and DBP) and lower RBC concentrations of ATP before isoproterenol, 
but the differences were not statistically significant (Tables 1 and 2). 

There were significant correlations between the mean RBC 
concentrations of ATP and ADP (r=-0.962, p<0.05) and between ATP 
and AMP (r=-0.957, p<0.05) after isoproterenol in the dying rats, but 
not in the surviving ones or in the control group (without isoproterenol) 
(Figure 5). There were also significant correlations between RBC 

concentrations of ADP and AMP in the rats treated with isoproterenol 
and in the control group (Figure 5). When individual rat data were 
analyzed, the regression coefficient (β) and correlation coefficient (r) 
between the adenine nucleotides were significantly different between 
the isoproterenol treated rats and the controls. Further, the rats died 
from the insult had significantly greater breakdown of ATP to AMP 
than those survived (β=-0.318 ± 0.190 vs. -0.058 ± 0.115, p<0.05) (Table 
3).

Discussion
Isoproterenol is known for many years as a stress agent of the 

sympathetic system which increases HR, but the effects on BP 
particularly DBP are highly variable [58,60]. After 50–200 mg/kg 
dose given once daily by subcutaneous (sc) injection for 2 days to rats, 
isoproterenol has been shown to induce cardiac hypertrophy, increase 
serum concentrations of lactate dehydrogenase (LDH), creatine kinase 
(CK), aspartate aminotransferase (AST), serum cardiac troponin I and 

Figure 4: Effect of isoproterenol (30 mg/kg sc) on cardiovascular hemody-
namic (data are presented as mean ± SEM).

Figure 5: Correlations between mean RBC concentrations of adenine 
nucleotides.

Biomarker 
variables

Control 
(n=9)

Isoproterenol 
treatment (n=10)

Victimsa 
(n=5)

Survivorsb 
(n=5)

ATP AUC(0-1 hr) 
(mM-hr)

1.56 ± 0.34d 1.84 ± 0.27 2.01 ± 0.25* 1.70 ± 0.18

ATP AUC(1-4 hr) 
(mM-hr)

4.93 ± 0.97 5.19 ± 1.04 4.68 ± 0.99 5.55 ± 0.95

ATP Cmax(mM)c 2.12 ± 0.44 2.29 ± 0.37 2.13 ± 0.35 2.39 ± 0.36
ATP Cmin (mM)c 1.39 ± 0.27 1.46 ± 0.42 1.39 ± 0.52 1.61 ± 0.34
ADP AUC(0-1 hr) 
(mM-hr)

0.42 ± 0.16 0.46 ± 0.10 0.51 ± 0.10 0.41 ± 0.08

ADP AUC(1-4 hr) 
(mM-hr)

1.11 ± 0.25 1.79 ± 0.64* 1.88 ± 0.84* 1.64 ± 0.49*

ADP Cmax(mM) 0.53 ± 0.12 0.81 ± 0.30* 0.94 ± 0.34* 0.65 ± 0.22
ADP Cmin (mM) 0.32 ± 0.08 0.48 ± 0.25 0.63 ± 0.30* 0.34 ± 0.05
AMP AUC(0-1 hr) 
(mM-hr)

0.05 ± 0.03 0.05 ± 0.01 0.05 ± 0.02 0.06 ± 0.01

AMP AUC(1-4 hr) 
(mM-hr)

0.14 ± 0.09 0.45 ± 0.39* 0.58 ± 0.52* 0.34 ± 0.21*

AMP Cmax (mM) 0.08 ± 0.04 0.28 ± 0.23* 0.38 ± 0.26* 0.16 ± 0.11
AMP Cmin (mM) 0.04 ± 0.03 0.10 ± 0.13 0.15 ± 0.17 0.04 ± 0.02

aRats died within 5 hrs after isoproterenol
bRats survived longer than 5 hrs after isoproterenol
cAfter isoproterenol or 1 hr for control
dData represent mean ± SD
*p<0.05 vs. control (t-test)
**p<0.04 vs. victims (t-test) 
Table 1: Comparison of RBC concentrations of adenine nucleotides in rats treated 
with isoproterenol (30 mg/kg sc) and control.

Hemodynamic 
variables

Control 
(n=9)

Isoproterenol 
treatment (n=10)

Victimsa 
(n=5)

Survivorsb 
(n=5)

SBP (mmHg)c 122 ± 12e 121 ± 15 114 ± 10 129 ± 18
SBPmin (mmHg)d N/A 56 ± 16 57 ± 19 56 ± 14
SBPmax (mmHg)d N/A 131 ± 34 133 ± 34 129 ± 38
SBPmax-SBPmin 
(mmHg)

N/A 75 ± 41 77 ± 46 73 ± 42

SBP-SBPmin (mmHg) N/A 64 ± 22 58 ± 21 73 ± 23
Slope (mmHg/hr) N/A 56 ± 29 61 ± 30 52 ± 31
DBP (mmHg) 94 ± 19 94 ± 22 87± 9 102 ± 32
DBPmin (mmHg) N/A 30 ± 14 28 ± 12 31 ± 18
DBPmax (mmHg) N/A 105 ± 36 105 ± 31 106 ± 46
DBPmax-DBPmin 
(mmHg)

N/A 76 ± 37 77 ± 38 75 ± 41

DBP-DBPmin (mmHg) N/A 64 ± 20 59 ± 19 71 ± 22
Slope (mmHg/hr) N/A 56 ± 30 57 ± 32 54 ± 33

aRats died within 5 hrs after isoproterenol
bRats survived longer than 5 hrs after isoproterenol
cBaseline or before isoproterenol
dAfter isoproterenol
eData represent mean ± SD
*p<0.05 vs. control (t-test)
**p<0.04 vs. victims (t-test) 
Table 2: Comparison of hemodynamic effect in rats treated with isoproterenol (30 
mg/kg sc) and control.
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a host of lipids and triglycerides [58,59,61,62]. Lower dose (5 mg/kg) 
injected daily for a week has been shown to increase different cardiac 
fibrotic and hypertrophic markers, and induce cytochrome P-450 
enzymes [63]. The ability to titrate dosage of isoproterenol and induce 
cardiovascular injury quickly without surgical manipulation makes 
it particularly suitable as a working animal model for study of acute 
cardiovascular toxicity [59,64,65]. 

Under the experimental conditions, 50% of the rats died within 5 
hours after isoproterenol, while there was no mortality in the control 
group. It should be pointed out that as much as 11 blood samples 
(close to 3.5 ml) were obtained from each rat in both control and 
isoproterenol treatment groups, which could add to the significant 
mortality rate observed in the treatment group. We have shown in 
this study that immediately following a single 30 mg/kg subcutaneous 
injection of isoproterenol, both SBP and DBP fell by 50% or more, and 
HR by more than 100 bpm. There was a rebound of the blood pressures 
to close to pre-treatment level 1-2 hour after the isoproterenol injection, 
following that they both fell again and remained much lower than 
the pre-treatment level. However, there was no rebound of the HR 
which remained substantially elevated by over 150 bpm at the end of 
the experiment (Figure 2). It is important to note that all the deaths 
occurred after the rebound and those survived from the insult also had 
significantly lower blood pressure and elevated HR at the end of the 
experiment similar to the victims (Figure 4). There was no significant 
difference in hemodynamic response between the survivors and victims 
(Table 2). 

In addition to the hemodynamic effects, there was also an immediate 
increase of RBC concentrations of ADP and AMP, with a corresponding 
decrease of ATP concentrations after the isoproterenol injection (Figure 
2). While the increase of ADP and AMP concentrations were significant 
(p<0.05), the decrease of ATP concentrations was not. This was probably 
attributed to the much higher concentrations of ATP in the RBC (5-
10 times) such that a relatively small decrease of ATP concentration 
can lead to much greater increase of ADP and AMP concentrations 
in the RBC. The results suggested that ATP was broken down to ADP 
and AMP in the RBC after isoproterenol, which is known to occur in 
ischemia [8,18,44]. The fact that it happened in the RBC in vivo after 
isoproterenol injection suggests a unique role of ATP metabolism in 
RBC for cardiovascular homeostasis. It has been proposed that RBC 
may serve as oxygen sensor in the cardiovascular system [66,67]. It is 
known that RBC is capable of releasing increased amounts of ATP as 
oxygen content falls and its haemoglobin becomes desaturated [68]. 
Thus it is conceivable that RBC may sense tissue oxygen requirements 
when they travel through the microcirculation and release vasodilatory 
compounds such as ATP and its metabolites that enhance blood 

flow in hypoxic tissues [67]. The released adenine nucleotides would 
help to increase blood supply to the tissue and preserve an optimum 
balance between oxygen supply and demand, thereby modulating the 
concentrations of tissue ATP within the cardiovascular system. Such 
a mechanism would eliminate the requirement for a diverse network 
of sensing sites throughout the vasculature, and should provide a 
more efficient means of appropriately matching oxygen supply with 
demand. It is important to note that while there was no difference in 
the hemodynamic response between the victims and survivors, the 
RBC concentrations of AMP was considerably higher in the dying rats 
(Figure 3). However, due to the small number of rats (n=10) used in the 
pilot experiment, the difference was below significant level (p=0.12). 
Increasing the number of rats to n=20 could result in significant 
difference (p=0.024). 

In order to identify more sensitive biomarkers predictive of 
mortality induced by isoproterenol, individual and group mean 
data were analyzed by association analyses. There were significant 
correlations between the mean RBC concentrations of ATP and ADP 
(r=-0.962, p<0.05); and also between ATP and AMP (r=-0.957, p<0.05) 
in the dying rats, but not in the surviving ones (Figure 5), suggesting 
that more ATP was broken down to ADP and AMP in the dying rats. 
Analysis of individual rat data supported this thesis although only the 
regression coefficient (β) between ATP and AMP showed significant 
difference between the victims and survivors (Table 3). The current 
study suggests that ATP metabolism in the RBC may be sensitive 
biomarkers predictive of cardiovascular mortality. We have recently 
shown that a brief exercise (15 minutes on a treadmill at a speed of 10 
m/min) induced a greater post-exercise hypotension in spontaneously 
hypertensive rats (SHR) compared to SDR. It also decreased ATP 
concentrations in the RBC during exercise in the SHR as opposed to 
an increase found in SDR. This could be attributed to a reduced energy 
reserves in the SHR which could imply SHR may be more vulnerable 
to ischemia injury [69]. The finding is very encouraging as most of 
the current cardiac biomarkers are physiological and/or pathological 
markers specific to cardiac tissues and have limited predictive values for 
cardiovascular mortality [70-72]. However, further study using larger 
sample size in SDR and SHR to confirm the role of ATP metabolism 
in RBC for cardiovascular homeostasis is warranted. Significant 
correlations between RBC concentrations of ADP and AMP were 
also observed (Figure 5). However, the relationship was not predictive 
of mortality and not specific for cardiovascular toxicity (Table 3). In 
summary, we have shown for the first time isoproterenol acutely 
induced breakdown of ATP to ADP and AMP in RBC in vivo, which 
may be the rate limiting step for cardiovascular toxicity.

Biomarker variables Control (n=9) Isoproterenol treatment (n=10) Victimsa (n=5) Survivorsb (n=5)
ATP vs. AMP rc -0.051 ± 0.312*,e -0.515 ± 0.421 -0.717 ± 0.362 -0.262 ± 0.380
ATP vs. AMPβd 0.002 ± 0.032* -0.202 ± 0.204 -0.318 ± 0.190 -0.058 ± 0.115**
ATP vs. ADP r 0.299 ± 0.306* -0.277 ± 0.569 -0.429 ± 0.654 -0.088 ± 0.456
ATP vs. ADP β 0.103 ± 0.117* -0.294 ± 0.542 -0.523 ± 0.642 -0.008 ± 0.194
ADP vs. AMP r 0.579 ± 0.260 0.787 ± 0.253 0.812 ± 0.248 0.767 ± 0.285
ADP vs. AMP β 0.132 ± 0.124* 0.392 ± 0.277 0.296 ± 0.282 0.469 ± 0.278

aRats died within 5 hrs after isoproterenol
bRats survived longer than 5 hrs after isoproterenol
cCorrelation coefficient
dRegression coefficient
eData represent mean ± SD
*p<0.05 vs. isoproterenol (t-test)
**p<0.04 vs. victims (t-test) 

Table 3: Correlation between RBC concentrations of adenine nucleotides in rats after isoproterenol (30 mg/kg sc).
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Conclusion 
Isoproterenol profoundly altered cardiovascular hemodynamic and 

induced break down of ATP in the RBC to ADP and AMP particularly 
in the dying rats. Association between RBC concentrations of ATP with 
AMP or ADP may be used as sensitive and predictive biomarker for 
cardiovascular mortality. 
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