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Abstract
Autism spectrum disorder (ASD) imparts a tremendous health burden with psychological, social, and economic 

implications. The biology of ASD is complex involving genetic, molecular, hormonal and immunologic factors however 
the convergence point of these various factors has not been identified as of yet. Limited evidence exists to suggest 
that the placenta may play such a governing role in ASD manifestation. The placenta is a neuroendocrine modulator 
by participating in the fetal hypothalamic pituitary gonadal (HPG) axis and also regulates the intrauterine environment 
mitigating fetal exposure to damaging factors to modulate the fetal stress response. Placental dysfunction has been 
associated with developmental abnormality and neuropsychiatric pathology adding to the biologic plausibility of the 
governing role the placenta may play in ASD development. By using current technology like induced pluripotent 
stem cells (iPSCs), a practical model system can be created to study ASD providing an alternative method to further 
research the placenta in ASD development
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Introduction
Autism spectrum disorder (ASD) poses a great health burden and a 

tremendous effort towards researching the etiology has been performed. 
Though a great body of research has identified candidate genes, gene 
networks, and possible molecular pathways, the underlying regulation 
of these steps is currently unknown. Broadening ASD research 
to include environmental exposures and perinatal factors has not 
identified a convergence point of these various players. Neurobiological 
findings suggest that ASD pathophysiology may originate during fetal 
development [1-9]. Given this data, a plausible convergence point 
appears to be the placenta, which is known to regulate proper fetal 
development in utero. The placenta could therefore be thought of as the 
final common pathway in the development of ASD merging pertinent 
genetic, structural and environmental factors that impact fetal brain 
development. Targeting the placenta and trophoblast in understanding 
the complex biology of ASD may therefore be a more effective strategy 
to guide basic, translational and clinical science research. 

One challenge that exists in furthering ASD research is the lack of 
a standard model system to study the etiology of the disorder. Most 
research about autism is based on retrospective studies, biological 
samples taken from autistic adults, or post-mortem brain autopsies. 
While useful in identifying biomarkers in autistic individuals, there 
is difficulty in proving causation rather than just correlation. These 
methods have proven to have limitations decreasing their efficacy in 
developing a comprehensive ASD model. Induced pluripotent stem cell 
(iPSC) technology can advance current ASD research by providing a 
means of circumventing the limitations associated with traditional 
research paradigms. Recreation of placental tissues from individuals 
diagnosed with ASD can be achieved by converting cryopreserved 
peripheral blood cells into iPSCs [10] and then inducing differentiation 
toward hormone secreting trophoblast cell types [11]. While conditions 
to induce iPSCs toward trophoblast development remains to be refined, 
some of the different trophoblast and neural cell features of autism 
patients can be reflected in such experimental systems [12]. This 

technology provides a solution to tissue availability and prolonged 
placental tissue cryopreservation. Use of iPSCs may identify the cellular 
and genetic pathways related to ASD and can elucidate the epigenetic 
and synergistic effects of the environment and stress on such pathways 
within the placenta. A tissue culture model is capable of measuring 
cellular response to different stimuli including pro-inflammatory 
cytokines, infectious agents, pesticides and oxidative stresses, all of 
which can be administered in the trophoblast culture system. The 
iPSC-trophoblast model is therefore ideal for investigation by creating 
placental precursor stem cells to examine the trophoblast and placental 
role in integrating genetic, hormonal, environmental and perinatal 
contributors to autism. 

This article summaries the limited existing data supporting 
the placental convergence hypothesis. We review the biology and 
pathophysiology of the placenta with respect to neuropsychiatric 
outcomes highlighting trophoblast development and function with 
respect to neuromodulation and brain morphology, demonstrating 
the placental role in neurodevelopmental environment regulation 
and explaining differential placental gene expression involved with 
neuromodulation. We further review existing data discussing the 
resultant pathology that occurs from placental dysregulation in other 
organ systems to argue the idea of biologic plausibility of placental 
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function in ASD formation. We also briefly review the clinically relevant 
data regarding the placental role in fetal stress response programming 
and maternal immune activation. Finally we review the study of 
iPSCs in ASD research and suggest that iPSCs can also help establish 
causational data to support the role of the placenta in ASD emergence. 
If iPSCs are also used to help examine differential gene expression the 
model system could contribute to efforts for potential reversal of the 
ASD phenotype.

The placenta governs neural development through hormone 
secretion

Trophoblasts are the precursors of the placenta and play a regulatory 
role in fetal neural brain development through a highly coordinated 
sequence of developmental events. Just 8 days after implantation, 
the trophoblast cells form the syncytiotrophoblast, the outer 
multinucleated layer, and the cytotrophoblast, the inner mononuclear 
layer [13]. The syncytiotrophoblast secretes the hormone human 
chorionic gonadotropin (HCG) which among its various functions is 
thought to play a role in neurodevelopment. HCG belongs to the same 
growth factor family as nerve growth factor and animal studies have 
demonstrated increased neurite processes and decreased apoptosis in 
in vitro studies of fetal rat brains cultured with HCG. This hormone 
may also function in behavior regulation as areas within the brain 
related to behavior including the hippocampus and hypothalamus 
express high levels of HCG receptors [14]. The syncytiotrophoblast 
creates an interconnecting network of vascular channels 12 days after 
implantation so that by day 17, placental circulation is established [15]. 
Shortly after the establishment of this blueprint of fetal circulation, fetal 
neurodevelopment begins to take center stage. At 3 weeks of gestation, 
neural tube formation begins as regulated by modulatory effects 
from the notochord. In vitro studies of early human embryogenesis 
demonstrates that HCG secreted by the trophoblast influences 
embryoblast development and growth as well as induces progesterone 
synthesis, an obligatory role in neural precursor cell and neural tube 
formation through autocrine and paracrine methods [16]. Furthermore, 
in vitro studies of messenger RNA (mRNA) expression demonstrate 
that human placental cells produce follistatin, which along with 
inhibin, exerts an inhibitory effect on placental HCG secretion [17]. 
In vitro and animal studies provide evidence that neural development 
is influenced by trophoblast cells which are able to create vascular 
networks. This vasculature composes the proper regulatory hormonal 
milieu influencing nervous system and fetal brain development which 
if dysregulated may result in clinical neuropathology [18]. Use of iPSCs 
may provide a promising tool to advance research in this area. Emphasis 
on creating induced trophoblast cells as opposed to neural stem cells 
may offer a unique insight into the neuromodulatory factors occurring 
in utero at early gestational ages. Trophoblast differentiated stem cells 
could be used to measure differences in secretion of HCG, follistatin 
and progesterone between autistic and non-autistic individuals.

The placenta influences neuronal function and brain 
morphology

Differences in brain functioning including multiregional 
dysregulation of neurogenesis, migration, maturation, neuronal hyper-
reactivity and reduced neural synchronization have been identified in 
individuals with ASD [12,19]. Evidence suggests that the placenta might 
be involved in some of these functions through epigenetic mechanisms 
[20-22]. The establishment of proper neuronal functioning as mediated 
through migration, organization and myelination begins in fetal life 
around 12-20 weeks gestation with some processes continuing into 

postnatal life [23]. Migrating neurons will await connections from 
afferent neurons in the thalamus, basal forebrain and brainstem in 
order to undertake the necessary developmental steps [2] and as the 
fetal brain undergoes these dynamic processes, the placenta provides 
both transport of necessary metabolic nutrients and neuroendocrine 
functions necessary to support fetal brain development [20]. Evidence 
also exists suggesting the placenta may influence neuroanatomy. 
Neuronal proliferation begins around 12-16 weeks of gestation [23] 
and may be mediated early on by placental secreted factors including 
HCG and follistatin [14]. It is likely that improper secretion of these 
hormones by the placental trophoblast may result in too many or too 
few neural connections. Macrocephaly is a noted clinical feature of 
children with autism and postmortem studies of ASD individuals have 
revealed an excess amount of neurons in the prefrontal cortex. MRI 
studies in individuals at risk for psychiatric and cognitive disorders have 
demonstrated volume reduction in areas of the brain associated with 
these nervous system processes [3]. Animal models have demonstrated 
that the onset and duration of placental insult produces varied 
neuropathological outcomes and similar morphologic and functional 
changes seen in human neuropathology [2]. As the nervous system 
undergoes dynamic change throughout gestation and into postnatal life 
with the rate of neurogenesis equaling approximately 40,000 synapses 
per second, this process is likely subjected to modulatory factors both 
essential and detrimental. A trophoblast-differentiated model would 
allow for a systematic examination of the specific metabolic nutrients 
and neuroendocrine factors necessary for neural functioning and fetal 
brain anatomy. Use of iPSCs may aid to clarify the exact pathways 
responsible for these associations advancing the knowledge provided 
by current animal and in vitro models.  

The placenta actively regulates environmental determinants 
of nervous system physiology

The placenta functions as a transport organ to provide necessary 
nutrients to the developing fetus. During prenatal development, the 
placenta serves to maintain homeostasis and control environmental 
exposures [24,25]. Environmental triggers found to increase the risks 
of neurodevelopmental disorders during pregnancy include nutrition, 
stress, infection, and inflammation. The possible insults that can affect 
the developing fetus are diverse; however the placenta determines 
whether these insults can be transmitted to the developing fetus [26,27]. 
The placenta plays a role maintaining the delicate balance of nutrients 
such as metals which are known to influence fetal brain development. 
Metallothionein-1 is found within the syncytiotrophoblast and is 
known to bind heavy metals [28]. Furthermore, human studies have 
shown differing concentrations of metals by gestational age, suggesting 
that the placenta may actively regulate the concentrations of certain 
metals for various neurodevelopmental processes and pathways [28]. 
Disruption of the delicate balance of metal concentration may lead to 
neurobehavioral pathology. Lower whole body zinc levels and zinc to 
copper ratios have been seen in children with ASD [29]. Preconception 
zinc deficiency has caused aberrant neural tube development in mice 
[30] and it appears that supplementation of metals in individuals with 
micronutrient deficiency may modulate placental vascular function 
in humans [31]. Furthermore, both zinc and copper are regarded as 
neurotransmitters with high concentrations in the hippocampus. 
Disruptions in the balance of these metals have been associated in 
behavior disorders [32]. The enzymes involved in metal processing 
have been associated with certain types of neuropathology and the 
placenta is thought to be a key regulator in these metabolic pathways. 
Copper is oxidized by the protein ceruloplasmin (CP), an iron 
transporter, and is studied in the etiology of autism, schizophrenia, 
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and obsessive-compulsive disorder. CP is an acute phase reactant 
that is regulated by cytokines in response to hypoxia resulting from 
infection or inflammation. The placenta also has receptors for CP to 
deliver copper to the fetus [33]. High levels of CP protein are present 
in placental tissue, specifically in cases of preeclampsia [34]. When 
comparing autistic individuals to their non-autistic siblings, lower CP 
levels were detected in autistic children who lost “previously acquired 
language skills” as compared to those individuals who did not [35]. This 
suggests that low CP levels might contribute to the clinical presentation 
of neurodegeneration seen in autistic individuals. The underlying 
mechanism of this observation is thought to be due to elevated iron 
concentration that occurs with decreased CP leading to cerebral 
damage [35]. The data involving metals and brain development both 
basic science and clinical observational studies seems to support the 
connection between placental function and neuropathology. 

Differential gene expression within the placenta influences 
neuroendocrine regulation of brain development 

Differential gene expression, especially seen from gender 
differences, has been theorized to explain features of ASD [36-38]. 
Interestingly, gender differences in gene expression within the human 
placenta have been identified [39-41] and are associated with clinical 
outcomes such as differential fetal growth [42] and stress response [43]. 
Given the genetic heterogeneity of ASD and the numerous implicated 
genes [44-47] the placenta appears to be a likely a convergence point of 
differential gene expression. Many of the implicated genes are known 
to affect components of the hypothalamic pituitary gonadal (HPG) 
axis, a known neuroendocrine regulator of brain development, of 
which the placenta is a major component. Alteration in the HPG axis 
has demonstrated varied neurologic effects primarily through follicle 
stimulating hormone (FSH). A promising cluster of candidate genes 
labeled as the Root 66 genes has revealed a non-random association 
with ASD and the HPG axis. When we cross-referenced these 66 genes, 
we determined that 50 of them have gene or protein expression within 
placental trophoblasts or decidua [48]. Furthermore, research involving 
the use of iPSCs to re-create an “autistic cell” has suggested that ASD 
likely arises from a common developmental origin [36]. Given that the 
HPG axis is highly conserved among species, it is very plausible that 
the conserved pathways of neuronal and endocrine development are 
regulated by the placenta, which has demonstrated to affect both these 
aspects. 

Placental dysfunction leads to developmental abnormality

The human placenta serves as a regulator of fetal programing in 
other organ systems, which when altered, results in pathology [49]. 
Various human and animal studies suggest that the development of 
many chronic diseases including heart disease, obesity, hypertension 
and type 2 diabetes originate in prenatal life [50-59]. The cardiovascular 
health after maternal placental syndromes (CHAMPS) study 
demonstrated a doubling in the risk of premature cardiovascular 
disease in women without a previous history of cardiac disease who had 
a maternal placental syndrome during pregnancy [51]. Furthermore, 
expression of placental genes has been shown to impact fetal cardiac 
function and anatomy. One such gene, HOXA13, which is expressed 
in placental and not cardiac tissue, is involved with cardiovascular 
development. Knockout HOXA13 mice results in abnormal placental 
endothelium and is associated with a reduction in ventricular wall 
thickness leading to embryonic death [50]. There is also evidence to 
support the idea that vulnerability to disease is “programmed” in fetal 
life with a growing body of evidence linking intrauterine environment, 

neurodevelopment and subsequent neuropsychological outcomes 
[60]. An iPSC trophoblast model would provide vital real-time data 
regarding the neuromodulatory role that the placenta plays in both 
ASD affected and unaffected individuals. 

The placenta impacts neuronal cellular structure and function 
[3]; additionally, clinically relevant physiologic associations between 
the placenta and fetal brain development such as brain sparing have 
also been seen. This phenomenon occurs in human developmental 
pathophysiology when the fetus alters hemocirculation to preserve 
oxygen and nutrient supply to the brain in the setting of placental 
insufficiency. Brain sparing occurs regionally and in a hierarchical 
order with an initial attempt to preserve higher cognitive function areas 
first, though prolonged placental insult will result in shifting towards 
preserving survival areas of the brain. This physiologic phenomenon 
is thought to be a protective mechanism; however, prolonged brain 
sparing may lead to negative consequences persisting postnatally [61]. 
Sheep models of chronic placental insufficiency in the second half of 
gestation demonstrate features of brain sparing and Guinea pig models 
of chronic placental insufficiency have resulted in schizophrenia-like 
features comparable to those found in humans [2]. Whether brain 
sparing from prolonged placental insult is causational in resultant 
neurocognitive and neuropsychiatric pathology remains unknown, 
placental insult appears connected to proper neurodevelopment and 
brain function. Genetic predisposition may influence the likelihood 
of placental dysfunction resulting in clinical pathology however, 
further studies are needed. The current limited data seems to support 
a tight connection between the brain and the placenta during prenatal 
development [62]. 

Fetal stress response is prenatally programed by the placenta 
and may result in neuropsychiatric pathology when disrupted

Mammalian systemic stress responses are controlled by the 
hypothalamic pituitary adrenocortex (HPA) axis, which exerts its 
regulatory effects through the concentrations of corticotropin-releasing 
hormone (CRH) from the hypothalamus, adrenocorticotropic hormone 
(ACTH) from the pituitary, and cortisol from the adrenal cortex. During 
pregnancy, the placenta plays a pivotal role in balancing the maternal 
HPA activities thereby modulating the fetal stress response. The placenta 
secretes CRH and expresses 11β-Hydroxysteroid dehydrogenase 
(11β-HSD), which regulates how maternal glucocorticoids enter the 
fetal bloodstream and cortisol’s effects [63,64]. In addition, the placenta 
has been shown to produce and secrete serotonin which accumulates 
in the fetal forebrain at mid-gestation [65] connecting the stress 
response pathways to direct neurologic effects within the developing 
fetus. These placental mechanisms not only control fetal exposure to 
maternal stress, but also provide feedback regulation for the maternal 
HPA axis to attenuate stress level as pregnancy proceeds [66-68]. 
Genetic variations leading to differential expression of glucocorticoid 
and CRH receptors associated with depression and stress disorders 
may impact the maternal HPA axis and fetal stress response [69-71]. 
Furthermore, sexual dimorphism in the execution of the HPA axis has 
already been observed in neurodevelopmental abnormalities. Studies in 
patients with congenital adrenal hyperplasia, a condition of abnormal 
cortisol metabolism, have shown increased autistic like behaviors in 
affected females but not in males when compared to controls [37,72]. 
Hormone activity in the HPA axis can be detected as early as 8-12 weeks 
of gestation and is regulated by the placenta through feedback loops 
involving cortisol, a factor for proper maturation of organ systems 
including the central nervous system [73]. 

Placental modulation of the stress pathway can also be influenced 
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by many other maternal factors, one being nutritional status. Murine 
studies demonstrate the importance of the placenta in protecting 
the fetal brain [74]. In a dietary deprivation model, changes in gene 
expression favoring the catabolic pathways were only observed in the 
placenta without altering the fetal hypothalamus. On the contrary, 
elevated expression of transporter proteins was observed in the fetal 
hypothalamus but not in the placenta [75]. This may explain the dire 
outcomes of human development, including metabolic disease and 
psychiatric disorders during famine [76]. Maternal diet has been shown 
to influence placental glucocorticoid metabolism which can predispose 
offspring to hypertension [77,78], and is also known to reduce 
placental 11β-HSD expression [79]. Changes in maternal cortisol level 
or in the placental HPA pathway have not only been linked to adverse 
birth outcomes, but also in neurodevelopmental outcomes including 
cognitive and behavioral changes, emotional reactivity and motor 
dysfunction [80-84]. 

Maternal Immune activation: linking maternal stress to the 
development of ASD

In addition to modulating stress response and allocating needed 
resources to the developing fetus, the placenta also protects the fetus 
from harmful exposures, especially inflammation. The maternal 
immune activation (MIA) model is useful in ASD research. The 
effects of MIA can potentially be mediated by inflammatory cytokines 
interleukins 1 and 6 (IL-1 and IL-6); maternal IL-6 is affiliated with 
limiting the signaling of cytokines through the placenta via gene 
expression (SOCS3). If an infection occurs during a certain time 
frame, the intensity of MIA can lead to fetal brain damage. In response 
to an infection, the mother’s immune system normally will send out 
leukemia inhibitory factor (LIF) through the placenta and activate 
the LIF signaling pathway within the fetus. This “maternal-fetal signal 
relay” stimulates fetal neurogenesis of the cerebrum, as demonstrated 
in rat models [85]. A severe MIA reaction causes an increase in 
leukocytes and IL-6 production in rat models [86] and a decrease 
in fetal LIF, leading to stunted neurodevelopment. The cerebrum is 
subsequently damaged due to the lack of LIF in the fetal system and the 
high levels of IL-6 result in elevated SOCS3 expression which inhibits 
any further neurogenesis [85]. Placental trophoblast IL-6Rα knockouts 
had decreased placental and fetal brain inflammation resulting in less 
irregular behaviors in mice offspring [87]. Similarly, placental and 
neurodevelopmental damage induced by lipopolysaccharide (LPS) 
mediated inflammation was shown to be alleviated by an IL-1 receptor 
antagonist [88].  

Given that fetal susceptibility to MIA is observed during mid-
gestation, it would be most informative to analyze biochemical changes 
in trophoblast-differentiated stem cells following activation of the 
immune system. The MIA model remains to be the most reproducible 
with phenotypes closely mimicking human ASD in mouse models 
of autism-like behavior disorders. Monogenic models often have 
incomplete penetrance making it difficult to link placental dysfunction 
with the autism phenotype. Changes in gene expression of the fetal brain 
have been observed in MIA models [89,90] and these models should 
be used to analyze immediate placental gene expression responses to 
MIA. Long-term effects of MIA can subsequently be identified through 
genome wide analysis of epigenetic changes by identifying changes in 
DNA methylation patterns.   

Molecular and genetic differences should be examined in the 
placenta

Gene expression analyses of other tissues reveal key changes in 

pregnancies complicated by ASD including natural killer cells, tissues 
of the prefrontal cortex, lymphocytes within peripheral blood and other 
tissues [91-94]. Examination of differences in baseline gene expression 
or after a stress challenge may identify or better clarify diagnostic 
and therapeutic targets for clinical use. Prolonged preservation of 
viable trophoblast tissue is labor intensive and costly. Stem cells from 
individuals with autism offer an alternative source of cells. A recent 
study used neuron-differentiated iPSCs from ASD affected persons 
with deletion or duplication of the 16p11.2 region to analyze the 
biological mechanisms underlying the macrocephaly and microcephaly 
phenotypes. This region is associated with a copy-number variant 
mutation linked to certain neurological disorders. This use of iPSC 
technology was able to demonstrate that reduced synaptic density, 
which likely would result in larger scale neuroanatomical changes 
within the brain as a whole, were a result of mutations in the 16p11.2 
region [95]. Similarly, iPSC use may also elucidate the relationship of 
pathologic manifestations associated with ASD, such as trophoblast 
inclusions [96,97]. Stem cells can be induced into trophoblast cells, 
examined during various stages of development when exposed to 
differing environmental exposures or genetic/epigenetic changes and 
examined for the presence or absence of trophoblast inclusions. The 
iPSC model appears to allow for more efficient and effective methods 
to examine the ASD phenotype from genetic, epigenetic and molecular 
differences in the placenta and trophoblast which since now has been 
limited.

Induced pluripotent stem cells as a model system

Induced pluripotent stem cells are becoming more utilized in 
research for neurological disorders and are gaining more attention 
in ASD research and treatment. Studying neuron-differentiated 
iPSCs from patients has contributed to our limited knowledge of 
ASD pathogenesis and has facilitated drug screening platforms for 
therapeutics [98]. Previous to iPSC technology, there was a dearth 
of sufficient human samples of neurons to study these neurological 
disorders. With iPSCs, researchers can now analyze the mechanisms 
involved in neuronal cellular development from initial stage to an adult 
stem cell that may result in neuropsychiatric disorder manifestation 
[99]. A neuron-differentiated iPSC model system has revealed insights 
into the role dysfunctional glial cells play in ASD pathophysiology 
in addition to providing a means to test potential therapeutics [100]. 
Currently the data examining iPSC technology in the placental 
trophoblast is limited and even more limited when examining this 
technology in ASD patients [11-12]. As the placenta plays a major role 
in fetal development, especially neural development, iPSC technology 
should not only be examined in neuronal cells but also in placental cells. 
By discussing the limited data supporting the role of the placenta in 
ASD and the even more limited research done about iPSC modeling for 
the connection between the placenta and ASD manifestation, we hope 
to spark more conversation and action into using this model system. 

Of course, despite the usefulness of iPSCs, there are limitations. 
With iPSCs, there have been noted differences in the transcriptome, 
proteins, and the epigenome compared to embryonic stem cells. These 
differences could be due to the reprogramming process iPSCs undergo, 
which could also affect how efficiently the cells differentiate [12,101-
103]. Despite these identified limitations, iPSC technology does appear 
to be an effective tool to advance our comprehension of ASD. As with 
any model, understanding the limitations posed by the iPSC system will 
be vital to draw meaningful conclusions from future research endeavors 
(Figures 1 and 2, Table 1).    
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Figure 1: The placenta appears to function in fetal brain development through various proposed pathways including its participation in the HPA/HPG axis and as 
a regulator of insults and essential nutrients to provide a suitable environment for proper fetal brain development.  Pathology including neuropsychiatric outcomes 
like ASD may result when placental dysfunction occurs.

Figure 2: Utilizing iPSC technology, a model system can be constructed to understand trophoblast function in fetal brain development.  Fibroblasts from autistic 
patients are induced into trophoblast cells.  These induced cells can be used to measure hormone secretion, gene expression and epigenetics, immunologic factors 
and environmental exposures.  These factors can be compared to non-autistic trophoblast controls to identify significant influencers in ASD pathophysiology.
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50 of the Root 66 Genes Detected in Placenta
Class Gene Detection Class Gene Detection

Known to be Associated with Autism
TCF4 Low

Interact with ASD candidate genes

SIRPA Medium
UPF2 Low SVIL Medium

Interact with ASD candidate gene

ACSL4 Medium TDP2 Low

ASAH1 Low TIMP2 Medium

BAX High TXN Low
BCL6 Low UBE2D3 Medium

CAPZ A2 Medium ZNF644 Low
CNOT4 High

Related to genes associated with 
neurological conditions

AGTPBP1 Medium
COL4ABP Medium ARID4B Low
CSF2RA Low CPD Medium
CUL4A Low DSE Medium
GMPR2 Medium KIF1B High

HNRNPC High LAMTOR3 Medium
HSPD1 Medium OCIAD1 Medium
ITGB1 High PHF20L1 Low
LAMP2 High RAB24 Low
LYST Low RAB2A High

NFE2L2 High RBM25 High
PCNP High SLC44A2 Medium
PFDN5 High SORL 1 High
PPM1B Medium SUPT4H1 Low
RBM39 Low TNRC6A High
RBMX High VMP1 Medium
RHEB Low WIPF1 Low
SEPT2 Medium WLS Low

Table 1: Classification of the 50 Root 66 genes according to gene function as outlined by Diaz-Beltran et al. (2016).  Placental presence and detection level obtained by 
cross-referencing the Human Protein Atlas and Gene Cards websites.

Conclusion
Efforts have been made to diagnose ASD as early as possible 

[104], specifically because the burden of disease is extraordinary. In a 
cost-of-illness analysis, ASD was projected to account for up to 3.6% 
of GDP in 2025, exceeding the burden of stroke and hypertension 
[105,106]. Many research modalities have been explored to address 
this clinical challenge without much avail. Placental contributions to 
neurobehavioral developmental disorders have largely been neglected 
until recently. The placenta is a neuromodulator influencing brain 
morphology, regulating the environment for proper brain development 
and function, impacts fetal stress response and maternal immune 
activation. It is part of the HPG and HPA axes by way of its hormonal 
secretions and its dysfunction has been associated with clinically 
relevant neuropathological outcomes. Using iPSC technology can 
advance the placental origin of autism theory and provide new 
diagnostic and therapeutic markers for treatment. Re-conceptualizing 
ASD research involves the understanding that placental abnormality is 
a feature of ASD and that using of iPSC technology can examine the 
exact genetic, biochemical, and environmental factors that cause ASD 
development. 
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