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Abstract
Antibiotics are used irresponsibly at every opportunity to treat mild or even viral infections. Accordingly antibiotics have been 

used in massive amounts in agriculture as a preventive provision against bacterial diseases and to promote the growth of animal 
feedstock such as poultry, beef and pigs, respectively. Consequently many reports of the past decades contained numerous treatises 
on bacteria’s ability to become resistant to antibiotics what in turn is a growing issue in health care. For example a diverse set of 
clinical pathogens which includes multi-drug-resistant strains of Mycobacterium tuberculosis, Staphylococcus aureus and various 
Enterococci species are now nearly untreatable with standard antibiotics and pose a growing threat to patients in hospitals and the 
community at large. 

Furthermore, antibiotic resistance genes (ARGs) are prevalent in environments resulting in enhanced health hazard risks. 
Moreover, conjugative transfers of ARGs help to disseminate multiple antibiotic resistant pathogens which pose a serious threat 
to humans if allowed to enter the food chain. Thus, better knowledge and more information on the fate of antibiotics as well as 
the development and spread of antibiotic resistance bacteria and genes in the environment are required to understand underlying 
processes.

This review is an effort to emphasize how biotic environments become polluted initiated by several antibiotic applications via 
human beings. 
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Introduction
Antibiotic resistances existed long before people discovered how 

to use antibiotics as medicine. The discovery and use of antibiotics 
in medicine in the 20th century, better hygienic conditions and 
vaccinations can rid bacteria and cure humans so that infectious 
diseases have declined markedly [1,2]. However, antibiotics are 
often used carelessly on every opportunity to treat mild or even viral 
infections. In addition to that antibiotics have been used in massive 
amounts in agriculture as a preventive measure against bacterial 
diseases, and to promote the growth of poultry, beef and pigs in animal 
farms [3-5]. Yet often we hear about multi resistant bacteria which 
cannot be eliminated effectively by antibiotics. These bacteria are 
known as antibiotic resistant, and they have become a major clinical 
and public health problem in the life of most people living today [6-8].

The continual use of antibiotics over a long period of time evokes an 
intense selective pressure on bacteria and triggers antibiotic resistance 
dissemination among bacteria [2,9,10]. Although most of the bacteria 
are killed due to the use of antibiotics, sometimes, some bacteria with a 
vantage are viable as a consequence of conjugative transfer of resistance 
genes among bacterial communities and high antibiotic resistance 
competence, respectively [1,10-13,]. 

During the past few decades, it became very difficult to treat 
some specific bacterial infections due to the fact of high multiple-
antibiotic resistances in bacteria. Many multi-drug resistant bacteria 
exist (e.g., Mycobacterium tuberculosis, Staphylococcus aureus), which 
have become nearly untreatable by standard antibiotics [4]. However, 
patterns of multiple-antibiotic resistance in gram-negative bacilli 
are also increasing alarmingly world-wide [14]. These multi-drug 
resistance bacteria cause threat to patients in hospitals. Also live stocks 
have been identified as a serious source for the spread of pathogenic 
antibiotic resistant bacteria in the environment [3-5,10].

Since beginning of the antibiotic era, the dissemination of ARGs 
was introduced to almost all ecosystems. Especially agricultural soils, 
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water surfaces and wastewaters receive a notably input of antibiotics 
which promote the amplification of ARGs [15,16]. The dissemination 
of antibiotic-resistant bacteria and ARGs from wastewater irrigation 
to soil and aquatic habitats contributes also to antibiotic resistances 
world-wide [17]. 

Another important aspect is the co-selection of antibiotic 
resistances provoked by the presence of heavy metals or xenobiotics, 
anthropogenically introduced into the environment [10-12,18]. This 
co-resistance could occur due to the fact that the presence of resistance 
genes of heavy metals, xenobiotics and antibiotics are often located 
on plasmids which are either transferable or mobilizable. Especially 
plasmid-mediated horizontal gene transfer (HGT) plays an important 
role in the emergence of new pathogens [1,9,10,16,19]. 

However, different routes for the introduction of antibiotic spreads 
into the environment especially in agriculture exist [10]. Currently the 
application of livestock manure in agriculture is occurring at large scale, 
causing serious threats of antibiotic disseminations in the environment 
as excreta of farm animals may contain high doses of antibiotics [5,20-
22]. Consequently, different sources of contaminations are causing an 
uncontrolled spread of antibiotic resistant bacteria in the environment 
[9,10,23,24]. Also aquatic environments are contaminated by land 
application of antibiotics in agriculture responsible for the spread of 
antibiotic resistant bacteria [25].
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1.8% chlortetracycline, monensin and tylosin were lost from manure 
stockpile by runoff water. Campagnolo et al. [33] detected a significant 
quantity of macrolides, sulphonamides and fluoroquinolones in the 
nearby surface water.

However, taking into consideration that 20–75% of the antibiotics 
administered to feedlot animals are excreted unaltered in faeces (Table 
1), it is clear that the antimicrobial use in livestock is an important 
source of antibiotics release into the environment [26]. Although 
some effects of antibiotics on plant’s growth have been reported [34], 
the main impact of these pollutants will be on the environmental 
microbiota. This impact has different levels and consequences. First, 
the utilization of antibiotics can select for antibiotic-resistant bacteria 
within the treated host. In the case of antibiotics used for farming 
purposes, the selection of resistance can be important for both the 
treatment of animal infections and human health. Several evidences 
support an association between the use of antimicrobial agents in food 
animals and antimicrobial resistance among bacteria isolated from 
humans [4,14]. According to a report of Massé et al. [5] the quantitative 
use of livestock antibiotic increased over a time period of 54 years 
(1950–2004) to 108-fold in the USA, triggered by a recommendation to 
increase the limits of growth-promoting antibiotics in poultry and pig 
diets from 3 ppm to 200 ppm. About 91% of livestock industries in US 
are using 11.2 million kg antibiotics annually sold “over-the-counter” 
as growth promoters. Antibiotics fed to animals end up in manure 
and eventually in the environment. Schmieder and Edwards [35] 
reported that approximately 30% of these antibiotics are metabolized 
in the bodies of animals. The majority of antibiotics and metabolites 
are released into environment by animal faeces and urine (Table 2). At 
sub toxic levels, these antibiotics can lead to an increase in antibiotic 
resistant bacteria within receiving environments exerted by selection 
pressures on bacterial communities and, consequently, accelerating 
their resistances. Excreta from domestic animals and wastewater from 
cleaning stables disembogue in manure storage tanks or lagoons. 
These manures are used as fertilizer or as a substrate for methane 
production in biogas plants. The digested residues are also used as 
fertilizer. According to a report of Berkner et al. [36] several studies 
have demonstrated that fluorochinolones accumulated in sewage 
sludge entered rivers and lakes since the sludge was used as fertilizer or 
filling material. In addition, antibiotics also enter aquatic environments 
directly from pharmaceutical industries. Antibiotics are also used in 
culture medium for the production of biological pharmaceuticals. 

Antibiotic resistances in the environment

Also antibiotic resistances are a public health concern of great 
urgency as the inefficacy of antimicrobial agents to treat infectious 
diseases conspicuously increased. The propagation of ARGs released 
from anthropogenic sources plays a decisive part in that set off by an 
overuse of antimicrobials in humans and intense use of antibiotics in 
animals and agriculture [8,37,38].

Several studies have reported the presence of antibiotic resistant 
bacteria outside hospitals worldwide, namely in food, sewage, waters 
for recreational activities, soil, air, animals, healthy human feces and 
others [39,40]. 

The presence of antibiotic resistant bacteria in water sources 
throughout the world has also been well documented. Bacteria are able 
to adapt rapidly to new environmental conditions and the presence 
of antimicrobial molecules, respectively, and as a consequences, 
resistances are increasing with an frivolous use of antimicrobials [41-
43]. Several water-borne disease outbreaks occur due to the presence 

Hence, this review is an effort to emphasize how biotic 
environments are polluted by an improper use of antibiotics by 
human beings. Furthermore, antibiotic resistance genes are prevalent 
in the environment with high risk of health hazards. In this review, 
mechanisms of antibiotic resistances are also discussed.

Pollution by antibiotics

The utilization of antibiotics in clinical sectors or farming purposes 
selects resistant microorganisms [5,26]. Thus, it is predictable that 
residues from hospitals or farms will contain both types of pollutants; 
antibiotics and resistance genes. Nevertheless, the fate of both types of 
pollutants is likely different. Several antibiotics are natural compounds 
that have been in contact with environmental microbiota for millions 
of years and thus are biodegradable, and even serve as a food resource 
for several microorganisms [27]. Synthetic antibiotics can be more 
refractory to biodegradation. However, synthetic antibiotics naturally 
degrade in the environment at different rates, depending on the housing 
environmental matrix. In the wastewater treatment some antibiotics 
are efficiently removed by photodegradation [28]. Accordingly, reports 
exist describing that in ground water samples the concentrations of 
antibiotics were usually below their detection limits, whereas sediment 
samples accumulated higher concentration of antibiotics [25,29]. 
Nevertheless, antibiotics naturally degraded (e.g. by photodegradation) 
are not necessarily proper pollutants. 

Also other sources of ecosystems (hospital, farms, and livestock) are 
constantly releasing antibiotics in the environment and pollute them 
(Figure 1). Currently the use of antibiotics is becoming more common 
for the prevention of infectious diseases in humans or animals as well 
as in livestock to guarantee fast growth. Therefore, antibiotics are 
discharged in the environment through excreta from sewage treatment 
plants and also by, e.g., fish farming [22,26]. According to World Health 
Organization, specified limits of antimicrobial quantities in animal 
husbandries are maintained by only a few countries (WHO 2002). 
This issue is an important drawback to assess the effect of antibiotic 
application in animal husbandries and to the release of antibiotics in 
the environment. 

Several studies have reported that the application of specific 
antibiotics in animal production leads to an accumulation of 
antibiotics in fresh manure, manure storage tanks, soil, surface and 
underground water [5,22,26,30,31]. Jacobsen and Halling-Sørensen 
detected tetracycline and sulphonamides in swine manure, whereas 
tylosin was not detected because of its poor recovery from manure. De 
Liguoro et al. [32] detected 0.11 mg kg-1 of tylosin and 10 mg kg-1 of 
oxytetracycline in fresh calf manure, whereas negligible concentrations 
were detected in soil and water. Dolliver and Gupta found that 1.2% to 

 

Figure 1: Multi routes of environmental antibiotic disseminations originated by 
humans. (Graph adapted after Schmieder and Edwards, 2012).
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conquered by enteric bacteria from the intestinal flora of humans 
and animals through wastewaters and the use of manure as fertiliser 
[8,9,22,48,49]. Furthermore, the natural production of antibiotics in 
soil by the micro-biota can be another potential source of selection for 
antibiotic resistance genes within earthy environments [46,50,51].

The expanded application of antibiotics has caused an increased 
incidence of resistances to these antimicrobial compounds, even within 
bacterial species that are not directly subject to antibiotic control 
mechanisms. Numerous genes conferring resistance to antibiotics are 
presently circulating not only in host range but also in many bacterial 
genera in nature what was not the case prior the selective pressure 
produced by an increased use of antibiotics [52,53]. Therefore, 
it is not surprising that contemporary strains of gram negative 
bacteria frequently display resistance to high levels of commercially 
administered antibiotics, and such cases have been documented 
repeatedly with these and many other bacteria [14]. 

Antibiotic resistance genes in bacteria

Pollution by ARGs can increase the chances of survival of human 
pathogens by acquiring resistances. The release of residues with 
human microbiota into environments containing bacteria stimulates 
conjugative resistance elements and consequently leads to increased 
possibilities of acquiring novel resistance determinants by human-
linked bacteria. For this reason, it has been proposed that the release of 
residues from hospitals that contain human commensal and infective 
bacteria (resistant and susceptible) as well as antibiotics should be 

of drug resistant enteric pathogens which survive due to the failure of 
patients to respond to antibiotics treatments [44,45]. For instance, E. 
coli serve as a crucial reservoir for transmissible resistances to a broad 
spectrum of antibiotics and is therefore considered to be potentially 
very dangerous not least because this organism has developed a number 
of mechanisms for acquiring and disseminating plasmids to some 
other pathogenic bacterial strains. Thus rendering the treatment of 
infectious diseases is very difficult [14]. Such selective processes leading 
to the emergence and maintenance of bacteria resistant to antibiotics 
are mainly brought about by an incorrect or abusive utilization of 
these drugs [21]. According to many reports [4,9,10,14,24], bacteria 
living in contaminated environments develop high multiple antibiotic 
resistances. 

Nonetheless, proliferation of resistance genes can take place by 
vertical transfer (multiplication of cells harboring a resistance gene), 
and by three recognized mechanisms of prokaryotic gene transfer 
(transformation, conjugation, and transduction). HGT by conjugation 
seems to be of particular importance under environmental conditions 
because resistance genes are often found on plasmids that are either 
transferable or mobilizable [46,47]. Conjugative plasmids have 
been identified in bacterial populations inhabiting, for instance, the 
phytosphere of sugar beet, the rhizosphere of wheat, contaminated 
soils, river epilithon, marine sediments, marine air water interfaces, 
marine water, marine biofilm communities, sewage and activated 
sludge [7,11,18]. Because of the fact that soil can continuously be 
enriched with antibiotic resistant genes, it is important to investigate 
the interplay of ecosystems and the transmission of ARGs. Soils are 

 Antibiotics Manure source Excretion level (%) Reference
Chlortetracycline Steers faeces 75 Elmund et al., 1971 [77]

Tetracycline Animal faeces 25 Feinman and Matheson, 1978 [78]
Tylosin Urine 50-60 Feinman and Matheson, 1978 [78]

Oxytetracycline Castrate sheep 21 Montforts et al., 1999 [84]
Chlortetracycline Young bulls 17-75 Montforts et al., 1999 [84]

Tylosin Pigs 40 Kolz et al., 2005 [80]
Monensin Beef cattle faeces 40 Donoho et al., 1978 [76]

Virginiamycin Piggeries liquid manure 20 Cocito et al., 1979 [75]
Oxytetracycline Calves manure (faeces, urine and 

bedding)
23 Arikan, 2008 [73]

Table 1: Sources and execration levels of different antibiotics.

Antibiotics Environment Concentrations References
Oxytetracycline Manure 136 mg/L Martínez-Carballo et al., 2007 [82]

Chlortetracycline - 46 mg/L -
Tetracycline Swine manure 98 mg/L Chen et al., 2012 [74]

Oxytetracycline - 354 mg/L -
Chlortetracycline - 139 mg/L -

Doxycycline - 37 mg/L -
Sulfadiazine - 7.1 mg/L -
Tetracycline Swine manure 30 mg/kg Jacobsen and Halling, 2006 [29]

Sulphonamide - 2 mg/kg -
Tylosin Fresh calf manure 0.11 mg/kg De Liguoro et al., 2003 [32]

Oxytetracycline - 10 mg/kg -
Chlortetracycline Beef manure 6.6 mg/kg Dolliver and Gupta, 2008 [26]

Monensin - 120 mg/kg -
Tylosin - 8.1 mg/kg -

Oxytetracycline Cow manure 0.5–200 mg/L Ince et al., 2013 [79]
Chlortetracycline Swine manure 764.4 mg/L Pan et al., 2011 [85]
Chlortetracycline Swine manure storage 1 mg/L -
Oxytetracycline Lagoon 0.41 mg/L Campagnolo et al., 2002 [33]

Table 2: Overview of antibiotic concentrations in manures.
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reduced to a minimum to avoid interchange of genetic material (even 
in wastewater treatment plants [54]). It also has been reported that 
ARGs are present in pristine environments as well as in human and 
animal populations that have not been in contact with antibiotics what 
indicates that, once they are integrated in successful gene-transmission 
elements, antibiotic resistance genes can persist and spread even in 
the absence of antibiotics. Reports supply the notion that the use of 
antibiotics for non-therapy purposes can enrich the population of 
resistant bacteria capable to infect humans [55]. 

As stated by Baquero et al. [24] the contact of human microbiota with 
other types of microbiota from different ecosystems will increase the 
possibility of genetic variations and the emergence of novel resistance 
mechanisms which are re-introduced in human environments [24].

Apart from chemical pollutions caused by antibiotics themselves, 
the use of antibiotics may also accelerate the development of ARGs 
in bacteria, which shade health risks to humans and animals [8,56]. 
These bacteria might be transmitted from environment to human via 
direct or indirect contact [20,51]. Bacterial communities are mainly 
impacted by an improper clinically and veterinary use of antibiotics 
as various multiple resistances against antibiotics rapidly develop 
what is genetically controlled by ARGs. It is also noteworthy that the 
resistance of certain antibiotics is associated with different ARGs based 
on multiple mechanisms and environments.

For example, tetracycline-resistant bacteria were found to emerge 
in environments by the introduction of tetracycline [10,43]. The 
efflux genes of tet A, B, C, D, and E frequently appeared in various 
environmental compartments including activated sludge of sewage 
treatment plants (STPs) [57,58], fish farming ponds [59], contaminated 
soil [10], wastewater treatment plants and surface water [58], and 
poultry litter [60]. Several erm genes have been detected in Enterococcus 
spp. isolated from poultry, raising wastewaters and from livestock 
manures [3]. Six classes of erm genes (A, B, C, F, T, and X) have been 
detected and quantified in samples taken from animal production, 
lagoons, and a biofilter system treating hog house effluents [3]. Among 
the macrolide resistance determinants, ermB is considered as the most 
prevalent gene in environmental microorganisms, especially in the 
strains of Enterococcus [61] and Streptococcus spp. [62].

According to Makowska et al. [58] WWTPs are considered as 
hot spots for both multiplication and dissemination of antibiotic-
resistant bacteria and resistance genes. They reported that treatment 
processes (WWTP) fostered both the frequency of tetracycline- and 
sulfonamide-resistant bacteria and  intI1-positive strains as well as 
the relative abundance of all quantified ARGs and intI1 gene. But also 
tetA and  sul2  were increasing significantly. The discharge of treated 
wastewater raised the number of intI1, tet and sul genes in the receiving 
river water both in terms of copy number ml-1 and relative abundance. 
A recent study by Anjum and Krakat (2015) [10] revealed the presence 
of multiple ARGs (ampC, ermB, ermD, ermG, mecA, tetM) in 
different combinations in bacteria isolated from contaminated alluvial 
soils. Hedayatianfard et al. [59] investigated bacterial strains isolated 
from fishes collected from different fish farms and the genes detected 
were tetA,  tetB,  tetM,  tetO and  tetS. Most of the bacteria were either 
intermediate or fully resistant to tetracycline. Thereby tetA resistance 
genes were most widely distributed while the tetM gene was of minor 
importance. 

Zhang et al. [63] investigated activated sludge and 14 tetracycline 
resistance (tet) genes, 9 genes encompassing efflux pumps (tetA, tetC, 
tetE, and tetG), ribosomal protection proteins (tetM, tetO, tetQ, and 

tetS), and enzymatic modification (tetX) were commonly detected, 
whereas 5 genes tetB, tetD, tetL, tetK, and tetA were not detected. 
Additionally, 109 lactose-fermenting Enterobacteriaceae (LFE) strains 
were isolated from the activated sludge. Tetracycline-resistant LFE 
accounted for 32% of the total 109 LFE strains. The detected frequencies 
of tet genes among all TR-LFE strains varied from 0 to 91% [63]. 

Böckelmann et al. [43] recorded a frequent presence of tetO, mecA 
and ermB genes in reclaimed water in Sabadell (Spain) while soley tetA 
was not detected within investigated waste waters in Nardò (Italy). 

Graham et al. (2009) [60] characterized the survival of 
antimicrobial-resistant Enterococci and Staphylococci as well as 
resistance genes in poultry litter. The ermB – and ermA resistance 
genes were most commonly detected in Enterococci and Staphylococci, 
respectively, whereas three isolates of E. faecium were found to carry 
resistance genes ermB or ermA. However, Gupta et al. [64] declared that 
particularly erm genes encoding for DNA modifying methyltransferase 
enzymes reduce the ribosomal binding of corresponding antibiotics 
and consequently confer resistances to microorganisms. 

Khan et al. [62] isolated macrolide-resistant Staphylococci from 
fresh poultry litter and found several macrolide resistance genes 
ermC, ermA, and ermB. In addition, researchers have found that 
erythromycin-resistant Staphylococci containing ermA and ermC in 
poultry isolates could be transferred to human strains of S. aureus [65]. 
The ermA and ermC genes have been reported to be common genes 
encoding macrolide resistance among Staphylococci of human origin.

Even so, β-Lactam antibiotics are the most widely used groups of 
antibiotics. The resistance to these antibiotics is a severe threat because 
they have low toxicity to humans and are used to treat a broad range 
of infections [58]. 

The mechanisms of β-lactam resistance include inaccessibility of 
antibiotics to their target enzymes, modifications of target enzymes, 
and/or direct deactivation of the antibiotics by β-lactamases [66,67]. In 
gram-negative bacteria, the primary resistance mechanism is enzymatic 
inactivation through the cleavage of the β-lactam ring by β-lactamases. 
More than 400 different β-lactamases encoded by hundreds of ARGs 
(bla) have been identified, and the enzymes are divided into four 
molecular classes, A–D, mediating resistances to a broad range of 
β-lactams including penicillins and cephalosporins [68].

A variety of bla genes have been identified in bacteria derived 
from faecal slurry and lagoon water of dairy farms [69] and surface 
water [58,70]. The environmental compartments may further serve as 
reservoirs for β-lactam resistance genes. The bla genes are often detected 
in animal-derived environmental pathogens including Aeromonas, 
Enterobacter [60], Salmonella, and Staphylococcus [60,62]. AmpC 
gene encoding β-lactamases have been detected in microbial isolates 
from wastewater, surface water, and even from drinking water biofilms 
[70]. MecA gene encoding for methicillin resistances in Staphylococci 
was observed to be prevalent in hospital wastewater biofilms [70]. 

Antibiotic resistance mechanisms in bacteria

Depending of the classes of antibiotics different defence mechanisms 
are activated by attacked bacterial cells (Figure 2). In general four main 
mechanisms of antibiotic resistances are described by Schmieder and 
Edwards [35]: a) The inactivation or modification the antibiotics; b) 
An alteration in the cellular target site of antibiotic that eliminates the 
drug/binding capacity c) The modification of metabolic pathways to 
circumvent the antibiotic effect; d) The reduced intracellular antibiotic 
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accumulation by decreasing the permeability and/or increasing the 
active efflux of antibiotics.. 

Moreover, Bacteria can develop antibiotic resistances initiated by 
the mutation of corresponding antibiotic resistance genes [35,71,72]. 
When resistant genes are mutated, the interspecies transfer can be 
realized by conjugation, HGT and transformation and transduction 
among bacterial populations [10,18,19,43]. Mobile genetic elements, 
including phages, plasmids and transposons mediate this transfer, and 
under some circumstances the presence of low antibiotic levels in the 
environment is the key signal that promotes gene transfer, perhaps 
ensuring that the whole microbial community is resistance to the 
antibiotic [35,73-87]. 
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