

A Retrospective Review of 300 Case Reports, Quality of Life and Correlation with Biomarkers Related To Tumor Burden, in Advanced Cancer

Amin M Nezami*

Sahel Oncology LLC, Orange Coast Medical Center of Hope Inc., 496 Old Newport Blvd. #7, Newport Beach, CA 92612, USA

ABSTRACT

It is currently the tumor size measured by Response Evaluation Criteria in Solid Tumors (RECIST) criteria that is considered an indication for objective response to any effective therapy in cancer, however in advanced solid tumors, this indicator has been debated recently as it fails to correlate with clinical response, quality of life and even overall survival. In this short but large sample size case review, we look into a meaningful potential substitute for such metrics, defined by surrogates of tumor burden, and correlate that with biomarkers that can be easily measured through blood sample, such as tumor circulating DNA (cDNA). We suggest further studies to be considered to validate our findings and propose a shift in current clinical practice by further generation of hypothesis, based on our review.

BACKGROUND

Unresectable metastatic solid tumors is, with rare exception, a fatal disease eventually. A few patients may enter a prolonged remission. However, for the majority of patients with metastatic disease, chemotherapy is administered with palliative intent to decrease tumor bulk, and prolong survival. That said the specific endpoints that best reflect benefit from systemic chemotherapy in metastatic disease remain unclear.

Objective response rates, as judged by a decrease in the size of measurable lesions, are increasingly considered to be poor surrogates for benefit in this family of cancers. The "disconnect" between objective tumor response and quality of life is particularly evident in studies of drugs such as molecularly targeted therapies.

Increasing attention is being paid to other important indicators of clinical outcomes, such as reduced tumor burden, improved quality of life and disease stabilization. Stabilization of disease is increasingly viewed as a realistic endpoint for metastatic disease [1-3]. Studies monitoring patients during treatment have shown that lower ctDNA dynamics correlate with better treatment response in colorectal ovarian, breast, non-small cell lung cancer (NSCLC), and melanoma [4-9]. an integration of supportive care with standard therapies through natural epigenetic therapy, aiming at reducing the metastatic tumor burden, measured by quality of life indicators as well as surrogate biomarkers such as circulating DNA, and circulating tumor cells. All patients started the program after educating them about their possible options of conventional and nonconventional treatments and consents obtained. The progression of disease was measures during or after the course of treatment through Tumor markers, growth factors, Imaging studies and markers for cancer growth, necrosis, LDH, circulating DNA and Circulatory tumor cells (CTC). In this review particularly the circulating DNA was randomly selected as biomarkers of tumor burden. The Table 1, manifests the most common findings in breast cancer cases, as an example. Table 2 manifests the cancer type category of the samples examined on April 2019.

Treatment consisted of multitargeted epigenetic therapy (MTET) in a patented protocol which consists intravenous application of off label natural histone deacetylase inhibitors and demethylators.

Patients were 21 to 83 years old, with mixed ethnicities and backgrounds. More than ³/₄ of the patients had received and exhausted prior traditional care. The minimum treatment course was two weeks and patients data were followed up to 10 years post therapy, when available (2010-2020).

METHODS

We randomly selected and reviewed 300 cases treated solely or with

Results: There were statistically significant positive changes

^{*}Correspondence to: Amin M Nezami, President and CEO, Sahel Oncology LLC, Orange Coast Medical Center of Hope Inc., 496 Old Newport Blvd. #7, Newport Beach, CA 92612, USA, Tel: (949) 515 4673; E-mail: amnezami@yahoo.com

Received: August 10, 2019; Accepted: August 21, 2020; Published: August 28, 2020

Citation: Nezami AM (2020) A Retrospective Review of 300 Case Reports, Quality Of Life and Correlation with Biomarkers Related To Tumor Burden, In Advanced Cancer. Biol Med (Aligarh) 12: 470. doi: 10.35248/0974-8369.20.12.470.

Copyright: ©2020 Nezami AM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

		Gene	Observed in data	
Common gene mutations breast cancer samples (genes identified 10 or more times in breast cancer samples to date).		Grand Total		644
		PIK3CA		61
		TP53		44
		ERBB2		36
		ESR1		32
		NF1		32
		EGFR		27
		ARID1A		26
		КІТ		23
		MYC		22
		CCND1		21
		BRCA1		20
		BRCA2		20
		FGFR1		20
		MET		20
		APC		18
		RAF1		16
		FGFR2		15
		PDGFRA		14
		BRAF		12
		GATA3		12
		CCNE1		11
6	Click to add text	CDK6		10
		NOTCH1		10
	Table 1: Common find	ings in breast cancer	cases.	

Cancer Category Count of samples BLADDER 7 Samples to date by cancer BONE / SOFT TISSUE 14 type, through end of April, BREAST 186 2019 CERVIX 5 ENDOMETRIAL/Uterine 11 GI 59 HEAD NECK 16 KIDNEY 7 LUNG 34 PROSTATE 50 Misc/Other* 42 *Definitions on following slide OVARIAN 34 SKIN 26 Grand Total 491

Table 2: Cancer type category of the samples examined.

in performance scales of patients with advanced disease by integration of the palliative and supportive care. In the first two weeks post initiation of the therapy, there was in average 1.3 point improvement in ECOG scoring. We also observed reduced hospitalizations and associated morbidities compared to historical data, as control. This finding was associated with a positive desirable change in biomarkers, defined by liquid biopsy. The circulating tumor cell analysis confirmed 85 percent reduction of mRNA expressions of all EpCAM markers, indicated by the lab (Biofocus Lab) Telomerase, ERBB2, c Myc, and CK 19/20. This reduction was noticed in average after 10 treatments.

CONCLUSIONS

We conclude that objective antitumor response defined by tumor size, may not necessarily reflect the best end point for clinical response. As such successful therapeutics could still improve clinical outcome by reducing tumor metastatic burden, measured by surrogates such as circulating DNA, and improving quality of life. We suggest that further studies be conducted to prove the concept and development of novel epigenetic therapies aimed at reducing metastatic burden and quality of life in advanced solid tumors, and further integrated in the therapeutic approach to patients with advanced disease.

REFERENCES

- Ooki A, Satoshi M, Iwamoto S, Hara H, Tanioka H, Satake H, et al. Patient-reported symptom burden as a prognostic factor in treatment with first-line cetuximab plus chemotherapy for unresectable metastatic colorectal cancer: Results of Phase II QUACK trial. Cancer Med. 2020;9(5):1779-1789.
- Geiger C, Chen Z, Zhang C, Behera M, Steuer CE, Pillai RN, et al. Investigating the correlation between disease burden and symptoms in patients with advanced stage lung cancer. 2015;33:15.
- Merker VL, Bredella MA, Cai W, Kassarjian A, Harris GJ, Muzikansky A, et al. Relationship between whole-body tumor burden, clinical phenotype, and quality of life in patients with neurofibromatosis. Am J Med Genet A. 2014;164A(6):1431-1437.
- Elshimali Y, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14:18925-18958.
- Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

Amin M Nezami.

OPEN OACCESS Freely available online

- 6. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet) Cancer Cell. 2017;31:172-179.
- 7. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985-990.
- 8. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, et

al. Non-invasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68.

9. Newman AM, Bratman SV, To J, Wynne J, Eclov NCW, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548-554.