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Abstract

To understand the mechanism of plasma TG increase after food intake, the characteristics of remnant lipoproteins
in postprandial plasma and the role of lipoprotein lipase (LPL) were investigated. The accumulation of TG in remnant
lipoproteins (RLP-TG) is caused by the unchanged levels of LPL activity for hydrolysis of chylomicrons and VLDL
when overloaded at endothelium after food intake. This review proposed a new hypothesis on the metabolism of
plasma TG-rich lipoprotein based on the no-change of LPL activity at endothelium after food intake and the
discovery of RLP-LPL complex in postprandial plasma.

Background
The increase of plasma TG after food intake is one of the

fundamental physiological phenomenon and postprandial
hypertriglyceridemia has been considered as an important and
emergent CVD risk factor. The mechanism of TG increase has been
explained by the increase of fat absorption at intestine and its
increased supply of chylomicrons into blood stream through lymphatic
vessel. The contents of TG increased in plasma are explained as the
increase of chylomicrons (CM), VLDL and their remnants (TG-rich
lipoproteins) and cleared from the circulation mostly at liver through
LRP-1 etc, [1]. However, the characteristics and the mechanism of TG
and remnant lipoproteins increased in postprandial plasma have not
been fully understood. Therefore, we have focused to investigate the
characteristics of TG-rich lipoproteins in postprandial plasma and the
role of lipoprotein lipase for the formation at endothelial cells and
clearance of remnant lipoproteins in liver and muscle.

Metabolic Pathway of CM, VLDL and Their Remnants
After Food Intake

Recent advances in our knowledge of CM assembly have focused on
the roles of three key players in this process: apoB-48, microsomal
triglyceride transfer protein (MTP), and apoA-IV at intestine and the
formation of chylomicrons has been well established [2-5]. CM is
secreted by the intestine after fat consumption. As shown Figure 1, CM
particles contain apoB-48 as a structural protein, which in humans is
formed exclusively in the intestine after tissue-specific editing of the
apoB-100 mRNA [6]. It appears that apoB-48 containing particles are
continuously secreted from the enterocyte, and at times of excessive
TG availability after fat consumption, lipid droplets fuse with nascent
lipoprotein particles, resulting in the secretion of enormous CM [7].
Once the CM particle reaches the plasma compartment, apoA-I
dissociates very rapidly [8] and acquires apoCs, in particular apoC-II,
to enable efficient unloading of its massive TG content after binding to
the LPL which is bound to the endothelium [9]. HDL is a major
reservoir for the apoCs and apoE in conditions with low HDL

concentrations (found most often in hypertriglyceridemic subjects).
CM may receive apoCs and apoE from resident VLDL particles.

The CM particles are rapidly sequestered in the liver by binding to
the heparan sulphate proteoglycan surface (HSPG) of hepatocytes [10].
This constitutes a high-capacity reservoir for adsorbing large amounts
of CM in the postprandial state. Binding to HSPG is facilitated by apoE
molecules present on the surface of the CM remnant particles. Once
bound to the hepatocellular surface, the CM remnants are further
enriched with apoE secreted by the hepatocytes. They are then
internalized by two lipoprotein receptors: the low-density lipoprotein
(LDL) receptor and the LDL receptor-related protein (LRP).
Characterization of this distinct clearance pathway for CM remnants
helps to direct further research towards developing an understanding
of pathological abnormalities in postprandial lipoprotein metabolism.

Furthermore, a major proportion of CM remnants leave the plasma
compartment quite rapidly while still quite large, i.e.75 nm in diameter
[11]. The half-life of CM-TG in healthy subjects is very short,
approximately 5 min [12]. The half-life of CM particles has been very
difficult to estimate due to the difficulty of obtaining adequate labeling
of CM. The CM particle half-life is certainly longer than that of CM-
TG and seems to be quite heterogenous. Certain pools of CM
remnants have a very long residence time, at least as long as similar-
sized VLDL particles [11,12]. There is competition for lipolysis: CM
and VLDL mix in the blood and the two TRL species compete for the
same lipolytic pathway [13]. It has been shown that endogenous TRL
accumulate in human plasma after fat intake and the mechanism
behind this phenomenon is explained by the delayed lipolysis of the
apoB-100 TRL particles due to competition with CM for the sites of
LPL action [13]. Similarly, endogenous TRL accumulate in rat plasma
due to competition with a CM-like TG emulsion for the common
lipolytic pathway [14]. The increase in the number of TRL apoB-100
particles is actually far greater than that of the apoB-48 containing
lipoproteins in the postprandial state [15]. Of note, the accumulation
of large TRL apoB-100 particles seems to be a particular sign in
hypertriglyceridemic patients with CAD compared with healthy
hypertriglyceridemic subjects, suggesting a link between the
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accumulation of large VLDL and the development of atherosclerosis
[16].

VLDL particles are secreted continuously from the liver. In contrast
to CM and their remnants, they are characterized by their apoB-100

content. The secretion of VLDL is under complex regulation, as the
larger and more TG-rich VLDL species are under strict insulin control
in a dual sense.

Figure 1: After fat intake, the intestine secretes CM, the TG of which are lipolyzed by LPL. The LPL reaction constitutes the initial process in
the formation of TRL remnants. The VLDL secretion process is partly regulated by the rate of FFA influx to the liver. VLDL-TG are lipolyzed
by endothelial-bound LPL, and VLDL remnant particles are formed. The final TRL remnant composition is modulated by the CETP reaction
with HDL, HTGL, and the exchange of soluble apolipoproteins such as C-I, C-II, C-III and E. The great majority of the remnants are removed
from plasma by receptor-mediated process, the principal receptors are the LDL receptor and the LDL-receptor-related protein (LRP). It is
probable that the CM remnants use both of these routes, whereas the VLDL remnants are more likely to use only the LDL receptor.

First, a number of more or less insulin-sensitive mechanisms
regulate the availability of TG for VLDL production. The free fatty
acids (FFA) which are generated by lipolysis in adipose tissue through
the action of hormone-sensitive lipase provide a major source for
hepatic VLDL secretion. Insulin stimulates the endothelial expression
of LPL, the key enzyme in TRL metabolism, in a post-transcriptional
manner [17,18]. Hepatic uptake of poorly lipolyzed VLDL or CM
remnant particles may also contribute to the hepatocellular TG
availability. Similarly, reduced uptake of FFA in adipose and muscle
tissues after LPL-mediated lipolysis of CM and VLDL shunts FFA to
the liver [19]. Finally, the liver has the capacity of de novo synthesis of
TG and VLDL.

Definition of TG-Rich Lipoproteins and Remnant
Lipoproteins
The increase of TG-rich lipoproteins in plasma after food intake has

been known as an essential physiological phenomenon associated with
the formation of remnant lipoproteins [20]. However, the definition of

remnant lipoproteins in plasma has been confused for many years
because of the variety of methods used to determine its plasma
concentration [21]. The most common definition of remnant
lipoproteins proposed several decades ago has been the intermediate
density lipoproteins (IDL) isolated by an ultracentrifugation method as
other lipoprotein fractions [22]. Also the most important
characteristics of remnant lipoproteins has been recognized as TG-rich
lipoproteins which increase significantly after food intake [1,23].
However, IDL is known not to increase after food intake associated
with TG increase. Therefore, IDL has become inconspicuous as a
fraction of remnant lipoproteins [23,24]. There are other methods,
such as electrophoresis, NMR and HPLC which are used to identify
remnant lipoproteins by charge, particle size [21] and the calculation
[25]. However, those methods can neither isolate a substantial remnant
lipoproteins from plasma nor determine the TG levels in remnant
lipoproteins specifically.
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Isolation and Detection of Remnant Lipoproteins in
Postprandial Plasma

We established the isolation method of remnant lipoproteins in
plasma by an immunoaffinity gel separation method since 1993 and
investigated the characteristics and clinical significance of plasma
remnant lipoproteins as RLP-cholesterol (RLP-C) and RLP-triglyceride
(RLP-TG) [26,27]. RLP isolated by this method is identified as apoE-
rich, apoC3-rich and cholesteryl-ester rich VLDL [26-31]. This
lipoprotein fraction has shown high similarity with the definition of
remnant lipoproteins previously reported by Havel et al. [1].

Using the isolation method of remnant lipoproteins, we determined
the concentration of TG as RLP-TG in the postprandial plasma and

compared with those in the fasting plasma. Significant differences were
found between fasting and postprandial TG and RLP-TG
concentration, RLP-TG/ TG and RLP-TG/RLP-C ratio (particle size)
[32] during 6 hours after fat load (Table 1). The particle size of remnant
lipoproteins became significantly large (more than 4-folds) among
healthy volunteers in 4hours after fat load. In particular, the increase in
the postprandial delta RLP-TG level (postprandial RLP-TG minus
fasting RLP-TG) contributed to approximately 80-90% of the increase
in the postprandial delta TG after fat load or fat rich meal (Figure 2)
[33].

Figure 2: The correlation between plasma TG and RLP-TG concentration in the fasting and postprandial plasma. The changes of plasmadelta
TG and delta RLP-TG concentration in 2h, 4h, and 6h after fat load. Delta TG and delta RLP-TG means that fasting TG and RLP-TG were
subtracted from TG and RLP-TG after fat load.

However, approximately 50-60% of the increased delta TG was
comprised of delta RLP-TG after typical moderate meal intake [34].
These results clearly show that the kind of foods as contained in a fat
rich meal greatly enhance the formation of remnant lipoproteins in the
postprandial plasma compared with a typical moderate meal.

Discovery of RLP-LPL Complex in Plasma
Using the immunoaffinity separation method of remnant

lipoproteins, we found that the majority of LPL in plasma presented in
RLP fraction which we isolated as remnant lipoproteins for many years
[35].

The new findings are as follows. 1) More than 80% of circulating
LPL in non-heparin plasma was found in RLP as RLP-LPL complex. 2)
The circulating LPL found in RLP in the non- and post-heparin plasma
was shown as LPL dimers but in the inactive form. 3) When lipolytic
activity was inhibited by tetrahydrolipstatin (THL) in the post-heparin
plasma, most LPL dimers were found in the VLDL elution range,
specifically in the RLP. When the ex vivo lipolytic activity was not
inhibited by THL, the LPL dimers became transitional in the post-
heparin plasma and shifted rapidly to the HDL elution range. 4) Two
different type of LPL dimers were found in post-heparin plasma; one is
active form found mostly in HDL elution range, the other is inactive
form found in RLP. 5) The proposed model of the RLP-LPL complex

shows that when LPL is detached from the endothelium surface, LPL is
mostly released as the complex with RLP and inhibitors (apoC1, C3)
with inactive form into the blood. Those results provided a new insight
of LPL and remnant lipoprotein interaction in the circulating plasma.
Therefore, we have proposed that the TG-rich lipoproteins bound to
LPL dimers with inactive form is the new definition of remnant
lipoproteins [35].

Formation of Remnant Lipoproteins by LPL at
Endothelium
After the reduction in the TG content by LPL, CM and VLDL

particles have been generally believed to become smaller remnant
particles such as IDL. However, several studies, including our own
[36-38] reported that remnant lipoproteins were predominantly of
large VLDL size, which remained without further hydrolysis associated
with less efficient LPL activity and concentration at endothelium. For
many years, it has been believed that LPL activity in plasma increases
significantly after food intake associated with the increase of TG-rich
lipoproteins in order to metabolize the postprandial lipids of
overloaded CM and VLDL more efficiently [39,40], but we recently
reported that LPL concentration in non-heparin plasma did not
increase after food intake (Table 1 and Figure 3) [41].
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0 h 2 h 4 h 6 h

median (25%-75% tile) median (25%-75% tile) median (25%-75% tile) median (25%-75% tile)

TC (mg/dl) 225 (184-250) 230 (180-260) 230 (180-250) 230 (180-260)

TG (mg/dl) 113 (66-160) 140 (110-220)* 180 (140-380)* 160 (80-300)*

HDL-C (mg/dl) 67 (45-80) 70 (40-80) 70 (40-80) 70 (40-80)

LDL-C (mg/dl) 128 (105-150) 130 (100-150) 130 (100-140) 130 (100-150)

RLP-C (mg/dl) 5.6 (3.9-6.9) 6.3 (4.9-8.4)* 8.1 (5.4-13.8)* 7.5 (4.7-20)*

RLP-TG (mg/dl) 13.8 (5.5-29.3) 37.7 (15.4-68.4)* 86.2 (38.4-224.4)* 77.7 (16.3-142.4)*

RLP-TG/RLP-C 2.1 (1.3-4.9) 7.2 (5.7-8.5)* 11.6 (6.4-15.9)* 5.6 (3.4-11.4)*

RLP-TG/TG 0.11 (0.08-0.19) 0.32 (0.27-0.34)* 0.47 (0.31-0.59)* 0.36 (0.19-0.55)*

apo B100 (mg/dl) 111.9 (88.8-162.4) 126.4 (87.7-173) 126.2 (95-160.2) 126.6 (101-168.3)

Apo B-48 (μg/ml) 6 (3.1-10.3) 10.8 (6.3-14)* 13 (6.4-18.3)* 9.3 (3.8-22.8)*

LPL (ng/ml) 71.1 (58.2-77.1) 69 (56.4-84.0) 61.8 (54.0-69.0) 66.6 (50.7-77.7)

LPL/RLP-TG 5.15 (2.63-10.58) 1.83 (1.22-3.66)* 0.71 (0.30-1.40)* 0.86 (0.54-3.11)*

* p<0.05

Table 1: The changes of plasma lipids, lipoproteins and LPL concentration after fat load in healthy Japanese volunteers.

Fasting (n=79) Postprandial (n=79)

pmedian (25%tile-75%tile) median (25%tile-75%tile)

TC (mg/dl) 160 (141-182) 160 (145-184) n.s.

TG (mg/dl) 47 (31-74) 73 (44-106) p<0.001

HDL-C (mg/dl) 47 (41-59) 47 (40-58) n.s.

LDL-C (mg/dl) 90 (70-107) 91 (73-108) n.s.

sd-LDL (mg/dl) 21.4 (16.9-31.0) 24.4 (18.7-36) n.s.

RLP-C (mg/dl) 3.5 (2.5-4.8) 4.7 (3.5-6.8) p<0.001

RLP-TG (mg/dl) 4.2 (2.3-7.3) 14.6 (8.0-28.5) p<0.001

RLP-TG/RLP-C 1.4 (0.7-2.0) 3.6 (1.9-5.3) p<0.001

RLP-TG/TG 0.09 (0.06-0.11) 0.23 (0.15-0.30) p<0.001

LPL (U/l) 79 (68.5-89.3) 66 (57.0-78.6) p<0.001

LPL (ng/ml) 206.4 (176.9-250.9) 205.5 (175.7-237.8) n.s.

LPL (U/l)/RLP-TG 19.6 (10.4-34.0) 4.4 (2.2-8.9) p<0.001

LPL (ng/ml)/RLP-TG 56.5 (26.9-98.5) 12.5 (7.2-28.0) p<0.001

Table 2: Characteristics of lipids, lipoproteins and lipases in the fasting and postprandial state in post-heparin plasma; Effect of standard meal
assessments in American healthy volunteers.

Moreover, LPL activity after heparin injection in the postprandial
plasma did not increase after food intake, rather slightly decreased
compared with LPL activity in the fasting plasma (Table 2).

Therefore, we have concluded that LPL activity and concentration
in plasma do not change after any kind of food intake, unlike
previously reported. RLP-TG increase after food intake means not only
an increase of TG concentration in remnant lipoprotein particles, but it
reflected insufficient hydrolysis.

Citation: Nakajima K, Tanaka A (2017) A Proposal of The New Mechanism on Remnant Lipoprotein Formation and Clearance after Food Intake.
J Aging Sci 5: 173. doi:10.4172/2329-8847.1000173

Page 4 of 8

J Aging Sci, an open access journal
ISSN:2329-8847

Volume 5 • Issue 1 • 1000173



Figure 3: The changes of plasma TG, RLP-TG and LPL at 0h, 2h, 4h
and 6h after fat load. TG and RLP-TG increased significantly after
fat load associated with the increase of overloaded CM and VLDL
in postprandial plasma, but LPL concentration did not increase
after fat load in non-heparin plasma.

The increase of the particle size was shown by the increased RLP-
TG/RLP-C ratio after food intake [32]. A significant increase in the
RLP-TG/RLP-C ratio was always found in the postprandial plasma
after a fat load or typical moderate food intake in both normal subjects
and CAD patients [34]. We previously reported that the particle size of
remnant lipoproteins were inversely correlated with LPL activity and
concentration [36]. Large RLP particles carry a significantly less LPL
concentration per particle compared to small RLP particles, as shown
by the LPL/RLP-TG ratio [34,35,41]. It is because unchanged
concentration of LPL on the endothelium after food intake has to
hydrolyze significantly increased CM and VLDL particles. Therefore,
large size RLP particles are formed on the endothelium and released
into the postprandial plasma carrying small amount of LPL. Recently,
Buttet et al. [42] reported more comprehensive explanation on high
levels of postprandial triglycerides associated with large particle size.
They explained that it is based on the result of increased intestinal
absorption/synthesis of triglycerides; i.e. in the setting of insulin
resistance, CD36 is deregulated leading to MTP increased activity, a
lower expression of apo CII, with the consequent increased
chylomicron synthesis and high postprandial hypertriglyceridemia.
Also Pérez-Méndez et al. [43] reported the different metabolism in
LPL deficiency case that the heterozygous carriers of 2 different
mutations in the LPL gene had different VLDL apo B FCR, and from
normal to slightly low HDL apolipoprotein FCR and PR. These results
disagree with the putative enhanced apo AI FCR in LPL deficient
patients and suggested the need to reconsider the effects of LPL activity
on postprandial lipoprotein metabolism. As complete LPL deficiency
cases can’t form remnants at endothelium as shown in Figure 4 and
accumulates TG-rich lipoproteins (TRL; CM and VLDL) with
significantly large particle size. Those cases don’t increase postprandial
atherogenic remnant lipoproteins, because of the lack of LPL activity.

Recently, Beigneux et al. [44] reported that GPIHBP1, a
glycosylphosphatidylinositol (GPI)-anchored protein of capillary
endothelial cells, is crucial for the lipolytic processing of triglyceride-
rich lipoproteins (TRLs). GPIHBP1 binds LPL in the interstitial spaces
and shuttles LPL to its site of action in the capillary lumen. GPIHBP1
is also required for the margination of TRLs along capillaries-so that

lipolytic processing can proceed. GPIHBP1 deficiency in humans
causes severe hypertriglyceridemia (chylomicronemia).

When LPL activity is blocked by either genetic defects or auto
antibodies against LPL and GPIHBPI, LPL can’t form remnants of CM
and VLDL at endothelium, which causes pancreatitis, but not
atherosclerotic diseases. We have recently reported that the
autoantibody against GPIHBP1 completely blocked LPL activity and
induced severe hypertriglyceridemia without forming CM and VLDL
remnants even after food intake [45].

Figure 4: LPL is secreted from adipocytes and move to interstitial
space. GPIHBP1, a glycosylphosphatidylinositol (GPI)-anchored
protein of capillary endothelial cells, binds LPL in the interstitial
spaces and shuttles LPL to its site of action in the capillary lumen.
GPIHBP1 is also required for the margination of TRLs along
capillaries-so that lipolytic processing can proceed. GPIHBP1
deficiency in humans causes severe hypertriglyceridemia
(chylomicronemia), because of the lack of LPL activity. Without the
presence of GPIHBP1, LPL can’t form remnants of CM and VLDL
at capillary endothelium, remaining as large lipoprotein particles
which often cause pancreatitis.

Role of LPL for the Clearance of Remnant Lipoproteins
from The Circulation.

Although the clearance of TG-rich lipoprotein from circulation has
been extensively investigated with apoE phenotype such as apoE2/2 in
type III [1] or apoE4/3 phenotype [46] associated with apoE receptor,
we have paid more attention to LPL/RLP-TG ratio as a ligand of
remnant clearance, because we experienced that apoE phenotype and
the delay of clearance of TRL after fat load has not been well correlated
except in type III cases [28].

When remnant lipoproteins are formed and detached from the
endothelium, majority of those particles are released into the
circulation as the RLP-LPL complex (Figure 5).

As LPL is bound to RLP in non-heparin plasma, LPL could be a
ligand for remnant receptors in liver and muscle as inactive form
[47,48]. In order to express the interaction correlation between TG
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content and LPL activity in RLP particles, we calculated the LPL/RLP-
TG ratio as Felts et al. proposed [49]. For example, when LPL bound to
RLP increased significantly after heparin administration, RLP-TG
decreased significantly as the result of LPL-RLP interaction [35].
Therefore, its interaction correlation was expressed as LPL/RLP-TG
ratio or LPL/TG ratio (Table 1 : Fifty four Japanese volunteers for the
oral fat load test who were without any CVD, diabetes or other
distinctly evident diseases (30 males and 24 females, aged 28–63 y,
Table 2: Seventy nine relatively healthy young US volunteers (some
were overweight or obese) in a male (n=40) and female (n=39)
population (Caucasian 45, Asian 10, Hispanic 9, African American 7,
others 8) with a median age of 24). As postprandial large RLP particles
(high RLP-TG/RLP-C ratio) at 4h after fat load showed approximately
1/4 of LPL/RLP-TG ratio compared to fasting small RLP particles
before fat load (Tables 1 and 2), the function of LPL as a ligand for the
receptor binding may become less effective for the clearance from the
circulation. Therefore, high TG with low LPL RLP particles in patients
with diabetes and cardiovascular disease are obliged to the delayed
clearance of RLP compared with that of healthy controls [50,51].
Typical peak time of RLP-TG or TG concentration after fat load in
healthy controls are shown in 2-4 h, while delayed in 4-6 h in CAD

patients [52,53], indicating the longer residing time of RLP in
circulation in CAD patients.

As RLP is known to be cleared by LRP and VLDL receptors in liver
and muscle, those interactions could be controlled by LPL
concentration in RLP as a ligand to the receptors [36,54,55]. Beisiegel
et al. reported that CM incorporation into HepG2 was increased
according to the LPL concentration added, namely followed by the
increase of ligand LPL to the remnant receptors [47]. Those results also
suggest that the large RLP particles with small amount of LPL in the
postprandial plasma is a higher risk factor for cardiovascular disease,
as shown previous reports [56-58]. These results also support the
previous studies that showed the non-fasting TG levels to be stronger
predictor for the risk of CVD than fasting TG [59-61], because of the
higher RLP-TG/TG ratio and the concentration of a larger sized RLP
particles along with a small amount of LPL in the postprandial plasma
compared to the fasting plasma. Therefore, non-fasting TG
measurements together with LPL concentration performed 3-6 h after
food intake may be able to take the place of the direct measurement of
RLP-TG for the assessment of cardiovascular disease risk.

Figure 5: After the hydrolysis of CM and VLDL, most of the LPL is dissociated from endothelium into circulation as the RLP-LPL complex
with dimeric but inactive form, possibly by the presence of inhibitors such as apoC1 and C3. A small amount (approximately 20%) of LPL
bound to non-RLP fraction (possibly an active form) were also found in pre-heparin plasma.

Summary
The present report clarified that the majority of LPL in non-heparin

plasma was bound to RLP particles and LPL concentration doesn’t
increase after food intake associated with the increase of TG-rich
lipoproteins. The amount of LPL on TG-rich lipoprotein particles
reflect the particle size formation of remnant lipoproteins followed by
the excessive supply of chylomicrons and VLDL after food intake.
Large RLP particles carry less amount of LPL and less effectively
cleared from the circulation because of the less ligand capacity.
Therefore, we have proposed the new mechanism of remnant

lipoprotein increase after food intake, based on the no increase of LPL
at endothelium and the presence of RLP-LPL complex in circulation.
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