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ABSTRACT
Sirtuin 1 (SIRT1) is a NAD+_dependent class III histone deacetylase, and a key gene linked to control of longevity,

gene silencing, cell cycle progression, apoptosis, inflammation, stress resistance and energy homeostasis. SIRT1 is

activated in response to low cellular energy stores and have been implicated in the control of many physiological

processes including senescence. SIRT1 also regulates steroid hormone signaling through a variety of molecular

mechanisms and modulate pathways that modify steroid hormone receptors. Declining of sex steroid hormones,

including estrogens and androgens, is involved in the aging process and age-related diseases such as sarcopenia,

falling, osteoporosis, cognitive and mood disorders, cardiovascular diseases, and sexual disturbance.

In this review, we will focus on the effects of sex steroid hormones on SIRT1 gene expression in endothelial cells and

the advantages in the treatments with each hormone will be discussed in terms of understanding mammalian aging

and longevity control.
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INTRODUCTION

Sirtuin family

The sirtuins comprise a family of enzymes belonging to class III
histone deacetylase (HDAC), which operate by removing acetyl
groups from histones and other protein regulatory factors,
resulting infunctional consequences on chromatin remodeling
and gene expression profiles [1]. Moreover, the sirtuin family is
highly conserved from archaebacteria to eukaryotes [2,3].

The life-prolonging effects of sirtuins were first described in yeast
[4]. It was also shown that yeast sirtuin, silent information
regulator 2 (Sir2), deficiency caused the short life span [5]. Sir2 is
a NAD+_dependent histone deacetylase and its activity accounts
for silencing, recombination suppression and extension of life
span in vivo [4]. The mammalian sirtuin family consists of seven
HDACs, sirtuin 1 (SIRT1) through sirtuin 7 (SIRT7), that share
a conserved catalytic core domain and are expressed ubiquitously
[6]. SIRT1, 6 and 7 localize to the nucleus, whereas SIRT3, 4
and 5 locate in mitochondria, and SIRT2 is primarily
cytoplasmic [7]. Of seven mammalian proteins homologous to

Sir2, SIRT1 and SIRT6 have been reported to be involved with
longevity [8-10]. Sirtuins are activated in response to low cellular
energy stores and have been implicated in the control of many
physiological processes including senescence [11].

Sirtuin 1 (SURT1) and longevity

Energy metabolism is deeply involved in cellular aging. It is
widely known that calorie restriction has the effect of
suppressing aging and extending life span across species [12,13].
In particular, moderate calorie restriction in humans ameliorates
multiple metabolic and hormonal factors that are implicated in
the pathogenesis of type 2 diabetes, cardiovascular diseases and
cancer, that are the leading causes of morbidity, disability and
mortality [13]. Sirtuin 1 is a key gene linked to control of
longevity, gene silencing, cell cycle progression, apoptosis,
inflammation, stress resistance and energy homeostasis [14-19].
Sirtuin 1 transcription is activated during fasting, and triggers
changes in metabolism that switches from gluconeogenesis to fat
mobilization and fatty acid oxidation when fasting is prolonged
[20]. Transgenic mice with whole-body overexpression of SIRT1
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display phenotypes with metabolic features that protect against
disorders associated with diet-induced obesity such as metabolic
syndrome, type 2 diabetes and liver steatosis, although these
effects are not sufficiently potent to affect longevity [21-23].
However, brain-specific SIRT1-overexpressing (BRASTO)
transgenic mice show significant life span extension in both
males and females, and aged BRASTO mice exhibit phenotypes
consistent with a delay in aging [8]. These phenotypes are
mediated by enhanced neural activity specifically in the
dorsomedial and lateral hypothalamic nuclei (DMH and LH,
respectively), indicating the importance of DMH/LH-
predominant SIRT1 activity in theregulation of aging and
longevity in mammals. Recently, adipose-tissue-specific
overexpression of nicotinamide phosphoribosyl transferase
(NAMPT) mice exhibit significant extension of median lifespan
and delay in aging [24]. In mammals, NAMPT is the rate-
limiting enzyme in a major NAD+ biosynthetic pathway, an
essential substrate for SIRT1 activity [25]. It is suggested that the
mammalian NAD+_dependent protein deacetylase SIRT1 and
the key NAD+_biosynthetic enzyme NAMPT mediate an inter-
tissue communications [26]. Although the relationship between
SIRT1 and human life span is still controversial [27], there are a
few reports that SIRT1 polymorphisms may be associated with
body mass index and long-term weight changes [28,29].

SEX HORMONES AND AGING

SIRT1 also regulates steroid hormone signaling through a
variety of molecular mechanisms and modulate pathways that
modify steroid hormone receptors [30]. Declining of sex steroid
hormones, including estrogens and androgens, is involved in the
aging process and age-related diseases such as sarcopenia, falling,
osteoporosis, cognitive and mood disorders, cardiovascular
diseases, and sexual disturbance [31]. Estrogen- and testosterone-
dependent actions play a vital role in mitochondrial process
implicated in aging [32]. The incidence of cardiovascular and
vascular diseases is greater in men compared with age-matched
premenopausal women [33]. Reduction of endogenous estrogen
levels increases risk of bone fracture, cardiovascular diseases and
Alzheimer's disease (AD) in postmenopausal women [34].
Therefore, during menopause the incidence in women
dramatically increases, supporting a long-standing hypothesis
that estrogens might provide vascular protection [35]. However,
studies showed that estrogen therapy plays osteoprotective roles
in both osteoporotic humans and rodents [36], while whether
estrogen therapy can protect against heart diseases or AD
remains controversial [37]. Estrogen reduces the risk of
developing atherosclerosis in premenopausal women, whereas in
post-menopausal women who may have established
atherosclerotic diseases, estrogen increases the risk of myocardial
diseases through the effects on plaque stability and clot
formation [38]. Estrogens may also modulate cardiovascular
health through expression of SIRT1, possibly in the AKT and
ERK signal pathways [39]. It is also known that SIRT1 is the
binding partner of estrogen receptor α (ER α ) in mammary
epithelial cells and that the ERα  SIRT1 complex functions as a
transcriptional activator of superoxide dismutase (SOD) and
glutathione peroxidase (Gpx) and as a transcriptional repressor

of p53 and cyclin G2, whereas ERα  bound to the promoter for
SIRT1 and increased its transcription in breast cancer cells [40].

On the other hand, it has been known that a decrease in
androgens, particularly testosterone, as a result of aging in men
or bilateral ovariectomy in women, is associated with
hypertension, diabetes, and atherosclerosis and that testosterone
replacement therapy may benefit these people [41], although
there is evidence that androgen use has been associated with
premature coronary diseases in athletes and impaired vascular
reactivity in female-to-male trans-sexuals [42]. Studies have also
shown alterations in mood, libido, and cognition resulting from
testosterone deficiency [43]. Dehydroepiandrostendione
(DHEA) may have beneficial effects that have been shown in
vitro and in vivo, including the stimulation of immunity and
then the suppression of diabetes, atherosclerosis, dementia,
obesity and osteoporosis [44]. Delineating hormonal signaling
changes that occur across a lifespan and searching interventions
may improve the quality of life (QOL) of elderly people and
extend longevity [45].

SIRT1 AND VASCULAR AGING

Atherogenic stimuli, including diabetes, dyslipidemia, and
oxidative stress, induce vascular dysfunction, leading to
atherosclerosis, which is a key pathological basis for
cardiovascular diseases such as ischemic heart diseases and
strokes [46]. SIRT1 is highly expressed in human vascular
endothelial cells [47] and has a potential antioxidative stress
activity in vascular endothelial cells. The inhibition of SIRT1
with pharmacological agents or siRNA leads to an elevation of
reactive oxygen species (ROS) levels in an animal model [48]. In
human umbilical vein endothelial cells (HUVEC), SIRT1
inhibition increased p53 acetylation and induced premature
senescence-like phenotype in parallel with increased
plasminogen activator inhibitor-1 (PAI-1) and decreased
endothelial nitric oxide synthase (eNOS) expression, whereas
overexpression of SIRT1 deranged expression of PAI-1 and
eNOS and reversed premature senescence induced by oxidative
stress [49]. Those data have indicated a definite relationship
between SIRT1 and ROS. The signaling networks of SIRT1
involved in ROS resistance include SIRT1/Forkhead Box class
O transcription factors (FOXOs), SIRT1/Nuclear Factor-κB
(NF-κB), SIRT1/NADPH oxidase (NOX), SIRT1/SOD, and
SIRT1/eNOS pathways [50]. A previous study demonstrated
that calorie restriction increased SIRT1 in the white adipose
tissue of wild type mice, and this effect was abolished in eNOS-
knockout mice [51], suggesting that ROS might control SIRT1
expression as well.

VASCULAR AGING AND SEX HORMONES

It has been reported that ERα expression modulated by
estrogen in endothelial cells is related to eNOS activation [52].
Another report described that ERβ expression in the
endothelium was reduced in aging mice, and the expression of
ERα and SIRT1 was not changed, while SIRT1 activity was
declined [53]. Estrogens include estrone (E1), estradiol (E2), and
estriol (E3). E2 partially suppressed angiotensin II-induced
contractions, restored the protein expression of SIRT1/P-AMPK
and suppressed histone H3 acetylation in aorta of a post-

Tsuchiya T, et al

Gene Technol, Vol.9 Iss.2 No:100050 2



menopausal metabolic syndrome model induced in
ovariectomized rats by feeding a high-fat diet [54]. Recently, it is
reported that either E2 or selective estrogen receptor modulator
(SERM) administration increased SIRT1 in endothelial cells and
activated eNOS, resulting in decreased vascular senescence and
atherosclerotic lesions [55]. The effect of SERM on upregulating
SIRT1 was abolished in eNOS-knockout underwent ovariectomy
(OVX) mice, OVX+SERM mice treated with a NOS inhibitor
also showed no differences in arterial SIRT1 expression and
senescence, suggesting that SIRT1 expression is regulated by
estrogen-induced eNOS activation. Treatment of human
endothelial cells with E2 has been reported to induce SIRT1
gene expression [55,56]. In our own study, treatmentof human
aortic endothelial cells (HAEC) with E1 showed similar effects
of E2 treatment, while E3 failed to induce SIRT1 gene
expression [56]. The beneficial effects of E2 appear to occur
from some properties including antioxidant and to imply an
overall anti-aging action [57]. On the other hand, transvaginal
E3 potentially offers a suitable physiologic delivery as a clinical
benefit, however, E3 might be a weak activator of longevity, in
contrast to E1 and E2 [58]. Then, the E1- and E2-induced
SIRT1 expression was not diminished by high glucose levels
[56]. It is consistent with a previous finding that control of
oxidative stress by AMPK activation or antioxidants could
restore normal estrogen responses, even in hyperglycemia [59],
suggesting a possible benefit of anti-atherogenic effects of
estrogens in female patients with diabetes.

Androgen receptor (AR) is also expressed in endothelial cells
[35]. Epidemiological and clinical data have indicated that
androgens are independent factors that contribute to the higher
male susceptibility to atherosclerosis through adverse effects on
lipids, blood pressure, and glucose metabolism [41,60].

A retrospective national cohort study showed the association of
testosterone therapy with mortality, myocardial infarction, and
stroke in men with low testosterone levels [61], indicating that
excessive testosterone exposure may be detrimental to the
cardiovascular system [62-64]. There are a few reports to
investigate the effect of androgens on SIRT1 expression in
endothelial cells. In human umbilical vein endothelial cells
(HUVEC), it is shown that oxidative stress decreases eNOS and
SIRT1 and increases PAI-1 expression, and dihydrotestosterone
(DHT) or testosterone treatment prevented these changes and
increases the phosphorylation of eNOS at Ser1177 [65]. Another
report evaluated the endothelial function of the corpus
cavernosum in Otsuka Long-Evans Tokushima Fatty (OLETF)
rats, which recapitulate type 2 diabetes [66]. The expression of
eNOS and Sirt1 mRNA was decreased and that of inducible
NO synthase (iNOS), IL-6, and TNF-mRNA was increased,
while androgen replacement therapy improved the mRNA
expression in OLETF rats. They concluded that androgen
replacement therapy suppressed inflammation in rats with type
2 diabtetes and metabolic disorders and improved their
endothelial and erectile functions. In our own study, treatments
of HAEC with testosterone and DHEA have been also shown to
induce SIRT1 mRNA expression, and those effects were not
inhibited under culture condition with high glucose levels [56].
However, treatment with androstenedione exerted little effects
on SIRT1 mRNA expression in HAEC, which is consistent with
a report showing that androstenedione had no effects on
development of bones, including sternebrae and soft tissues [67].
Androstenedione is a metabolite of the androgen pathway,
suggesting that it may have a relatively weak bioactivity in
cultured cells (Table 1).

Table 1: The effects of sex steroid hormones on SIRT1 expression in endothelial cells and tissues [54-56, 65,66].

 Estrogens Androgens

Condition E1 E2 E3 Testosterone Androstenedione DHT DHEA

Normal glucose ↑↑↑ ↑↑↑ → ↑↑ → ↑↑ ↑

High glucose ↑↑↑ ↑↑↑ → ↑↑ → N. A. ↑

N. A. indicates that data were not available; E1: Estrone; E2: Estradiol; E3: Estriol; DHT: Dihydrotestosterone; DHEA:Dehydroepiandrostendione.

CONCULUSION

We have reviewed the recent progresses related to SIRT1-
mediated beneficial effects of sex steroid hormones on vascular
aging and discussed the possibility of the sex hormone treatment
on endothelial cells. However, sex hormones appear to be at a
significantly increased risk to have or to develop specific cancers,
although we did not mention it in this review. Thus, we should
pay attention to both the advantages and disadvantages of sex
hormone treatment and further understanding of the molecular
mechanism of the protective effects of sex hormones against
aging and to extend longevity should be required.
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