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Pluripotent stem cells [1,2] are well-known for their unique self-
renewal and differentiation capabilities, which make these cells very 
favorable for cell-based therapeutic applications in degenerative 
disorders such as muscular dystrophies. Major concerns associated 
with embryonic stem (ES) cells, such as immunological compatibility 
and ethical considerations had limited their clinical applications [3]. 
However, the technology of reprogramming somatic cells into induced 
pluripotent stem (iPS) cells provides a new breath of hope for a potential 
therapeutic application in incurable diseases [4-6]. iPS cells have been 
generated initially from mouse and later from human somatic cells by 
introduction of the four reprogramming transcription factors using 
retroviral vectors. More recently, this has been accomplished by using 
non-integrating vectors [7,8], which is much safer as the associated risk 
of insertional mutagenesis is significantly reduced. Consequently, by 
proper differentiation of iPS cells into tissue specific progenitors, one 
can foresee the therapeutic application of iPS cells in a relatively near 
future, upon extensive testing for the safety of these cell preparations 
is achieved. 

Muscular dystrophies (MDs) are an heterogeneous  group of 
degenerative disorders caused by various gene defects that lead to 
progressive muscle damage, defective regeneration and fibrosis [9]. 
Among these, Duchene Muscular Dystrophy (DMD) is the most 
common type, and is caused by mutations in the dystrophin gene [10]. 
DMD is characterized by progressive muscle weakness and atrophy, 
leading patients to be confined to a wheelchair before their teenage 
years and eventual death due to respiratory and/or cardiac failure.  To 
date, there is no definitive treatment for DMD or any other type of MD. 
Reprogramming technology potentially allows for a cell replacement 
therapy using patient-derived iPS cells, which combined with gene 
correction, and subsequent controlled differentiation into myogenic 
progenitors, could be used clinically in the autologous transplantation 
setting. In the current perspective, we review recent studies in this field, 
and point out the advantages and the shortcomings of each approach. 

Gene Correction of Human DMD iPS Cells using a 
Human Artificial Chromosome (HAC)

This is the first report describing genetic correction in human 
DMD iPS cells [11]. The authors utilized a HAC containing the 
complete human dystrophin sequence (DYS-HAC). The use of HAC 
for gene therapy has certain advantages including the ability to carry 
large inserts such as the dystrophin gene, stable episomal maintenance, 
and importantly, minimum risk of insertional mutagenesis. The DMD 
mutation corrected in this study was a large deletion of axons 4-43, 
a mutation not suitable for conventional gene correction methods. 
The DYS-HAC was transferred via microcell-mediated chromosome 
transfer (MMCT) into patient fibroblasts and then corrected fibroblasts 
were used to generate iPS cells. Using FISH analysis, the authors 
showed stable maintenance of the DYS-HAC in long-term cultures 
of corrected iPS cells. In teratoma assays, they detected the presence 
of DYS-HAC in 90% of the cells as well as dystrophin expression in 
muscle-like tissues within the tumor. For potential clinical application, 
it will be necessary for corrected DMD cells to be differentiated in vitro 

into myogenic progenitors, and used for in vivo regeneration in an 
animal model for DMD.

Derivation of Myogenic Progenitors from Human iPS 
Cells using Pax7

In this report from our group [12], we have applied conditional 
expression of Pax7, a critical molecular regulator of the skeletal 
myogenic program,  to efficiently promote myogenesis from human 
ES/iPS cells, a method that worked well in the mouse system [13-
15]. A tet-on inducible Pax7 lentiviral vector was introduced 
into the iPS cells and upon differentiation of these cells into early 
mesodermal progenitors, Pax7 was induced by adding doxycycline 
to the cultures, which promoted the generation of proliferating 
myogenic precursors. Following FACS purification, Pax7+ (GFP+) cells 
expanded exponentially in vitro, and expressed CD56, M-cadherin 
and α7 integrin, surface markers associated with early myogenic cells. 
Following transplantation into an immunodeficient mouse model of 
DMD, human iPS-derived skeletal myogenic progenitors engrafted 
into diseased muscle, restored dystrophin expression, improved 
contractility and seeded the satellite cell compartment. Moreover, 
long-term engraftment was detected in recipient mice 46 weeks post-
transplant.  By using non-integrating methods for Pax7 induction, in 
combination with gene correction approaches, such as DYS-HAC or 
nuclease mediated gene correction strategies [16-19], one can envision 
a potential strategy for gene/cell-based therapy in MDs.

Differentiation of Human iPS Cells into Myogenic Cells 
using MyoD

Recently, two research groups have used MyoD for myogenic 
induction of differentiating human iPS cells. In the first study, Tedesco 
and colleagues [20] have described a novel approach to differentiate 
human iPS cells into mesoangioblast-like cells,  a cell population they 
have demonstrated to have skeletal muscle regeneration potential  
[21,22]. Due to the limitation in obtaining sufficient numbers of 
mesoangioblasts from the vessels of patient biopsies, a protocol to 
generate these cells from patient-specific iPS was sought. In this 
investigation, the authors succeeded in doing so using iPS cells from 
Limb-Girdle MD type 2D (LGMD2D) patients, which are deficient 
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in α-sarcoglycan. A tamoxifen inducible MyoD lentiviral vector was 
used to promote the in vitro myogenic differentiation of these cells 
into mature myotubes. Using a lentiviral vector encoding human 
α-sarcoglycan under a muscle specific promoter, corrected human 
iPS cell-derived mesoangioblast-like cells were shown to engraft and 
express the missing protein in a mouse model of LGMD2D (Sgca-null/
scid/beige) following intramuscular and intra-arterial delivery. One 
great advantage of this method is the ability of engraftment following 
systemic delivery. 

In the second study, Gougenege and colleagues [23] utilized a two- 
step protocol, in which human ES and DMD iPS cells were initially 
differentiated into CD73+ mesenchymal-like cells, and then infected 
with an adenoviral vector expressing MyoD under a ubiquitous 
promoter (CAG) to generate myogenic cells. Following transplantation 
into damaged muscles of an immunodeficient mouse model of DMD 
(Rag/mdx), iPS-derived myogenic cells engrafted and differentiated 
into mature myofibers expressing human spectrin. Although myogenic 
potential of human ES-cell derived CD73+ mesenchymal cells had been 
reported previously by Barberi and colleagues [24], this approach has 
not been successfully replicated by other laboratories. By tweaking the 
protocol and by over-expressing MyoD, these authors have improved 
differentiation efficiency and reduced culture duration. Another 
advantage of this study is the use of non-integrating adenoviruses for 
MyoD induction, reducing the risk of mutagenesis. 

A possible limitation associated with the use of MyoD is its direct 
effect to induce cell cycle arrest [25], which may limit myogenic cell 
expansion to the levels needed for cell therapy as well as their in vivo 
self-renewal. Recently, Iacovino and colleagues [26] have used Myf5 
to induce myogenesis in human ES cells. By inserting the myogenic 
regulator gene Myf5 into an inducible cassette exchange locus, human 
H9 ES cells with regulated Myf5 expression were generated.  These 
were differentiated via EBs into mesenchymal cells which underwent 
efficient myogenesis after Myf5 induction. In this regard, Myf5 might 
be a better alternative to MyoD induction to avoid cell cycle arrest.

Derivation of Myogenic Mesenchymal Cells from 
Human ES/iPS Cells

Recently Awaya et al. [27] reported a method for the differentiation 
of myogenic mesenchymal cells from human ES/iPS cells, which is 
somewhat similar to the strategy reported for the murine counterparts 
by the same group [28, 29]. Human ES/iPS cells were grown initially 
as embryoid bodies and then as monolayers in the presence of muscle 
induction medium. In this condition, clusters of Pax3+ or Pax7+ cells 
randomly emerged after 3 weeks, which were subsequently enriched 
for myogenic cells by sub-culturing on collagen-I coated plates. The 
peak of expression for myogenic genes was reached after 50 days in 
culture, at which point cells were able to terminally differentiate 
into multinucleated myotubes. Transplantation of these cells into 
immunodeficient non-dystrophic mice resulted in engraftment, as 
shown by the detection of human laminin-α2. Myogenic cells were able 
to respond to muscle re-injury and seed the satellite cell compartment 
to some degree. In both cases, additional transplantation studies in 
mouse models of MD are warranted. An advantage of this method is the 
fact that it does not require genetic modification to induce myogenesis. 
Limitations include the low efficiency of myogenic induction and the 
adhesion-based purification, which requires long-term in vitro culture.

Future Directions
iPS technology provides a new doorway for cell-based therapies. 

However, there are major safety concerns associated with iPS cells, 
which need to be overcome before they can be seriously considered for 
clinical applications [30,31]. In the case of skeletal muscle regeneration, 
obstacles include the development of i) an efficient and safe (integration-
free) myogenic induction/purification protocol, ii) safe gene correction 
strategies, and iii) efficient cell delivery approaches.

Because in vitro differentiation of pluripotent stem cells into the 
skeletal muscle lineage is very inefficient, most studies rely on the over-
expression of genes that are critical on the regulation of the myogenic 
program (Pax7, Myf5 and MyoD). These approaches, though effective 
for differentiation, carry the potential of insertional mutagenesis since 
these genes are commonly delivered using lentiviral vectors. 

Another point to be considered is the need for cell purification 
of the target cells to be transplanted since the presence of residual 
undifferentiated cells in these cell preparations can lead to undesired 
tumor formation [31]. Therefore, approaches need to be optimized to 
guarantee an efficient and safe method for the myogenic induction of 
human iPS cells in order to be considered for future applications.

Likewise, a site specific gene correction approach would be 
desirable for MD patient-specific iPS cells, as this technology would 
avoid the risks associated with random integration. Strategies involving 
nuclease mediated homologous recombination gene correction [17-
19,32-34], are ideal to safely genetically edit and correct mutations in a 
site specific manner. 

Finally, since the skeletal muscle is the largest organ of the human 
body, and in most of the MDs, multiple muscle groups are involved, 
local intramuscular cell injection is not a practical and feasible option 
[35-37]. Derivation of the appropriate myogenic population from 
human iPS cells endowed with efficient and selective skeletal muscle 
homing ability following systemic delivery is another major hurdle to 
overcome. 

As a proof of principle, the studies reviewed above have highlighted 
the therapeutic potential of human iPS cells in muscular dystrophies. 
Overcoming the safety hurdles associated with myogenic induction 
and gene correction of human iPS cells will allow researchers to find 
practical methods for the generation of safe and clinical grade cell 
preparations for future therapeutic application.
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