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Abstract
Background and purpose: Retinoblastoma is initiated by the mutation or loss or inactivation of the 

retinoblastoma gene (the Rb gene) in chromosome 13q14. Further, both the germline cells (eggs and sperm) 
generating the individuals may carry a mutant allele of the Rb gene so that individuals may carry both mutants in the 
Rb locus at the embryo stage in which case cancer tumor may develop at or before birth. Recent molecular studies 
have also shown that besides the abrogation of cell dierentiation by the inactivation of the Rb locus, the apoptosis 
mechanism needs also to be inhibited or abrogated for the generation of retinoblastoma tumor. The purpose of this 
paper is to develop new stochastic and statistical models for retinoblastoma to incorporate these biological findings.

Results: Based on recent biological studies, in this paper we have developed a discrete-time stochastic multi-
stage model and a generalized mixture model for retinoblastoma to account for hereditary cancer cases. We have 
applied this model to fit and analyze the SEER data of retinoblastoma from NCI/NIH. Our results indicate that a 
modified MVK (Moolgavkar-Venzon-Knudson) two-stage model with discrete time fits the data much extremely well 
and better than a three-stage model. 

Conclusion: Our studies have shown that retinoblastoma can best be described by a modified MVK two-stage 
model with discrete time. It appears that this new model would not only provide more insights into retinoblastoma but 
also would provide useful guidance for its prevention and control and for prediction of future cancer cases.

Keywords: Apoptosis; Generalized mixture model; Multi-stage
models of carcinogenesis; Retinoblastoma; Stochastic equations

Introduction
For the human pediatric eye cancer-retinoblastoma, Knudson 

[1] discovered that the cancer was initiated by the mutation or loss
or inactivation of the retinoblastoma gene (Rb gene) in chromosome
13q14. This discovery was further documented by cytogenetic studies
by Cavenee et al. [2] (see [3], Chapter 3). For retinoblastoma, Knudson
[1] has thus proposed a two-stage model for the development of cancer
tumors. According to this model, the person is in the first stage (I1
stage) if one copy of the Rb gene in an eye stem cell in this person
has lost or mutated or inactivated. The person is in the second stage
(I2 stage) if both copies of the Rb gene in an eye stem cell have been
mutated or lost or inactivated. According to this model, cancer tumors
are derived from primary I2 cells, where a primary I2 cell is an I2 cell
generated by an I1 cells through mutation or deletion or inactivation
of the other Rb allele. A specific feature of this model is that both the
germ line cells (eggs and sperms) and somatic cells can carry a mutant
of the Rb gene leading to inherited cancer cases. The above two stage
model for retinoblastoma was taken for granted until the early 1990’s
when it was discovered that default loss of Rb was not tumorigenesis
unless death by apoptosis was also inhibited [4-11]. Based on results
of molecular biology, DiCiomme et al. [6] have thus proposed a three-
stage biological model for carcinogenesis of retinoblastoma with the
first two stages being associated with the Rb gene and with the third
stage involving abrogation of apoptosis and /or cell cycle control by
some genetic and/or epigenetic changes [12,13]. Let I3 denote the
third stage, where an I3 cell is an I2 cell with additional genetic and/or
epigenetic changes to abrogate or inhibit apoptosis and/or cell cycle
control. Then the 3-stage biological model proposed by DiCommo et
al. [6] assumes that retinoblastoma develop by the pathway N → I1 →
I2 → I3 → Tumor. Despite these biological studies, however, stochastic

mathematical models for retinoblastoma based on these biological 
studies had never been derived, nor had these models been tested 
against cancer incidence data such as those from SEER from NCI/NIH; 
for more detail, see Section 4.

Given the above background of retinoblastoma, the objective of this 
paper is to develop a biologically supported stochastic mathematical 
model of carcinogenesis for the development of retinoblastoma 
tumors. Because for retinoblastoma, a large number of babies develop 
cancer tumors at birth (0) (see data in Table 1), we will also proceed to 
develop a biologically supported statistical model to incorporate genetic 
segregation of the mutant allele of the Rb locus in the population. 

A biologically supported stochastic model of retinoblastoma 
incorporating inherited cancer cases

A modified MVK model for retinoblastoma with discrete-
time: Consider a discrete-time model with one time unit corresponding 
to six months or longer (See Section 4 and Remark s 1 and 4). Let N 
denote normal stem cell and T cancer tumor. Then the MVK model 
with discrete-time is characterized by the following postulates:

Jo
ur

na
l o

f C
arc

inogenesis &Mutagenesis

ISSN: 2157-2518

Journal of Carcinogenesis &
Mutagenesis



Page 2 of 7

Volume 2 • Issue 2 • 1000117
J Carcinogene Mutagene     
ISSN:2157-2518 JCM, an open access journal 

Citation: Tan WY, Zhou H (2011) A New Stochastic Model of Retinoblastoma Involving both Hereditary and Non-hereditary Cancer Cases. J 
Carcinogene Mutagene 2:117. doi:10.4172/2157-2518.1000117

(a) N (I0) → I1 → I2 → Tumor by genetic changes and/or epigenetic 
changes.

(b) The Ii cells are subjected to stochastic proliferation (birth) and 
differentiation (death). 

(c) With probability one each I2 cell generated at time t from an I1 
cell would develop by clonal expansion (i.e., stochastic birth-
death process, [14]) into a detectable cancer tumor at time t 
+ 1. 

(d) All cells develop independently of other cells. 

Because this model is not exactly the same as the MVK model 
proposed by Moolgavkar and Venzon (see [3], Chapter 3; [15]), in what 
follows we will refer this model as the modified MVK two-stage model. 
In Section 4 it will be shown that this model fits cancer incidence data 
(SEER data from NCI/NIH) extremely well and much better than a 
three-stage model. 

The following biological observations also suggest that this discrete-
time MVK model is consistent with the observations of the biological 
model by Diciommo et al. [6]:

(a) Apoptosis is activated only if the number of I2 stem cells has 
grown into a cluster of large number of I2 cells (106 ~ 108 or 
larger) in which case the probability of some genetic and/
or epigenetic changes to induce inhibition or abrogation of 
apoptosis is greatly enhanced. (The rate of genetic and/or 
epigenetic changes to induce inhibition of apoptosis is about 
10−3 ~ 10−4; see Section (4.3)). 

(b) Apoptosis abrogation often occurs in the last stage in the multi-
stage model of carcinogenesis [16,17] by that time there are 
already a large number of I2 cells.

(c) Cancer tumors are heterogeneous populations of cells with 
tumor stem cells being a very small minority [18]. These 
biological findings imply that once an I2 cell is generated from 
an I1 cell, with probability close to one a genetic change or 
epigenetic change will quickly and almost inevitably develop, 
so that, as a close approximation , the third mutation can be 
ignored mathematically. These results are consistent with a 
discrete-time two-stage model with the assumption that with 
probability one a primary I2 at time t would develop into a 
detectable tumor at time t + 1.

Remark 1: To develop stochastic models of carcinogenesis, in the 
literature [3,19,20] it is conveniently assumed that the last stage cells 
(i.e. Ik cells in a k-stage model) develop instantaneously into cancer 
tumors as soon as they are generated. In this case, one may identity 
Ik cells as cancer tumors so that T (t) is Markov. When k=2, this is the 
MVK two-stage model (see [3], Chapter 3; [15]). However, as shown by 
Yang and Chen [14], Yakovlev and Tsodikov [21], Klebanov et al. [22] 
and Fakir et al. [23] , in many cases T(t) is not Markov. Nevertheless, if 
one assumes a discrete time model with one time unit to correspond to 
six months or one year, then because the growth of Ik cells is very rapid, 
with probability close to one an Ik cell generated at time t will develop 
into a detectable tumor by time t + 1 [16,17] in these cases, one may 
practically assume T(t) as Markov.

A stochastic model of retinoblastoma involving inherited 
cancer cases

As first documented by Knudson[1], both the germ line cells (eggs 
and sperms) and somatic cells may carry the mutant Rb allele r. If both 

germ line cells (egg and sperm) generating the individual carry the 
mutant Rb allele r, then this individual is at the I2 stage at the embryo 
stage (fertilized egg stage) so that for this individual cancer tumors 
develop at and /or before birth; see Remark 2. As shown in Table 1, this 
is clearly the case since the retinoblastoma incidence from the SEER 
data of NCI/NIH gives the highest cancer rate at birth; see Remark 3 in 
Section 3 for SEER data.

To account for inherited cancer cases in the stochastic model of 
retinoblastoma, let p be the frequency of the r gene in the population 
so that q = 1 − p is the frequency of the R allele (Normal allele of the Rb 
locus) in the population. Assume that the population is very large and 
that mating (marriage) between people is random with respect to the 
retinoblastoma locus. For each individual, let the embryo stage denote 
the time of the fertilized egg in his/her mother’s womb from which this 
individual is developed. Then, by the Hardy-Weinberg law [24,25] the 
frequency of individuals with genotypes RR, Rr and rr at the embryo 
stage in the population are given by q2, 2pq and p2 respectively.

To develop stochastic models to incorporate inherited cancer cases, 
observe that during pregnancy the proliferation rates of all stem cells 
are very high; hence, as a close approximation one may practically 
assume that with probability one individuals with genotype rr at the 
embryo stage would develop detectable cancer tumors at or before 
birth. Similarly for individuals with genotype Rr at the embryo stage, 
the R allele in some stem cells may be mutated or lost or inactivated 
during pregnancy in which case with positive probability these 
individuals would carry stem cells with genotype rr at or before birth 
to develop cancer tumor at birth. Because spontaneous mutation of 
genes in normal individuals is very low (10-6 ~ 10-8) during pregnancy 
[17,19,20], one would expect that normal people at the embryo stage 
would remain to be normal people at birth. Hence, practically one may 
assume that individuals with genotype RR at the embryo stage would 
remain to have genotype RR at birth. 

Remark 2: Without exception, every human being develops from 
the embryo in his/her mother’s womb, when stem cells of different 
organs divide and differentiate to develop different organs respectively 
(See Weinberg [26], Chapter 10). To develop stochastic models of 
retinoblastoma with genetic component, we thus let time at the embryo 
stage to be the starting time for carcinogenesis.

The probability distributions for developing detectable 
cancer tumors

For retinoblastoma, the development of cancer tumors of 
individuals depend on his/her genotype at the embryo stage in his/her 
mother’s womb; see Figure 1.

Embryo stage: Given that the individual has genotype rr at the 
embryo stage (an I2 person), then with probability one this individual 
would develop cancer tumors before or at birth. On the other hand, 
if the individual has genotype Rr at the embryo stage, then with 
probability α, the R allele in some stem cells of this individual may 

Figure 1: Genotypes of Individuals with Respect to Rb Locus and Their 
Frequencies in the Population at the Embryo Stage.

Embryo Stage: RR ( q2 )        Rr (2pq )       r r ( p2 )

         

At Birth:          RR           Rr         r r           Tumor

1-   
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be mutated or lost to generate I2 stem cells in this individual during 
pregnancy to develop cancer at birth. Thus for each individual with 
genotype Rr at the embryo stage, with probability α this individual 
would develop detectable cancer at birth, and with probability 1 − α 
this individual would remain an I1 stage individual at birth in which 
case one more stage is required to develop retinoblastoma after 
birth (I1 → I2 → Tumor). If the individual has genotype RR (normal 
people) at the embryo stage, then one may practically assume that with 
probability one this individual remains a normal people at birth so that 
after birth, retinoblastoma are developed by a two-stage model N → I1 
→ I2 → Tumor. This is described in Figure 1.

Let QRr(j) (QRR(j)) denote the probability that an individual with 
genotype Rr (RR) at birth develops cancer during the j−th time period 
(tj−1, tj ] (j > 1) after birth. For individuals with genotype RR at the 
embryo stage, the probability that this individual would develop cancer 
during the j−th time period after birth is QRR(j). For individuals with 
genotype Rr at the embryo stage, the probability that these individuals 
would develop cancer during the j−th period after birth is (1 − α)QRr(j). 

To derive QRR(j) and QRr(j), let β1 be the transition rate per cell 
division of I1 → I2 and β0 the transition rate per cell division of N → 

I1. Let ( ) ( ) ( )1
1 1 0|  ,I t I t RR att= ( ) ( ) ( )( )2

1 1 0|  I t I t Rr att=  denote the 

number of I1 cells at time t in individuals who have genotype RR (Rr) at 

birth (0). Let ( ) 1( ) , 1,2,t
i o iu

R t t u u iβ= =∑  where ( )
1( ) i

iu s EI=  (s) is the 

expected number of ( )
1

iI  (s). Then, by using similar methods given in 
Tan [16], Tan et al. [17], Tan and Chen [27], Tan et al. [28-30], it can 
be shown that

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1{ }j j j jt t R t R t
RRQ j E e e e eξ ξ− −− − − −

= − ≈ −                                  (1)

( ) ( ) ( ) ( ) ( )2 1 2 2 1 2{ }j j j jt t R t R t
RrQ j E e e e eξ ξ− −− − − −

= − ≈ −                                   (2)

where ( ) 1( )t
i o iu

t t u uξ β=∑ .

From equations (1)-(2), observe that approximately the probability 
of developing cancer during the j-th time period after birth in each 
individual are functions of Ri(tj)’s which in turn are functions of the 
expected number of I1 stem cells in the individual during the j−th time 
period. Let N0 be the number of normal stem cells at birth and denote 
by b1 the birth rate per cell division (proliferation rate) of I1 cells and 
d1 the death rate per cell division (differentiation rate) of I1 cells. Using 
stochastic difference equations as described in Tan et al. [17], Tan and 
Chen [27], Tan et al. [28,29] and Tan et al. [31], it can easily be shown 
that the expected number of I1 cells at time t from normal individuals 
at birth and from individuals who are I1 people at birth are given 
respectively by:

( ) ( ){ } ( ) ( )1 1
1 1 1 1 2 2 1 11 1 ,  1 ,t tu t and u tλ β γ λ β γ− −= + − = +

where 1 1 1,b dγ = − ( )1 0 0 1 1/t Nλ β β γ= , and ( )2 2 1( )t u tλ β= . In the 
above equation, observe that γ1 is the proliferation rate per cell division 
of I1 cells so that the number of I1 cells will increase if γ1 > 0 and decrease 

if γ1 < 0. Using the basic result 
0

n i
I

a
=∑  = (an+1−1)/( a−1) and noting 

( )
0

1( ) ,( 1,2)t
i iu t

R t uu iβ
=

= =∑ we obtain

( ) ( ){ }01
1 1 1 1 1 01 1 ( )t tR t t tγ λ γ γ−−= + − − − , and

( ) ( ){ }01
2 1 2 11 1t tR t γ λ γ −−= + − .

A statistical model and the probability distribution of the 
number of detectable tumors

The data available for modeling carcinogenesis are usually cancer 
incidence over different time periods. For example, the SEER data (see 
Remark 3) of NCI/NIH for retinoblastoma are given by {(y0, n0), (yj , 
nj ), j = 1, . . . , n}, where y0 is the number of cancer cases at birth and 
n0 the total number of birth and where for j ≥ 1, yj is the number of 
cancer cases during the j-th age group of a one year period and nj is the 
number of normal people who are at risk for cancer and from whom 
yj of them have developed cancer during the j-th age group. Given in 
Table 1 are the SEER data for retinoblastoma cases during the period 
1973-2007. From this data set, notice that there are a large number of 
cancer cases at birth implying a large number of inherited cancer cases. 
In this section, based on the models in Sections (2)-(3) we will develop 
a statistical model for these data sets. 

Note: 

(1) The observed Incidence rates per 106 individuals from SEER 
are zero after 10 years old. Hence we fit only data up to 10 
years old.

(2) The data in Table 1 are yearly data with 0 denoting birth and j 
the jth years old, j=1,… 10. 

Remark 3: The SEER data are data compiled by the Surveillance 
and End Results (SEER) Program of the National Cancer Institute/
NIH, a premier source for cancer statistics in the United States. This 
program collects information on incidence, prevalence and survival 
from specific geographic areas representing 28 percent of the US 
population and compile reports on all of these plus cancer mortality for 
the entire country; for more retail about SEER, the readers are referred 
to the web of Google Search.

The probability distribution of observed cancer incidence 
incorporating inherited cancer cases: To incorporate inherited cancer 
cases, among the nj people at risk for retinoblastoma, let n1j be the 
number of individuals who have genotype RR at the embryo stage, n2j 
the number of individuals who have genotype Rr at the embryo stage, 
and n3j = nj − n1j − n2j the number of individuals who have genotype 
rr at the embryo stage. Then, from results in Section (2.2) and by the 
Hardy-Weinberg law, the probability that a random individual from 
the population has genotype RR, Rr and rr at the Rb locus is q2, 2pq 
and p2 respectively. Hence, from basic probability theory [32], the 
conditional probability distribution of (n2j , n3j ) given nj is multinomial 
with parameters {nj ; 2pq, p2}. That is, (n2j , n3j )|nj ~ M L{nj ; 2pq, p2}. It 
follows [32] that n3j |nj ~ Binomial{nj , p

2}.

The probability distribution of y0: Because y0 is the number 
of cancer cases at birth, y0 derives either from individuals who have 
genotype rr at the embryo stage or from individuals who have genotype 
Rr at the embryo stage. Because with probability one an individual with 
genotype rr at the embryo stage would develop cancer at or before 
birth, all n30 individuals with genotype rr at the embryo stage would 
develop retinoblastoma at birth; on the other hand, with probability α 
(0 < α < 1), each individual with genotype Rr at the embryo stage would 
develop cancer at birth. Hence, from basic probability theory [32], y0 
= n30 + z0, where z0|n20 ~ Binomial{n20, α}. Furthermore, as shown in 
Section (3.1), (n20, n30)|n0 ~ Multinomial{n0; 2pq, p2}. Hence, we have, 
because n0 is very large and p is very small:

2
0 0 0 0| ~ { , 2 } ~ { }y n Binomial n p pq Poissonα χ+             	               (3)

where ( )2
0 0 2n p pqχ α= + .
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The probability distribution of yj (j ≥ 1) : To derive the probability 
distribution of yj (j ≥ 1) in the j−th age group after birth, observe that 
yj can only be developed from individuals who have genotype Rr or RR 
at the embryo stage. 

Among the yj cancer cases, let y1j be the number of cancer cases 
generated by people with genotype RR at the embryo stage, and y2j the 
number of cancer cases generated by people with genotype Rr at the 
embryo stage. Then yj = y1j + y2j ; y1j are developed from n1j people only 
and y2j are developed from n2j people only.

Because cancer develops in each individual independently of 
other individuals and because individuals with the same genotype 
are expected to yield the same phenotype , to derive the conditional 
probability distribution of (y1j , y2j = yj − y1j ) given (nij , i = 1, 2, nj), 
one may practically assume that each individual develops cancer 
independently of other people and that all individuals with the same 
genotype at the embryo stage develop cancer by the same mechanism. 
Then, because the probabilities {P1(j) = QRR(j), P2(j) =(1 − α)QRr(j)} are 
very small, the conditional probability distribution of { y1j , y2j = yj − y1j 
} given {n1j , n2j , nj } is

{ }1 2, | , 1,2,j j ij jP y y n i n= = 1 1 1 2 2 2{ ; ( )} { ; ( )}j j j jh y n P j h y n P j                  (4)

where h (y; λ) is the density at y of the Poisson distribution with mean 
λ.

Put QT (j) = n1j P1(j) + n2j P2(j). From Equation (4), the conditional 
distribution of yj given {nij , i = 1, 2, nj } is Poisson with mean QT (j). It 
follows that the probability distribution of yj given nj is

( ) ( ) ( ){ }1

1 0 2 0

2
1 2| , ; , ,2 ; ,j j j

j j

n n n
j j j j j j Tn n

P y n g n n n q pq h y Q j
= =

−
=∑ ∑          (5)

The probability distribution P (yj |nj) given by equation (5) is a 
mixture of Poisson distributions with mixing probability distribution 
given by the multinomial distribution of {n1j, n2j} given nj. This mixing 
probability distribution represents individuals with different genotypes 
at the embryo stage in the population.

Let Θ be the set of all unknown parameters (i.e. the parameters (p, 
α) and the birth rates, the death rates and the mutation rates of N and 
I1 cells). Based on data ( , 0,1, .,jy j k= … ), the likelihood function of Θ 
is { } 0 0 1

| , 0,1, ., ( ; ) ( | )k
j j jj

L y j k h y P y nχ
=

Θ = … = ∏ . From Section (2.3), 

this likelihood function depends on the unknown parameters via the 
estimable parameters (p, α) and the estimable parametric functions {γ1, 
λi, i=1,2}.

The fitting of the model and applications

To illustrate the application of the models in Sections 2-3, in 

this section we apply the model to some of the NCI/NIH SEER data 
of retinoblastoma to derive some important information about 
retinoblastoma. Because the biological findings in references [4]~[13] 
suggest a three stage model, we will also fit a three stage model which 
assumes that retinoblastoma develop by the pathway N → I1 → I2 → I3 → 
Tumor. For fitting this model to the SEER data, we give in the Appendix 
the probability distributions of cancer incidence data and some basic 
formula for implementing the fitting of SEER. Because this model is a 
special case of the general k-stage model described and analyzed by Tan 
[16] and Tan et al. [17], for more detail and mathematical theories, we 
refer the readers to Tan [16] and Tan et al. [17].

Methods for fitting data

Because it is well documented that the Bayesian inference 
procedures are the most efficient procedures [33,34], we will use the 
Bayesian approach via the data augmentation and Gibbs sampling 
procedures to estimate the unknown parameters and to derive 
predicted cancer cases. For the model of this paper, the basic approach 
are summarized in five steps:

(a) Expand the model and data (nj , yj , j = 0, 1, . . . , m) to include 
the un-observable variables {n20, n30, n1j , n2j , y1j , y2j , j = 1, . . . , 
m} and derive the joint probability distribution of all random 
variables. This probability distribution is given in Equation (6) 
below.

 (b) Derive the conditional probability distribution of { y1j , y2j , 
j = 1, . . . , m } given {nij , i = 1, 2, nj , yj , j = 1, . . . , m}. This 
probability distribution is given in Equation (4). 

(c) Derive the conditional probability distribution of { n1j , n2j , j = 1, 
. . . , m} given {nj , yj , j = 1, . . . , m). Combining this probability 
distribution with the conditional probability distribution 
given in equation (5), one may apply the Weighted bootstrap 
method to generate observed values of { n1j , n2j , j = 1, . . . , m } 
given { nj , yj , j = 1, . . . , m }. This is illustrated in detail in Tan 
et al. [17], Tan [24] (Chapter 3) and in Tan et al. [28]. 

(d) Derive the general conditional posterior distribution of all 
parameters given {yj , y1j , nij , i =1, 2, j = 1, . . . , m}. Notice 
that this posterior distribution is proportional to the product 
of the prior distribution P(Θ) and the joint distribution of all 
the variables given by Equation (6). (The prior distribution of 
the parameters is given in the next Section (4.2).) 

(e) Apply the Gibbs sampling procedure to estimate the unknown 
parameters and the state variables. The details of these steps 
and the Gibbs sampling procedure and its applications to 

Table 1: Retinoblastoma Incidence SEER Data (1973-2007) from NCI/NIH.

Years Old Population at Risk Observed Incidence Rate per 106 
Individuals

Observed  Cancer 
Cases

Predicted Cancer Cases 
2-Stage Model

Predicted Cancer Cases 
3-Stage Model

0 11,687,938 2.584 302 300 294
1 11,437,360 1.478 169 164 76
2 11,347,783 1.084 123 113 55
3 11,344,946 0.582 66 67 38
4 11,388,462 0.220 25 32 29
5 11,403,795 0.114 13 16 28
6 11,365,139 0.079 9 9 30
7 11,430,904 0.044 5 4 37
8 11,215,416 0.027 3 3 48
9 11,650,697 0.026 3 2 58

10 11,773,403 0.025 3 1 68
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cancer modeling have been illustrated in great detail in 
[17,24,28].

Put ( )˘˘˘˘ijY y i j k= = = …
 ( ), 1,2; 1, , ,ijN n i j k= = = …

   ( , 1, , )jy y j k= = … , and ( , 1, , )jn y j k= = … . For the SEER data, the 
joint density P{Y, y, N| n, Θ} of {Y, y, N} given { n, Θ } is:

{ } ( )( )2
0 0, , | , [ ; 2 1 ]P Y y N n h y n p pq αΘ = + −

( )22
1 21 1

{ ( , ; , ,2 )} { ; }k
j j j ij ij i

g n n n q pq h y P j
= =∏ ∏                                      

(6)

Notice that the above distribution is a product of multinomial 
distributions and Poisson distributions. The above joint density will 
be used as the kernel for estimating the unknown parameters and for 
predicting the state variables.

Fitting of the model by cancer incidence data 

To fit the SEER retinoblastoma cancer data, we let one time 
unit correspond to 6 months after birth and let the time at birth be 
0; see Remark 4. For the prior distributions of Θ, because biological 
information have suggested some lower bounds and upper bounds 
for the mutation rates and for the proliferation rates, we assume P(Θ) 
α c, (c > 0) where c is a positive constant if these parameters satisfy 
some biologically specified constraints, and equal to zero for otherwise. 
These biological constraints are: 

(1)	 0 < α < 1 as α denotes a probability measure, and because 
the estimated frequency of most mutant genes in human 
population are from 10-3 ~ 10-5 [25], we let 0 < p < 10−2;

(2)	 Because γ1= b – d is the proliferation rate per cell division of 
cells with genotype Rr at the Rb locus and since Rb is a tumor 
suppressor gene, we let −0.01 < γ1 < 1; see also estimates from 
Tan [16], Tan et al. [17], Tan and Chen [27], Tan et al.( [28-
30]) and Luebeck and Moolgavkar [35].

(3)	 Because the estimates of the transition rate from Ij to Ij+1 per 
cell division in almost all multistage models in human beings 
are 10-4 ~10-8 [16,17,27-30,35], we let 10−8 < βi < 10−3, i = 0, 1 ;

(4)	 Because the estimate of the total number of normal stem cells 
in most tissues [36] is around 108, we let 106 < N0, u2(t0) < 109; 
hence we let 10-1 < γ1 < 104 and 10 < γ2 < 106.

We will refer the above prior as a partially informative prior which 
may be considered as an extension of the traditional non- informative 
prior given in Box and Tiao [37].

Remark 4: In our model and the fitting of data we have assumed 6 
month for one time unit since for most of human cancers, the last stage 
cells grow very fast and 6 months is a long time interval for the last 
stage cell to develop into a detectable tumor [3,16,17,27-30]. Luebeck 
and Moolgavkar [35] had used one year as the time unit for fitting 
human colon cancer. In our computation, we have tried 3 months, 6 
months and one year as time unit and found that the 6 month period is 
the best time for fitting retinoblastoma.

Using this prior distribution and applying the method in Section 
(4.1) to the models in Sections (2)-(3) and the SEER data in Table 1, we 
have estimated the unknown parameters and the predicted cancer cases. 
Given in Table 2 are the estimated parameter values and its standard 
errors. Given in Figure 2 are the plots of predicted cancer cases from 
the modified MVK two-stage model of Section (2) and from a three-
stage model respectively. (For a multi-stage model of carcinogenesis 
and its fitting to the data [16,17]. For comparison purposes, we have 

provided numbers of predicted cancer cases from the modified MVK 
two-stage model and from a three-stage model together with the 
observed cancer cases over time from SEER. We have also examined 
SEER data from 1973-2005 and SEER data from 1973-2006 and found 
that the observed cancer incidence per 106 are identical to those from 
1973-2007. This indicates that the epidemic of retinoblastoma cancer 
has reached a steady state condition in US population. 

Note: 1 1 1 1 0 0 1 1, /b d N γβγ βλ= − = , 2 2 0 1( )u tλ β=

From results in Table 2, notice that the standard errors for the 
estimates of λ1 and λ2 are quite large. These results imply wider 
confidence intervals and higher uncertainty in the estimation of these 
two parametric functions. These results are expected because λ1 is a 
function of 4 parameters each of which are subjected to uncertainty 
in estimation and because there is considerable uncertainty in the 
estimation of u2 (t0). 

Fitting results

From results in Tables 1 and 2 and from Figure 2, we have made the 
following observations:

(a) As shown by results in Table 1 and Figure 2, it appeared that 
the modified MVK two-stage model fitted the SEER data 
extremely well; on the other hand, the three-stage model can 
not fit the SEER data; see Table 1 and Figure 2. The AIC (Akaike 
Information Criterium) and the BIC (Bayesian Information 
Criterium) for the modified MVK two-stage model and for 
the three-stage model are given by (AIC=1588.7, BIC=1586.3) 
and (AIC=2423.8, BIC=2431.3) respectively. For the modified 
MVK two-stage model, the Chi-square test statistic is 

2
10 j j2

0
j

ˆ(y y )
7.909

ŷj
χ

=

−
= =∑  with degrees of freedom 11, 

giving a p-value = { }2
11P 7.909 0.7214χ ≥ = .

(b) From Table 2, it is observed that the estimate of γ1 is quite 
small (the estimate is of order 10−3 ~10−4) indicating that the 
phenotype of Rr is quite close to that of RR; this is consistent 
with the biological hypothesis that the Rb gene is a tumor 
suppressor gene. 

(c) From Table 2, the estimates ĵ(j 2 1, )λ =  of λj are {5.2168*102, 

9.9277*104}. Notice that the estimate of 0 0 1
1

1

N β β
λ

γ
= , is of 

order {102 ~ 103} and the estimate of 2 2 0 1( )u tλ β=  is order 
of {104 ~ 105}, respectively. If we follow Potten et al. [36] to 

Figure 2: The Observed and Predicted Cancer Cases.
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assume N0=N(t0) = u2(t0) ~ 108, then β0 is of order {10−7 ~ 10−6} 
and β1 is of order {10−4 ~ 10−3}.

(d) From Table 2, the estimate of p from the SEER data is of order 
10−3 indicating that in the US population, the frequency of the 
recessive allele r of the Rb gene is approximately of order 10−3. 
Table 2 also showed that the estimate of α was 0.83, indicating 
that most individuals with genotype Rr would develop cancer 
at birth. This is consistent with the observation that there are 
high observed cancer incidences at birth for retinoblastoma in 
the SEER data.

Discussion and Conclusions
In this paper, by assuming discrete time we have proposed a 

modified MVK two- stage model to model cancer progression and 
tumor development of retinoblastoma. We found that the biological 
findings (a)-(d) given in Section (2.1) imply that this model is 
consistent with the observation and results of molecular biology studies 
by DiCiommo et al. [6], Laurie et al. [7], Gallie et al. [12] and Corson 
and Gallie [13]. To account for inherited cancer cases in the stochastic 
model of retinoblastoma, we have also developed a generalized mixture 
model for retinoblastoma in human beings. In this mixture model, 
the mixing probability is a multinomial distribution to account for 
the distribution of the three genotypes (rr, Rr, RR) of the Rb locus in 
chromosome 13q14 among individuals in the population. This mixture 
model allows us to estimate for the first time the frequency p of the 
mutant allele of the Rb gene in the US population. 

To illustrate the usefulness and applications of our models 
and methods, we have applied our models and methods to the 
retinoblastoma SEER data of NCI/NIH. Our analysis clearly showed 
that the proposed modified MVK two-stage model fitted the data almost 
perfectly (see Table 2 and Figure 2); on the other hand, the stochastic 
three-stage model fitted the data poorly (see Table 2 and Figure 2) even 
though in the three stage model there are four more parameters (see 
Appendix). Notice, however, our modified MVK two-stage model is 
more general than the classical MVK two-stage model as described in 
Tan [3] in that we postulate that cancer tumors develop from primary 
I2 cells by clonal expansion [14]. (The stochastic multi-stage models in 
the literature assume that cancer tumors develop from last stage cells 
immediately as soon as they are generated, ignoring completely cancer 
progression [23]. 

Applying our models and methods to the SEER data of 
retinoblastoma, we have derived for the first time some useful 
information on the epidemic of retinoblastoma in the population. 
Specifically, we mention: 

(1) For the first time, we have estimated the frequency of the 
mutant allele of the Rb gene in the US population ( p̂ ~ 5.81 
× 10−3).

 (2) The estimate of the proliferation rate (γ1) of I1 cells (i.e. cells 
with genotype Rr) is 1̂γ  = 2.4954 × 10−4 ~ 0. This is consistent 

with the biological hypotheses that the Rb gene is a tumor 
suppressor gene, and unlike the p53 gene in chromosome 17p 
[38], there is little or no haploid-insufficiency for the Rb gene 
in cells with genotype Rr.

Using models and methods of this paper, one can easily predict 
future cancer cases for retinoblastoma in the population. Thus, by 
comparing results from different populations, our models and methods 
can be used to assess cancer prevention and control procedures. This 
will be our future research topics; we will not go any further here.
Acknowledgements

The research of this paper by W.Y. Tan is supported by a grant from NCI/NIH, 
grant number R15 CA113347-01. The research by H. Zhou is partially supported by 
Arkansas State University faculty research fund from July 1, 2010 to June 30, 2011.

References

1.	 Knudson AG (1971) Mutation and cancer: Statistical study of retinoblastoma. 
Proc Natl Acad Sci USA 68: 820-823. 

2.	 Cavenee WK, Hansen MF, Nordenskjold M, Kock E, Maumenee I, et al. (1985) 
Genetic origin of mutations predisposing to retinoblastoma. Science. 228: 501-
503.

3.	 Tan WY (1991) Stochastic Models of Carcinogenesis. Marcel Dekker, New 
York. 

4.	 Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, et al. 
(1992) Requirement for a functional Rb-1 gene in murine development. Nature 
359: 328-330.

5.	 Jacks T, Fazeli A, Schmir EM, Bronson RT, Goodell MA, et al. (1992)  Effects 
of an Rb mutation in the mouse. Nature 359: 295-300.

6.	 Di Ciommo D, Gallie BL, Bremner R (2000) Retinoblastoma: the disease, gene 
and protein provide critical leads to understand cancer. Semin Cancer Biol 10: 
255-269.

7.	 Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, et al. (2006) Inactivation of 
the p53 pathway in retinoblastoma. Nature 444: 61-66.

8.	 Robanus-Maandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC, et 
al. (1998) p107 is a suppressor of retinoblastoma development in pRb-deficient 
mice. Genes Dev 12: 1599-1609.

9.	 Chen D, Livne-bar I, Vanderluit JL, Slack RS, Agochiya M, et al. (2004) Cell-
specific effects of RB or RB/p107 loss on retinal development implicate an 
intrincically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5: 539-
551.

10.	MacPherson D, Sage J, Kim T, Ho D, McLaughlin ME, et al. (2004) Cell type-
specific effects of RB deletion on the murine retina. Genes Dev18: 1681-1694.

11.	Zhang J, Schweers B, Dyer MA (2004) The first knockout mouse model of 
retinoblastoma. Cell Cycle 3: 952-959.

12.	Gallie BI, Campbell C, Devlin H, Duckett A, Squire JA (1999) Developmental 
basis of retinal-specific induction of cancer by RB mutation. Cancer Res 59: 
1731-1735.

13.	Corson TW, Gallie BL (2007) One hit, two hit, three hit, more? Genomic 
changes in the development of retinoblastoma. Genes, Chromosomes Cancer 
46: 617-634.

14.	Yang GL, Chen CW (1991) A stochastic two-stage carcinogenesis model: 
a new approach to computing the probability of observing tumor in animal 
bioassay. Math. Biosci 104: 247-258.

Parameters p α λ1 λ2 γ1

Estimates 5.6114E-03 8.3676E-01 5.2168E+02 9.9277E+04 2.4951E-04

St.D 2.9257E-04 7.3018E-02 1.3067E+02 5.6250E+03 1.2788E-04

95%CI-Lower 5.0380E-03 6.9364E-01 2.6556E+02 8.8252E+04 0

95%CI-Upper 6.1848E-03 9.7987E-01 7.7780E+02 1.1030E+05 5.0016E-04

Table 2: Estimates of Parameters under a MVK Two-Stage Model of Carcinogenesis.

http://www.ncbi.nlm.nih.gov/pubmed/5279523
http://www.ncbi.nlm.nih.gov/pubmed/5279523
http://www.ncbi.nlm.nih.gov/pubmed/3983638
http://www.ncbi.nlm.nih.gov/pubmed/3983638
http://www.ncbi.nlm.nih.gov/pubmed/3983638
http://www.amazon.com/Stochastic-Models-Carcinogenesis-Statistics-Monographs/dp/0824784278/ref=sr_1_1?s=books&ie=UTF8&qid=1307958386&sr=1-1#reader_0824784278
http://www.amazon.com/Stochastic-Models-Carcinogenesis-Statistics-Monographs/dp/0824784278/ref=sr_1_1?s=books&ie=UTF8&qid=1307958386&sr=1-1#reader_0824784278
http://www.nature.com/nature/journal/v359/n6393/abs/359328a0.html
http://www.nature.com/nature/journal/v359/n6393/abs/359328a0.html
http://www.nature.com/nature/journal/v359/n6393/abs/359328a0.html
http://www.ncbi.nlm.nih.gov/pubmed/1406933
http://www.ncbi.nlm.nih.gov/pubmed/1406933
http://www.ncbi.nlm.nih.gov/pubmed/10966849
http://www.ncbi.nlm.nih.gov/pubmed/10966849
http://www.ncbi.nlm.nih.gov/pubmed/10966849
http://www.ncbi.nlm.nih.gov/pubmed/17080083
http://www.ncbi.nlm.nih.gov/pubmed/17080083
http://www.ncbi.nlm.nih.gov/pubmed/9620848
http://www.ncbi.nlm.nih.gov/pubmed/9620848
http://www.ncbi.nlm.nih.gov/pubmed/9620848
http://www.ncbi.nlm.nih.gov/pubmed/15193257
http://www.ncbi.nlm.nih.gov/pubmed/15193257
http://www.ncbi.nlm.nih.gov/pubmed/15193257
http://www.ncbi.nlm.nih.gov/pubmed/15193257
http://www.ncbi.nlm.nih.gov/pubmed/15231717
http://www.ncbi.nlm.nih.gov/pubmed/15231717
http://www.ncbi.nlm.nih.gov/pubmed/15190215
http://www.ncbi.nlm.nih.gov/pubmed/15190215
http://www.ncbi.nlm.nih.gov/pubmed/10197588
http://www.ncbi.nlm.nih.gov/pubmed/10197588
http://www.ncbi.nlm.nih.gov/pubmed/10197588
http://www.ncbi.nlm.nih.gov/pubmed/17437278
http://www.ncbi.nlm.nih.gov/pubmed/17437278
http://www.ncbi.nlm.nih.gov/pubmed/17437278
http://www.ncbi.nlm.nih.gov/pubmed/1804462
http://www.ncbi.nlm.nih.gov/pubmed/1804462
http://www.ncbi.nlm.nih.gov/pubmed/1804462


Page 7 of 7

Volume 2 • Issue 2 • 1000117
J Carcinogene Mutagene     
ISSN:2157-2518 JCM, an open access journal 

Citation: Tan WY, Zhou H (2011) A New Stochastic Model of Retinoblastoma Involving both Hereditary and Non-hereditary Cancer Cases. J 
Carcinogene Mutagene 2:117. doi:10.4172/2157-2518.1000117

15.	Moolgavkar SH, Venzon DJ (1979) Two event model for carcinogenesis: 
Incidence curves for childhood and adult tumors. Math. Biosciences 47: 55-77.

16.	Tan WY (2010) Stochastic multi-stage models of carcinogenesis as Hidden 
Markov models: A new approach. Int J Systems and Synthetic Biology 1: 313-
337.

17.	Tan WY, Chen CW, Zhang LJ (2008) Cancer Biology, Cancer models and 
Stochastic Mathematical Analysis of Carcinogenesis. In: ” Handbook of Cancer 
Models and Applications.” eds. Tan,W.Y. and Hanin, L. Chapter 3, World 
Scientific, River Edge, NJ.

18.	Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic 
implications of cancer stem cells. Current Opinion in Genetics and Development 
14: 43-47.

19.	Little MP, (2008) Cancer models, ionization and genomic instability: A review. 
In: ”Handbook of Cancer Models with Applications.” (eds. Tan W.Y. and Hanin 
L.) World Scientific, River Edge, NJ. Chapter 5. 

20.	Zheng Q (2008) Stochastic multistage cancer models: A fresh look at an old 
approach. In: ” Handbook of Cancer Models and Applications.” (eds. Tan, W.Y. 
and Hanin, L.) World Scientific, River Edge, NJ. Chapter 2.

21.	Yakovlev AY, Tsodikov AD (1996) Stochastic Models of Tumor Latency and 
Their Biostatistical Applications. World Scientific, Singapore and River Edge, 
New Jersey. 

22.	Klebanov LB, Rachev ST, Yakovlev AY (1993) A stochastic model of 
radiation carcinogenesis: Latent time distributions and their properties. Math. 
Biosciences 113: 51-75.

23.	Fakir H, Tan WY, Hlatky L, Hahnfeldt P, Sachs RK (2009) Stochastic population 
dynamic effects for lung cancer progression. Radiation Research 172: 383-393.

24.	Tan WY (2002) Stochastic Models With Applications to Genetics, Cancers, 
AIDS and Other Biomedical Systems. World Scientific, River Edge, New Jersey.

25.	Crow JF, Kimura M (1970) An Introduction to Population Genetics Theory. 
Harper and Row, New York.

26.	Weinberg RA The Biology of Cancer. GS Garland Science, Taylor and Francis 
Group, New York, USA.

27.	Tan WY, Chen CW (2005) Cancer stochastic models. In:” Encyclopedia of 
Statistical Sciences, Revised edition”. John Wiley and Sons, New York.

28.	Tan WY, Zhang LJ, Chen CW (2004) Stochastic modeling of carcinogenesis: 
State space models and estimation of parameters. Discrete and Continuous 
Dynamical Systems. Series B 4: 297-322.

29.	Tan WY, Chen CW, Zhang LJ (2008) Cancer risk Assessment by State Space 
Models. In: ” Handbook of Cancer Models and Applications. ” eds. Tan, W.Y. 
and Hanin, L. Chapter 12, World Scientific, River Edge, NJ.

30.	Tan WY, Zhang LJ, Chen W, Zhu JM (2008) A stochastic model of human 
colon cancer involving multiple pathways. In: ”Handbook of Cancer Models with 
Applications.” eds. Tan W.Y. and Hanin L. Chapter 11, World Scientific, River 
Edge, NJ.

31.	Tan WY, Ke WM, Webb G (2009) A stochastic and state space model for tumor 
growth and applications. Math. Comp. Methods in Medicine 10: 1-21.

32.	Hogg RV, Tanis EA (2010) Probability and Statistical Inference. Eight edition. 
Prentice Hall, NJ.

33.	Carlin BP, Louis TA (2008) Bayesian methods for data analysis. Third edition, 
Chapman and CRC, Boca Raton, FL. 

34.	Gelman A, Carlin J, Stern H, Rubin D (2004) Bayesian methods for data 
analysis. Second edition, Chapman and CRC, Boca Raton FL.

35.	Luebeck EG, Moolgavkar SH (2002) Multistage carcinogenesis and the 
incidence of colorectal cancer. Proc. Natl Acad Sci USA 99: 15095-15100.

36.	Potten CS, Booth C, Hargreaves D (2002) The small intestine as a model for 
evaluating adult tissue stem cell drug targets. Cell Prolif 36: 115-129. 

37.	Box GEP, Tiao GC (1973) Bayesian Inference in Statistical Analysis. Addison-
Wesley, Reading, MA.

38.	Lynch CJ, Milner J (2006) Loss of one p53 allele results in four-fold reduction 
in p53 mRNA and protein: A basis for p53 haplo-insufficiency. Oncogene 25: 
3463-3470.

http://www.sciencedirect.com/science/article/pii/0025556479900051
http://www.sciencedirect.com/science/article/pii/0025556479900051
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://www.ncbi.nlm.nih.gov/pubmed/15108804
http://www.ncbi.nlm.nih.gov/pubmed/15108804
http://www.ncbi.nlm.nih.gov/pubmed/15108804
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?hl=en&lr=&id=P9klcY1ul9kC&oi=fnd&pg=PR7&dq=Yakovlev+AY,+Tsodikov+AD,+%281996%29+Stochastic+Models+of+Tumor+Latency+and+Their+Biostatistical+Applications.+World+Scientific,+Singapore+and+River+Edge,++New++Jersey&ots=4bBF1EFKg
http://books.google.co.in/books?hl=en&lr=&id=P9klcY1ul9kC&oi=fnd&pg=PR7&dq=Yakovlev+AY,+Tsodikov+AD,+%281996%29+Stochastic+Models+of+Tumor+Latency+and+Their+Biostatistical+Applications.+World+Scientific,+Singapore+and+River+Edge,++New++Jersey&ots=4bBF1EFKg
http://books.google.co.in/books?hl=en&lr=&id=P9klcY1ul9kC&oi=fnd&pg=PR7&dq=Yakovlev+AY,+Tsodikov+AD,+%281996%29+Stochastic+Models+of+Tumor+Latency+and+Their+Biostatistical+Applications.+World+Scientific,+Singapore+and+River+Edge,++New++Jersey&ots=4bBF1EFKg
http://www.ncbi.nlm.nih.gov/pubmed/8431647
http://www.ncbi.nlm.nih.gov/pubmed/8431647
http://www.ncbi.nlm.nih.gov/pubmed/8431647
http://www.ncbi.nlm.nih.gov/pubmed/19708787
http://www.ncbi.nlm.nih.gov/pubmed/19708787
http://books.google.co.in/books?id=NUWOgCGSNmEC&printsec=frontcover&dq=Tan+WY,+%282002%29&hl=en&ei=TfP1TarcCoeHrAfJxuTKBg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CDAQ6AEwAQ#v=onepage&q&f=false
http://books.google.co.in/books?id=NUWOgCGSNmEC&printsec=frontcover&dq=Tan+WY,+%282002%29&hl=en&ei=TfP1TarcCoeHrAfJxuTKBg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CDAQ6AEwAQ#v=onepage&q&f=false
http://books.google.co.in/books?id=VWqKPwAACAAJ&dq=inauthor:%22James+F.+Crow%22&hl=en&ei=u_T1TZTCBM2HrAeziJnDBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CC8Q6AEwAA
http://books.google.co.in/books?id=VWqKPwAACAAJ&dq=inauthor:%22James+F.+Crow%22&hl=en&ei=u_T1TZTCBM2HrAeziJnDBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CC8Q6AEwAA
http://bks6.books.google.co.in/books?id=cr5rAAAAMAAJ&printsec=frontcover&img=1&zoom=1
http://bks6.books.google.co.in/books?id=cr5rAAAAMAAJ&printsec=frontcover&img=1&zoom=1
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=hqzMCkweiCEC&printsec=frontcover&dq=Handbook+of+Cancer+Models+and+Applications.&hl=en&ei=ruj1TfPvEYWHrAehsuznBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q=Handbook of Cancer Models and Ap
http://books.google.co.in/books?id=GTJUt8fcFx8C&pg=PR13&dq=Bayesian+methods+for+data+analysis.+Second+edition,&hl=en&ei=4DD7TYLTFoO3rAenhfnPDw&sa=X&oi=book_result&ct=result&resnum=4&ved=0CEMQ6AEwAw#v=onepage&q=Bayesian methods for data analysis. 
http://books.google.co.in/books?id=GTJUt8fcFx8C&pg=PR13&dq=Bayesian+methods+for+data+analysis.+Second+edition,&hl=en&ei=4DD7TYLTFoO3rAenhfnPDw&sa=X&oi=book_result&ct=result&resnum=4&ved=0CEMQ6AEwAw#v=onepage&q=Bayesian methods for data analysis. 
http://books.google.co.in/books?id=TNYhnkXQSjAC&dq=related:ISBN0198568320
http://books.google.co.in/books?id=TNYhnkXQSjAC&dq=related:ISBN0198568320
http://www.ncbi.nlm.nih.gov/pubmed/12415112
http://www.ncbi.nlm.nih.gov/pubmed/12415112
http://www.ncbi.nlm.nih.gov/pubmed/12814429
http://www.ncbi.nlm.nih.gov/pubmed/12814429
http://www.ncbi.nlm.nih.gov/pubmed/16449974
http://www.ncbi.nlm.nih.gov/pubmed/16449974
http://www.ncbi.nlm.nih.gov/pubmed/16449974

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	A biologically supported stochastic model of retinoblastoma incorporating inherited cancer cases
	A stochastic model of retinoblastoma involving inherited cancer cases
	The probability distributions for developing detectable cancer tumors
	A statistical model and the probability distribution of the number of detectable tumors
	The fitting of the model and applications
	Methods for fitting data
	Fitting of the model by cancer incidence data 
	Fitting results

	Discussion and Conclusions
	Acknowledgements
	References
	Figure 1
	Figure 2
	Table 1
	Table 2

