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Thirty years ago Cairns and Potten first noted that intestinal 
epithelial cells fail to produce carcinomas at a rate proportionate to 
the number of divisions they undergo throughout their lifetimes [1,2]. 
This observation led to the formation of the immortal DNA strand 
hypothesis: the suggestion that somatic stem cells segregate their DNA 
asymmetrically, retaining an “immortal” DNA template while passing 
on newly formed chromatids to daughter cells. A distinct, yet related, 
idea posits that somatic stem cells divide infrequently, maintaining 
a state of relative quiescence. In tandem, mitotic quiescence and 
asymmetric DNA segregation are thought to spare stem cells from 
accumulating mutations as they divide to replenish their respective 
tissues [3].

An extension of this hypothesis holds that somatic stem cells retain 
thymidine analog labels due to slow division rates or asymmetric 
segregation of DNA [4]. Preliminary experiments involving [H3]-
thymidine incorporation into the DNA of developing mice showed that 
label-retaining cells persist within intestinal crypts and hair follicles 
over an extended period of time [3,5]. Following these initial studies, 
many researchers have employed similar strategies in an attempt to 
identify label-retaining cells and track asymmetric DNA distribution 
in a variety of tissues [6-20].

Nevertheless, the immortal DNA strand hypothesis remains a 
subject of contention, proving difficult to confirm or refute. This 
controversy is due in part to ill-defined or heterogeneous stem cell 
populations and the complexity associated with the use of thymidine 
analog labeling to track DNA segregation in metazoans. More 
importantly, few studies to date have established the fate of both parent 
and daughter cells following asymmetric division.

Thymidine analog labeling relies on the assumption that immortal 
DNA templates are labeled during symmetric stem cell divisions and 
that subsequent divisions, in which the labeled template is retained, 
will be asymmetric. However, stem cells may undergo symmetric, 
asymmetric, or a combination of symmetric and asymmetric divisions 
during development and adulthood. Therefore, the time frame of label 
delivery is critical for proper experimental design, and thymidine analog 
labeling requires precise knowledge of the time during development or 
regeneration when stem cells switch from symmetric to asymmetric 
divisions. Untimely administration or withdrawal of a label will result 
in its failed incorporation into template DNA strands or premature 
dilution, confounding experimental analysis.

To date, both growth and injury models have been employed in 
an attempt to overcome these obstacles. Growth models rely on the 
administration of a label at some time point during development, when 
the majority of stem cells are thought to be undergoing symmetric 
divisions. In contrast, injury models utilize physical or chemical 
means to induce a proliferative state in which symmetric stem cell 
divisions can occur. Recently, it has been suggested that the toxicity 
associated with 5-bromo-2’-deoxyuridine (BrdU) and other thymidine 
analogs is sufficient to induce the degree of injury required to stimulate 

symmetric stem cell divisions and label incorporation [7]. However, 
it is important to note that this toxicity may also lead to inefficient or 
incomplete labeling of the stem cell population due to perturbation 
of the cell cycle. This highlights the need for appropriate controls to 
ensure proliferation is not disrupted during thymidine analog labeling, 
as stem cells must continue to divide after successful administration of 
a label.

Proliferative markers like Ki67, phospho-histone H3, and 
proliferating cell nuclear antigen (PCNA) have been used in conjunction 
with stem cell markers to ensure continuous cell division, although one 
caveat to this strategy is the lack of appropriate markers for many stem 
cell populations [14]. With the recent availability of novel thymidine 
analogs in addition to BrdU, such as EdU, IdU and CldU, dual labeling 
of both the immortal DNA strand and newly synthesized DNA has also 
been used to establish continued cell proliferation [8-10, 12].

Recent evidence also indicates that chromosome number, as well as 
the number of divisions prior to analysis, can influence experimental 
outcomes [11]. Successive rounds of division dilute thymidine analog 
labels over time, leading to an increase in the frequency of asymmetric 
label segregation by chance. Many studies have failed to control for the 
number of cell divisions after label delivery, perhaps due to the need 
for in-depth knowledge of cell cycle times. Although accurate cell cycle 
times have been established in vitro using live video microscopy, they 
will remain problematic for in vivo studies where division times may 
remain rough estimates. A low number of chromosomes in the model 
organism compounds this problem [10,21]. Although many thymidine 
analog labeling studies utilize a mouse model, organisms with as few as 
six or eight chromosomes have been employed [21].

Some chromosomes may be distributed randomly, necessitating 
chromosomal resolution of DNA to verify asymmetric segregation [22]. 
Recently, the development of chromosome orientation fluorescent in 
situ hybridization (CO-FISH) has made this possible [23,24]. Originally 
developed to examine obligate chromosomal inversions associated 
with isochromosome formation, CO-FISH uses Hoescht dye and UV 
radiation in conjunction with exonuclease III to remove BrdU-labeled 
DNA. Strand-specific telomeric probes can then be used to visualize the 
distribution of chromatids in metaphase. Recently, Rocheteau et al. [10] 
used CO-FISH to show that all chromatids participate in asymmetric 
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DNA distribution during muscle regeneration in a subpopulation of 
muscle satellite cells. Likewise, Falconer et al. [25] provided evidence 
for the immortal DNA strand theory in the colon, where cell pairs 
displayed a higher degree of asymmetric chromosome distribution in 
CO-FISH assays than lung fibroblast and embryonic stem cell controls.

In addition to the limitations of thymidine analog labeling, 
ill-defined stem cell populations may include a mix of stem and 
progenitor cells, resulting in a failure to identify the appropriate 
subset of cells undergoing non-random chromosome distribution. 
Even in the hematopoietic compartment, where stem cells are defined 
by numerous surface antigens, additional characterization has led to 
new evidence in favor of asymmetric chromatid segregation [7,8]. 
Although previous studies failed to detect retention of a BrdU label 
in a murine hematopoietic stem cell (HSC) population, Wilson et al. 
recently demonstrated long term label retention in a subpopulation of 
these cells by including negative selection for CD34. These CD34- HSCs 
outperformed CD34+ cells in serial transplantation and competitive 
reconstitution assays.

Studies have often failed to provide direct evidence that parent 
and daughter cells adopt distinct fates following asymmetric DNA 
segregation. Drosophila germ line stem cells (GSCs) and their progeny 
can be identified by established markers and their unique anatomical 
position. As GSCs undergo mitosis, one daughter remains attached to 
a fragment of somatic tissue called the hub, maintaining its identity 
as a stem cell, while its sister differentiates and migrates outward 
[26]. Exploiting this knowledge, Yadlapalli et al. [11] recently used 
thymidine analog labeling to demonstrate that GSCs undergoing 
divisions known to produce daughter cells with distinct fates do not 
segregate DNA asymmetrically. In contrast, Rocheteau et al. [10] 
employed DNA labeling techniques and fluorescent activated cell 
sorting to demonstrate that label retaining cells in regenerating muscle 
adopt a stem cell fate, while cells that receive newly synthesized DNA 
upregulate genes involved in myogenic differentiation.

Whether stem cells distribute their DNA asymmetrically will 
most likely depend on the cell population, tissue type, and the 
period of development under examination. It seems unlikely that 
chromatid segregation will follow a universal pattern. However, recent 
developments have exposed the limitations of current techniques and 
highlighted the need for appropriate experimental design. It may be 
premature to draw conclusions about the asymmetric segregation of 
DNA for even the most well characterized stem cell systems without 
identification of an appropriate subpopulation through the use of 
suitable markers and functional tests.

Based on the limitations of thymidine analog labeling outlined 
above, and data generated from previous studies, we suggest that future 
analysis of somatic stem cell chromosome segregation should strive to 
meet the following criteria:

1. The label must be shown to be present throughout the course 
of the chase. 

2. The label must be incorporated into the “immortal” template 
DNA strand. 

3. Characterization of label retaining stem cells must be 
rigorously established through the use of appropriate markers 
or functional tests. 

4. The fate of both parent and daughter cells must be determined 
after asymmetric division. 

5. The cell cycle time must be determined in vivo or in vitro and 
growth should not exceed two or three divisions. 

6. Labeled cells should be shown to continually divide during the 
chase period. 

7. The toxicity of the label should not affect the cell cycle. 

8. Both growth and injury models should be utilized when 
possible. 

The evidence in support or opposition of asymmetric DNA 
segregation is mixed. However, the biological advantage this 
distribution may impart to the parent cell remains uncertain. Retention 
of DNA could prevent the accumulation of mutations as initially 
suggested, but it may also play a critical role in maintaining stem 
cell quiescence and identity through epigenetic memory [27]. Future 
studies may require evaluation of DNA methylation patterns following 
asymmetric chromatid distribution.
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