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Introduction
Automobile tires discarded in undeveloped land plots near 

anthropogenic and animal habitations are a health hazard because 
they can support an immature population of vector mosquitoes. 
These mosquitoes may transmit several zoonotic arboviral diseases. 
Hillsborough County, Florida has recorded anthropogenic cases of 
locally-acquired West Nile virus, Eastern equine encephalitis, and 
La Crosse encephalitis in the past few years [1]. Unfortunately, there 
are no means to locate waste tires dumped near georeferenced human 
dwellings besides ground-based searches. Thus, location techniques for 
waste tires that conserve limited funds and human resources are needed 
for arboviral disease prevention via tire removal in Hillsborough County.

Many of the entomological studies that have regressed eco-
epidemiological time series dependent co-factors influencing 
mosquito productivity in waste tires are limited to evaluating 
habitat productivity in urban land use land cover (LULC) zones 
using binomialized logistic regression derivatives [2-4]. Literature 
has not seen a parsimonious, geo-spatiotemporal, multivariate, 
regression-oriented, epidemiological, forecasting model for 
evaluating the extent to which individual parameterized covariate 
estimators acquired from empirical geo-sampled data map high 
georferenceable mosquito habitat productivity counts anywhere in 
Florida. Elucidating parameters statistically significant (p<0.05) to 
high mosquito count data would help geo-locate waste tire habitats 
favorable to vector and nuisance mosquito multiplication in unbuilt 
landscapes in subtropical central west Florida.
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Abstract
Refuse vehicle tires on undeveloped land plots near human dwellings may be a public health threat, as they 

can provide a suitable habitat for vector and nuisance mosquito (Diptera: Culicidae) population growth. These tires 
are currently found only through ground-based searches, so interpolated spectral signature of a geo-referenceable, 
known, positive tire may help expedite discriminating unknown waste tire geolocations. However, frequentistic and non-
frequentistic quantification of bioenvironmental explanatorial time series covariates statistically significant to mosquito 
hyperproductivitt in waste tire habitats is needed to limit the search criteria of the signature. This study aimed to develop 
an iteratively interpolative geo-spectral biosignature for detecting unknown, un-geosampled waste tires conducive to 
mosquito propagation. After constructing various regression models, we found that the field geo-sampled mosquito 
count data featured deviations from the assumptions of regression modeling (i.e., collinear and heteroskedastic 
parameters). Thus, a negative binomial paradigm was utilized to assuage the violations of regression analysis and to 
robustify the model’s R2 value. Based on the results of the linear analyses, a spectral signature of a productive habitat 
was created from multispectral band imagery from WorldView-3 satellite sensor data. The signature was then applied in 
Hillsborough County, FL to remotely determine the eco-geographical geo-locations of anthropogenic waste tire habitats. 
The signature model exhibited a sensitivity of 83% and a specificity of 87%. In conclusion, the regression and signature 
models constructed here provided a parsimonious yet accurate estimation of undiscovered waste tire habitats that may 
yield many mosquitoes.

A Negative Binomial with a Non-Homogenous Gamma Distributed Mean 
for Robustifying Pseudo R2 Regression Values of Immature Vector and 
Nuisance Mosquito Count Data for Optimally Discerning Un-Geosampled 
Waste Tires in a Subtropical Oviposition Site in SAS®/GIS employing 
Worldview-3 Visible and Near Infra-Red Data in Hillsborough County, 
Florida
Dinh ETN* and Jacob Benjamin
Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA

Jacob et al. [5] composed geo-optical algorithms for decomposing 
sub-meter spatial resolution (i.e., panchromatic Quickbird 0.61m 
IFOV data) imagery of rice field environments in order to geo-locate 
undiscovered productive aquatic larval habitats of malaria mosquito 
vector of Anopheles arabiensis (Diptera: Culicidae). The reference bio-
signatures of these habitats generated from the unmixing algorithmic 
geomteri-optical models were then used to perform an ordinary 
krig-based interpolation in ArcGIS® [5]. Likewise, Jacob et al. [6] 
geo-predicted seasonal trailing vegation, discontinuous, infrequently 
canopied, turbid water, seasonal black –fly vector of onchocercisasis, 
Simulium damnosum s. l. (Diptera: Simuliidae) by extracting 
spectral end members of canopy shaded riverine sites featuring black 
Precambrian rock from QuickBird imagery [6]. The end members were 
decomposed to orthogonal eigenevctors render a specified graphical 
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the year receives an average of nearly 60 mm of rainfall per month and 
the average minimum and maximum daily temperatures are 15°C and 
25°C, respectively [7].

The five georeferenced areas within the preserve each had 4 
automobile tires propped upright against standing vegetation. Site A 
was located at 28.070900° N, 82.397600° W in a low-lying area with an 
elevation of 11 ft above sea level. Site B was at the highest elevation of 
the 5 sites at 82 ft and was located at 28.071267 ° N, 82.389650° W. Site 
C was located at 28.070433° N, 82.388367° W and was set 60 ft above 
sea level. Site D was at 28.070517° N, 82.387717° W and 24 ft. Site E 
was at 19 ft and 28.074733° N, 82.388950° W. All GPS coordinates and 
elevation readings were taken from a Garmin eTrex® H handheld unit. 
These locations are depicted at the top of Figure 1.

Most of the sites featured large Quercus oak and Pinus pine trees mixed 
in with saw palmetto Serenoa sp. (Figure 1, bottom left). Site B was unique 
from the others in that it was a scrub area predominately composed of 
saw palmetto, grass, and small oak and pine trees (Figure 1, bottom right). 
Spanish moss Tillandsia usneoides was often found on oak and bald cypress 
Taxodium distichum trees from nearby cypress domes.

Immature mosquito sampling
Fourth instar and pupal mosquitoes were collected from every tire 

approximately every 2 weeks from 27 September 2014 to 19 September 
2015. The facing direction (°) of the tire and quantity of water (mm) in 
the tire was recorded before each collection.

Daily weather data
Daily minimum and maximum temperature (°C), minimum and 

maximum humidity (%), and precipitation (cm) were obtained from 
Tampa Executive Airport via wunderground.com, except for October 
25-27, 2014, which were recorded from Tampa International Airport. 
The averages of each weather regressor were taken in between collection 
events, inclusive of the day of collection.

Multivariate regression modeling
Variable selection for the multiple regression models was carried out 

in SAS® 9.4 (SAS® Institute, Cary, NC) by a combination of multicollinearity 
diagnostics and an automatic forward stepwise procedure.

First, the presence of multicollinearity was diagnosed through a 
correlation matrix constructed in the CORR procedure. Additionally, 
the variance inflation factor (VIF) and tolerance options were specified 
in the REG procedure to quantify the severity of collinearity in the 
ordinary least squares regression analysis. The VIF measures how 
inflated the standard errors of the estimated regression coefficients 
become due to multicollinearity [8]. Tolerance is the reciprocal of VIF. 
Table 1 lists the predictor variables analyzed. The five study sites were 
categorized 0-4. Variables were eliminated from further regression analyses 
if their pairwise coefficient of correlation (r) ≥ 0.80, which indicated a high 
level of co-dependency on each another, and if their VIF was ≥ 10.0 and 
tolerance value was ≤ 0.10.

After non-independent regressors were removed from analysis, 
the residuals of the dependent variable total immature count were 
examined to assess their adherence to the normality assumption 
of regression modeling. The check for normality was completed by 
generating in the univariate procedure a quantile-quantile (QQ) plot of 
the normal quantiles against the residuals of the dependent variable. The 
plot (Figure 2) revealed that the errors in the dependent variable were 
not normally distributed. Moreover, the null hypothesis of the Shapiro-
Wilk W test that the residuals were normally distributed was rejected 

indicator of black fly larval proliferation sites in seasonal rmeandering 
riverine tribuataries from mixed sub-pixels. Linear spectral mixture 
analysis is a common acceptable approach for conducting optimizable, 
hierarchically-oriented, frequentistic, or non-frequentistic, geo 
classification cartographic routines which often involves defining 
unique illuminative signatures of pure ground components (i.e., end 
members) and linear combinations of end member materials (i.e., 
eigenvectors). Given a set of mixed, multispectral or hyperspectral 
vectors, spectral end member eigenvectors aims at estimating the 
number of reference substances (i.e., end members), their spectral 
signatures, and their abundance fractions. The purified end members 
were then kriged to identify similar yet unknown locations.

End member unmixing has never been used for cartographically 
forecasting hyper-prolific arboviral mosquito discarded tire habitats. 
We aimed to develop an interpolative geo-spectral proxy bio-signature 
for detecting unknown, un-geosampled waste tires in an area with a 
specified vegetation index (VI) that was shown to be conducive to mosquito 
propagation. We pursued four objectives to accomplish this goal:

yy Construct logistic, Poisson, and negative binomial with 
a non-homogenous gamma distributed mean regression 
models to determine which field or remote geo-sampled 
explanatorial characteristic(s) were statistically significant 
(p<0.05) in affecting geo-spatiotemporal, field-sampled 
immature mosquito count data. immature mosquito count 
data. Then, the robustness (quantified by the pseudo R2 value) 
of the regression frameworks were compared to determine the 
optimal probabilistic explanative model for forecasting geo-
spatiotemporal mosquito production.

yy Quantitate levels of vegetation land cover with the normalized 
difference vegetation index (NDVI) and soil-adjusted 
vegetation index (SAVI) to generate proxy covariates. The 
statistical significance of the NDVI was compared to that of 
the SAVI to determine which eco-geographic geoclassified 
LULC characterization of the vegetation canopied landscape 
would have more forecasting power in the statistical models 
constructed in first objective.

yy Quantitate elevation surface slope coefficients that contribute 
to geo-spatiotemporal idiosyncrasies in mosquito immature 
abundance and distribution by forming three-dimensional 
digital elevation models (DEM). 

yy Attain the spectral signature of known mosquito vector eco-
epidemiological capture points for interpolating spectrally 
uncoalesced sub-meter resolution (i.e., WorldView-3) 
unknown unknown, unsampled fecund waste tire habitats in 
a specific landscape classification via an stochastic interpolator 
(i.e., Ordinary kriging algorithm).

Methods
Study site description

Field-derived mosquito immatures were geo-sampled from 
the University of South Florida’s Forest Preserve in Tampa, FL. The 
Preserve is a 500-acre plot of wetland and sand hill habitat. The site 
has a humid subtropical climate with a distinct rainy season from 
June to September, peaking in August. The average minimum and 
maximum daily temperatures during this season are 24°C and 32°C, 
respectively. Average monthly rainfall during this time ranges from 
approximately 160 mm in September to 200 mm in August. The rest of 

http://www.thefreedictionary.com/illuminative
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Figure 1: Top: Aerial view of the five sampling sites within the USF Forest Preserve. The Preserve’s boundaries are outlined in white. Imagery source and date: 
modified from Google Earth imagery captured on January 17, 2015. Bottom left: Site A, exemplifying typical environment and tire set up. Bottom right: Environment 
surrounding Tire B.
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Figure 2: Quantile-quantile (QQ) plot of the normal quantiles against the 
residuals of the untransformed dependent variable to check for compliance 
with normality assumption of regression modeling.

(p-value<0.0001). Thus, the response variable was log-transformed to 
normalize the distribution and minimize standard error.

Finally, the log-transformed response variable was binarized, with 
amounts greater than 1.75 coded as a 1. Both the dichotomized and 
continuous log-transformed response variable were subjected to the 
forward stepwise procedure to determine the covariates to be included 
in the following regression analyses. The optimal model for forecasting 
immature mosquito count was decided through an automatic forward 
stepwise procedure that utilized the default p-value entry and exit 
values (α=0.15 each). p-values more liberal than α=0.05 were specified 
to prevent the selection procedure from ceasing prematurely, which 
could have reduced the amount of variation in the dependent variable 
explained by the explanatory predictors in the model. This variation 
was represented by the coefficient of determination R2.

Logistic: A logistic regression paradigm attempts to describe the 
relationship of several predictor covariates to a dichotomous response 
variable, usually coded as 0 or 1 [9]. The model was generated with the 
logistic procedure in SAS® 9.4. The log-transformed response variable 
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immature mosquito count was binarized with amounts greater than 
1.75 coded as 1. The independent variables significant at α ≤ 0.05 level 
were derived from the forward stepwise selection procedure employing 
the dichotomized mosquito immature count were employed in the 
logistic forecasting model.

Poisson: Unlike a logistic response variable, a Poisson random 
variable can take any nonnegative integer value [10]. Hence, Poisson 
probability regression model using the GENMOD procedure was 
created to robustify model fit by employing the actual count data as the 
dependent variable rather than the bilateralized data. The procedure 
used maximum likelihood estimation to find the regression coefficients. 
Furthermore, the Poisson regression paradigm assumed that the data 
were equally dispersed (i.e., that the conditional variance equaled the 
conditional mean). The log-transformed count data was the dependent 
variable and the forward stepwise selection procedure decided the 
predictors included in the Poisson regression analysis.

Negative binomial: After assessing the data’s adherence to the 
assumptions of regression model construction, a negative binomial 
model was composed in the GENMOD procedure to compensate for 
overdispersion (i.e., over-Poissonian) in geo-sampled field and remote 
explicative characteristic(s) eco-geographically representing immature 
mosquito count data geosampled from waste tires in the USF Forest 
Preserve in Hillsborough County, FL.

GIS: Normalized difference vegetation indices (NDVI) of each 
study site, disregarding weather conditions, land cover classification, 
plant physiognomy, and soil type, were calculated in ArcMap 10.3.1® 
utilizing the equation:

 NIR RED

NIR RED

NDVI ρ ρ
ρ ρ

−
=

×
                     (1)

NDVI values fall within a range of -1.0 and 1.0. New Para VI 
in arboviral mosquito epidemiology is the Normalized Difference 
vegetation index (NDVI) [11-17]. For example, Brown et al. [11]. used 
canonical correlation analyses to determine if a significant relationship 
existed between NDVI, disease/water stress index and distance to water 

and four local West Nile virus vectors [11]. (Cx. pipiens, Cx. restuans, 
Cx. salinarius, and Ae. vexans). Their model determined a significant 
relationship existed between the sampled explanatory predictor 
covariates and the sampled mosquito habitats (0.93, P=0.03).

Data originated from Landsat 8 data (www.nasa.gov) of 
Hillsborough County, FL acquired on 13 and 20 February 2015, 
downloaded from the USGS Earth Explorer website [8]. Band 4 
corresponded to the red band whereas band 5 was near infrared.

Soil adjusted vegetation indices (SAVI) were similarly computed 
employing the equation:

( ) ( ) 1NIR REDSAVI L
NIR RED L

−
= × +

+ +
                    (2)

In areas where vegetative cover is low (i.e., <40%) and the soil 
surface is exposed, the reflectance of light in the red and near-
infrared spectra can influence vegetation index values [6]. In previous 
research, Jacob et al. [12]. constructed multiple NDVI and NDVI 
variant geographic maps using QuickBird visible and NIR data and 
georeferenced Cx. pipiens/restuans explanatory predictor covariates 
sampled in a mosquito abatement district in northern Illinois [12]. Their 
models revealed that NDVI and soil adjusted vegetation index (SAVI) 
parameters can quantify prolific habitats based on spatiotemporal field-
sampled count data. based on spatiotemporal field-sampled count data. 
Therefore, SAVI were computed employing the equation below for this 
investigation. The adjustment factor L = 0.5, as it was shown to reduce 
soil-induced noise throughout a range of vegetation densities [18]. 

Spectral biosignature construction: WorldView-3 satellite sensor 
data was used to image land cover types in Hillsborough County and 
remotely determine the geographical locations of anthropogenic waste 
tire habitats. Radiometrically corrected, mixelated multispectral band 
imagery was employed to create a spectral signature of a unit productive 
habitat. The WorldView-3 data had 0.31 m panchromatic 450-800 nm 
band resolution and 1.24 meter 8 band (red, red edge, coastal, blue, 
green, yellow, near-infrared 1, and near-inrared 2 400-1040 nm) 
multispectral resolution. The images were remotely taken over Hills 
borough County on February 8, 2015 and contained 3279 Km2 of land 
cover. The satellite operated at an altitude of 617 Km and collected 
680,000 Km2 of ground data per day with an average revisit time of 
<1 day. The sensor images were delivered in a processed GeoTIFF file 
format, and with an Orthorectified Map Scale of 1:12,000 from Digital 
Globe Inc. (Longmont, CO, USA). There were 4 composite bands (Red, 
Blue, Green, and Infrared), with 16 bit value pixel collection depth, and 
were without any cloud cover (0% cloud cover).

Preliminary validation on the remote sensing images was 
conducted by converting WorldView-3’s Digital Number (DN) to 
Top of Atmosphere Reflectance (TOA), which is the spectral radiance 
entering the telescope aperture at the altitude of 617 Km, in ArcGIS. A 
manual pertaining to WorldView-2 imagery was utilized in this exercise 
since during this research; a calibration methodology for WorldView-3 
imagery had not yet been implemented. However, the same equation 
used for converting DN values to TOA reflectance on WorldView-2 
images applied to WorldView-3. The conversion from radiometrically 
corrected image pixels to spectral radiance uses the following general 
equation for each band of a WorldView-3 product:

, 
ëPixel,Band ë

Band Pixel Band

Band

K q
L

×
=

∆
                    (3)

where LλPixel, Band are TOA spectral radiance image pixels (Wm-2sr-

1µm-1), KBand is the absolute radiometric calibration factor (Wm-2sr-

Variable Description Units

TOTAL Immature count data (dependent 
variable) Number collected

DATE Collection date None
SITE_CAT Site A-E, categorized 0-4

TIRE Tire Numbered 1-4
ORIEN Tire facing orientation Degrees (°)

DEPTHMM Amount of water in a tire mm

NDVI Normalized difference vegetation 
index

None; range -1 to +1 
inclusive

SAVI Soil adjusted vegetation index of 
site

None; range -1 to +1 
inclusive

ELEVM Elevation of site M

MAXTC Average† maximum daily 
temperature °C

MINTC Average† minimum daily 
temperature °C

MEANTC Average† mean daily temperature °C
MAXH Average† maximum daily humidity Percent (%)
MINH Average† minimum daily humidity Percent (%)

PRECIP_CM Average† daily precipitation cm

Table 1: Ecological variables sampled of the immature mosquito capture point 
waste tire habitats in the Tampa, FL subtropical forest study site. †“Average” refers 
to the amount between each collection event averaged together, including the day 
of collection.
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1count-1) for a given band, qPixel,Band are radiometrically corrected image 
pixels (counts), and ∆λBand is the effective bandwidth (µm) for a given 
band. Conversion to TOA spectral radiance involved two major steps: 
multiplying radiometrically corrected image pixels by the appropriate 
absolute radiometric calibration factor (K) to obtain a band-integrated 
radiance (Wm-2sr-1) and then dividing the result by the appropriate 
effective bandwidth to get spectral radiance (Wm-2sr-1µm-1) [19].

The remote sensing imagery that was analyzed in the initial 
preliminary validation step was employed to obtain a spectral 
biosignature representing waste tire habitats conducive to mosquito 
production in Hillsborough County. All tire habitats were analyzed 
in ArcGIS and the most prolific in terms of availability of larvae 
throughout the sampling period was identified for end member 
signature extraction. End member signature estimates, which are sub-
pixel spectral surface radiance generated from a georeferenced unit 
habitat [5], were geosampled following interactive supervised image 
classification in ArcGIS, whereby homogenous waste tire spectral 
training samples were polygonised, merged, and their Red, Green 
and Blue band wavelength estimates generated (Figure 5). Prior to 
this probabilistic outcome, the remote sensor data was subdivided 
into two major phases: calibration, in which the algorithm identified 
a classification scheme based on signatures of different bands obtained 
from known training sites with known class labels; and prediction, in 
which the classification algorithm based on a priori probability file in 
ASCII format or training samples was applied to find other imaged 
sites with unknown signature classification membership based on 
known, sampled signatures [6].

In the ArcGIS cyber-environment, geostatistical Kriging/
CoKriging interpolation was employed to validate the ability of the 
signature model in forecasting the presence of unknown, prolific waste 
tire sites in Hillsborough County. The spatial interpolation technique 
transformed irregular sampled known waste tire habitats to raster 
representation and resampled between multiband raster resolutions. 
In doing so, unknown, unsampled anthropogenic waste tire habitats 
at the study site were stochastically identified. Indicator Kriging in 
geostatistical analyst was further employed to obtain an epidemiological 
probabilistic, surface based maps based on primary threshold values 
obtained from the positively geosampled biosignature.

Results
Multivariate regression modeling

The multicollinearity diagnostic correlation matrix revealed that 
the independence assumption of regression modeling was violated 
when all of the predictors listed in Table 2 (except MEANTC) were 
included. NDVI and SITE_CAT, NDVI and SAVI, SAVI and SITE_
CAT, and MAXTC and MINTC had r values ≥ 0.80, indicating that 
they were strongly correlated to each other: 0.97567, 0.97194, 0.90651, 
and 0.89865, respectively. These covariates also possessed high VIF 
values (≥ 10.0): NDVI 237.43157, SITE_CAT 75.71868, SAVI 62.82885, 
MINTC 16.62231, and MAXTC 13.64677. These same variables had 
low tolerance values (≤ 0.10): NDVI 0.00421, SITE_CAT 0.01321, 
SAVI 0.01592, MINTC 0.05370, and MAXTC 0.07328.

NDVI was removed from further statistical analyses due to its high 
level of correlation with multiple predictors, high VIF, and low tolerance 
value. Likewise, the temperature measurements were replaced by a 
one collective quantity, MEANTC. As a result of these adjustments, 
multicollinearity was removed from the data and compliance with the 
independence assumption of regression analysis was ensured.

Normal quantile plots were constructed with the UNIVARIATE 
procedure to test for the normality of the residuals. The residuals for the 
dependent variable total immature mosquito count were discovered to 
lack a normal distribution via visual inspection (Figure 3). This finding 
was quantitated and verified through the Shapiro-Wilk W test for 
normality conducted in the UNIVARIATE procedure. The test had a 
p-value<0.0001, which led to the conclusion that the null hypothesis 
declaring normality of the residuals should be rejected in favor of the 
alternative, which states non-normality. The response variable was 
then log-transformed to Gaussianize the distribution of its residuals 
and minimize standard error. The log-transformed count data was the 
response variable in subsequent model generation.

Logistic: The bilateralized log-transformed response variable total 
immature mosquito count underwent an automatic forward stepwise 
selection procedure to specify regressors to be included into the logistic 
regression paradigm. Log-transformed count numbers with a value 
greater than 1.75 were coded as 1. Six explanative factors had p-values 
under the α=0.15 model entry and exit levels, but only three of these six 
were statistically significant at the α=0.05 level. These three predictors 
were MINH with a p-value of 0.0002, DATE<0.0001, and SAVI 0.0049. 
Just those three were incorporated into the logistic regression model 
forecasting immature mosquito count. The explanatory output from 
the selection process is summarized in Table 2.

 The least squares regressive model under the logistic paradigm 
was found to be Y=2.2634+[-1.79 × 10-7 (DATE)]+(-8.9439 × 
SAVI)+(0.0759 × MINH), with Y symbolizing the log-transformed 
mosquito immature count. Model R2 was 0.1307.

Poisson: The kurtosis in logistic analysis (Figure 2) justified 
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Figure 3: Quantile-quantile (QQ) plot of the normal quantiles against the 
residuals of the log-transformed dependent variable to check for compliance 
with normality assumption of regression modeling.

Step Variable 
Entered Partial R2 Model R2 Mallows’ Cp p-value >F

1 MINH 0.0494 0.0494 33.0945 0.0002
2 DATE 0.0588 0.1082 16.5175 <0.0001
3 SAVI 0.0261 0.1343 10.293 0.0049
4 DEPTHMM 0.0081 0.1424 9.7379 0.1143
5 ORIEN 0.0111 0.1535 8.2199 0.0629
6 ELEVM 0.0118 0.1653 6.484 0.0541

Table 2: Explantory forecast of the automatic forward stepwise procedure utilizing 
the binomialized dependent variable to select variables for regression model 
construction.
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the creation of a Poisson model with a gamma-distributed mean to 
compensate for light tails on both the positive and negative ends and to 
robustify the model. Similar to the assembly of the logistic estimating 
standard, the forward stepwise selection process was applied to the 
continuous logarithmic transformation of the dependent variable 
to select expository factors for regression modeling. Like in the 
logistic analysis, only three covariates were chosen for inclusion in 
the Poissonian model: MINH with a p-value of 0.0040, SAVI 0.0070, 
and DATE 0.0078. The output from the selection process utilizing the 
continuous dependent variable is summarized in Table 3.

The least squares regression model under the Poissonian 
distribution was found to be Y=3.0498+DATE+(-4.5092 × 
SAVI)+(0.0281 × MINH), with Y symbolizing the log-transformed 
mosquito immature count. The model’s R2 of 0.0811 was determined 
by a regression procedure that included just the three cofactors used in 
the Poisson regression model.

Negative binomial: Next, heteroskedascity was evaluated in 
the REG procedure by plotting the residuals of the response against 
its predicted values. Additionally, the White test, which confirms 
whether the variance residuals are constant and homogenous (i.e., 
homoskedastic), was included via the SPEC option. Finally, the 
presence of outliers was detected by calculating the studentized 
residuals (ri), leverage, Cook’s distance, and DFFITS values in the REG 
procedure, then locating values that exceeded cutoffs specified for each 
outlier diagnostic.

Since the Poisson model’s R2 decreased relative to that of the logistic 
model, compliance of the data with the assumptions of regression 
analysis was ensured in several ways. First, normality of the residuals 
of the log-transformed continuous response variable was ensured by 
creating in the UNIVARIATE procedure quantile-quantile (QQ) plots 

of the normal quantiles against the residuals of the dependent variable. 
The plot, shown in Figure 3, indicates that the non-Gaussianism of the 
residual error distribution still held true despite log-transformation. 
The Shapiro-Wilk W test for the normality of the error had a p-value 
of 0.0001. This lower level of significance in comparison to that from 
the test of the untransformed dependent variable (p-value of <0.0001) 
confirmed that the log-transformation did succeed in fitting the 
residuals to a more normal distribution and in reducing standard error.

Next, linearity between the response and predictor variables was 
tested by constructing partial regression plots in the REG procedure. 
This output is depicted in Figure 4. The plots of each regressor involved 
in the Poisson analysis against the log-transformed response variable 
displayed non-linear relationships.

Then, a plot of the residuals versus the fitted (predicted) values 
was created to reveal the possible presence of heteroskedascity in the 
model. The SPEC option was attached after the model statement while 
constructing the plot in the REG procedure in order to obtain a White 
test. The null hypothesis of the White test asserts that the variance of 
the residuals is homogeneous. When the model is correctly specified 
and the errors are independent of the regressors, the rejection of this 
null hypothesis is evidence of heteroskedasticity [20]. The p-value 
of the White test was 0.0830, so the data was deemed to be non-
homoskedastic.
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Figure 4: Non-linear relationship of the between the predictors and outcome variable exhibited by partial regression leverage plots of the residuals of the log-transformed 
dependent variable.

Step Variable Entered Partial R2 Model R2 Mallows’ Cp p-value >F
1 MINH 0.0303 0.0303 15.1058 0.004
2 SAVI 0.026 0.0564 9.53 0.007
3 DATE 0.0248 0.0811 4.3234 0.0078

Table 3: Explantory forecast of the automatic forward stepwise procedure utilizing 
the discrete dependent variable to select variables for Poissonian and negative 
binomial regression model construction.
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Finally, studentized residuals (ri), difference in fits (DFFITS), 
Cook’s distance, leverage, and difference in beta (DFBETA) were 
calculated to identify any influential cases amongst the data used for 
the Poisson regression. None of the measurements indicated any 
influential outliers.

In summary, the data featured deviations from the assumptions of 
regression modeling, which may have contributed to a low R2 value and 
increased error in the Poisson model. The source of the error was likely 
due to overdispersion, a phenomenon that may occur with binomial 
and Poisson data. For Poisson data, overdispersion arises when the 
variance of the response   exceeds the Poisson variance [21]. Recall 
that the Poisson variance equals the response mean ( ( )  Var y µ= ).

Since the error variance was revealed to be inconstant (i.e., non-
homoskedastic), we created a multivariate negative binomial regression 
model to compensate for the overdispersion present in the mosquito 
count data [10].

The negative binomial paradigm resulted in a least squares regressive 
model identical to that of the Poisson: Y=3.0498+DATE+(-4.5092 × 
SAVI)+(0.0281 × MINH). The p-values of each variable were the same 
as well: DATE 0.0326, 0.0215 SAVI, and 0.0124 MINH.

GIS: The generality of the biosignature model was tested in 
Hillsborough County. To control for data redundancy, a unit sample 
point employing independently distributed mean values per pixel was 
obtained. Of the 12 geosampled potential vector and nuisance mosquito 
waste tire sites predicted to be conducive habitats (Figure 6), 10 (83%) 
were found to meet or exceed the threshold value contained in the 
spectral signature. The model thus exhibited a sensitivity of 83% and 
a specificity of 87% when applied to find unknown, hyper-productive 
anthropogenic waste tire habitats in Hillsborough County. Since some 
waste tire habitats in the study area were within short spatial distances 
to each other, their presence at a similar geospatial location could have 
resulted in the 10 coincidental sample points seen in Figure 7.

Discussion
Previous work studying the extent to which field-sampled 

environmental parameters influenced mosquito count focused on to 
predicting prolific Aedes albopictus and Culex quinquefasciatus habitats 
identifying Anopheles habitats in tropical Africa [22-26]. The few studies 
that have attempted this in North America were in suburban Alabama 
[23,27]. and Illinois [12]. This work is the first attempt to determine 

positive predictors of associate with prolific mosquito habitats in an 
undeveloped subtropical North American forest environment.

The significance of the collection date in determining immature 
mosquito count from tires confirmed that there was seasonal variation 
to production in the subtropical study area. However, against the 
established knowledge that culicid abundance is sensitive to climatic 
changes, the minimum humidity level (%) was the only meteorological 
variable deemed statistically significant to mosquito production in 
waste tires in this study. Also, the SAVI as a more significant predictor 
than the NDVI indicated that the SAVI is a better proxy covariate of 
vegetation greenness and therefore should be favoured over the NDVI 
in upcoming GIS/public health research that necessitates usage of a 
eco-geographic LULC characterization of the vegetation canopied 
landscape in order to increase disease forecasting power.

Although the negative binomial paradigm assuaged 
heteroskedascity within the data, its application here resulted in a 
regressive model identical to that of the Poisson. Hence, it could not 
be confirmed that the negative binomial model was more or less robust 
than the Poisson. Since deviance from normality could not be entirely 
fixed by log-transformation of the response variable, error within the 
data itself may have contributed to these findings. Sources of model 
uncertainty include inaccuracies in recording elevation and weather 
data. The Garmin eTrex® H GPS unit altimeter may have been off by ± 3 
m, which may have made enough of a statistically significant difference 
for ELEVM to become a predictor in this study’s regression models. 
Weather data may have added error into the statistical analyses due 
to the distance of Tampa Executive Airport from the study area. Since 
rainfall in Florida can be localized, more precise weather information 
could have helped the violations of regression assumptions seen in this 
study. 

Therefore, future studies should use a lag or ARIMA model to 
assess site-specific weather data prior to regressing with it to reveal 
individual site-level time-series dependent trends [30].

Despite the shortcomings seen here, the statistical and signature 
models constructed here provide a parsimonious yet accurate estimator 
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Figure 5: Spectral radiance band emissivities for an anthropogenic vector 
and nuisance mosquito waste tire habitat.

 

Figure 6: Geosampled waste tire habitats overlaid on to a 3-D slope coefficient
model of Hillsborough County, FL.
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Figure 7: Probability prediction model outcome from validated anthropogenic waste tire habitats in Hillsborough County, FL.
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of undiscovered waste tires near human dwellings in a subtropical, 
undeveloped zone that may yield many mosquitoes. Mosquito 
abatement managers could use the methods proposed here to model 
environment sampled explanatory covariate coefficients in their 
proposed area, then strategically implement control efforts as time and 
budgetary restraints allow.

In this research the NDVI and SAVI were very similar in their 
optimally forecasted estimates. Another approach for regressively 
quantitating geomorphological, soil-related explanatorial covariate 
coefficinets is by quantitating land cover information of a georeferenced 
hyperproductive waste tire habitat ArcGIS-based Land Information 
Surface (LIS) model. These models are designed explicitly for soil 
moisture estimation. LIS is very customizable with the ability to choose 
many different inputs for geo-spatiotemporal geosampled parameters 
(e.g., elevation, soil types, land use classification) and other related 
data (i.e., radiation and meteorological fields including precipitation 
updated hourly or 3-hourly). LIS has the ability to run several "tiles" 
within a sub-meter resolution digitized grid cell that has different land 
use classifications (www.nasa.gov) so even if a digitized cell classified 
at the Hillsborough study sites was for example 5% urban, that portion 
could still be remotelyhmonitored. For example, in previous research 
Jacob et al. [19] generated an LIS map using field and QuickBird-
geosampled explanatory predictors of Culex. pipiens/restuans for 15 
larval habitats in Urbana/Champaign, Illinois USA. The LIS framework 
may be used to provide information on surface soil moisture conditions 
related to geosampled georferenced waste tire habitats. In these models 
the configuration, will be based on a Land Data Assimilation System 
(NLDAS) forcing data (1/8- degree, hourly) up to 3 days before the 
sampling day and a Global Land Data Assimilation System (GLDAS) 
forcing data (1/2 degree, 3-hourly) up to 12 hours previous to the time 
of sampling.

Additionally, the model could be augmented with extra 
georeferenced explanatory predictor variables at each grid point to 
quantify other data related to soil variable including: 

yy water depth in an open container such as a bucket (taking 
into account precipitation and evaporation influenced by 
temperature, humidity, winds, and radiation), 

yy water depth in a infrequently shaded container such as a tire 
(similar to the first, but with little or no solar radiation), 

yy potential standing water on the ground, assuming an area 
with suitable topography exists inside a stratified grid cell 
with no drainage by runoff. This would provide monitoring of 
potential conditions favorable to arboviral mosquito outbreaks. 
Thereafter, all generated model covariates may be analyzed 
using various statistical algorithms (e.g., linear, exponential, 
logarithmic, power or polynomial).
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