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Abstract

Rainfall induced landslides are one of the most frequent natural hazards on slanted terrains. They lead to
significant economic losses and fatalities worldwide. Most factors inducing shallow landslides are local and can only
be mapped with high levels of uncertainty at larger scales. This work presents an attempt to determine slope
instability using buffer and threshold techniques to downscale large areas and minimize slope uncertainties at local
scales, then in a second stage, logistic regression is used to determine susceptibility at large scales. ASTER GDEM
V2 is used for topographical characterization of slope and buffer analysis. Four static parameters (slope angle, soil
type, land cover and elevation) for 230 shallow rainfall-induced landslides listed in a comprehensive landslide
inventory for the continental United States are examined. A delimiting buffer equivalent to 5, 25 or 50 km is created
around each landslide event facilitating the statistical analysis of slope thresholds. Slope angle thresholds at the
pixel points 50, 75, 95, 99 and maximum percentiles are compared to one another and tested for best fit in a logistic
regression environment. It is determined that values lower than the 75-percentile threshold misrepresents
susceptible slope angles by not including slopes higher than 35°. Best range of slope angles and regression fit can
be achieved when utilizing the 99 percentile slope angle threshold. The resulting logistic regression model predicts
the highest number of cases correctly with 97.2% accuracy. The logistic regression model is carried over to ArcGIS
where all variables are processed based on their corresponding coefficients. A regional landslide probability map for
the continental United States is created and analyzed against the available landslide records and their spatial
distributions. It is expected that future inclusion of dynamic parameters like precipitation and other proxies like soil
moisture into the model will further improve accuracy.

Keywords: Shallow landslides; Slope instability; Threshold analysis;
Logistic regression; Regional analysis; GIS; Remote sensing

Introduction
Rainfall induced landslides are one of the most frequent natural

hazards on slanted terrains. They usually result in great economic
losses and fatalities globally. Worldwide at least 32,322 deaths between
2004 and 2010 have been reported [1] and in the United States alone,
landslides cause $1-2 billion in damages and more than 25 fatalities in
average each year [2]. Understanding, mapping, modeling and
preventing the aftermath of these devastating events represents an
important scientific and operational endeavor [3].

The term “Landslide” describes the downward and outward
movement of slope-forming materials that include rock, earth, and
debris or a combination of these [4]. Although landslides are
considered to be dependent on the complex interaction of several static
and dynamic factors [5-7] slope angle has great influence on the
susceptibility of a slope to sliding. Increased slope angle usually
correlates to increased likelihood of failure even if the material
distribution on the slope is uniform and isotropic [5]. Undeniably,
many other parameters are essential to the analysis of landslide risk.
For example, changes in land use and land cover such as deforestation,
forest logging, road construction, cultivation and fire on steep slopes
can have a significant effect on landslide activity [8]. In addition, forest

vegetation, especially tree roots help stabilizes hill slopes by reinforcing
soil shear strength. Root reinforcement is imperative on slopes where
roots can extend into joints and fractures in bedrock or into a
weathered transitional layer between the soil and bedrock [9,10].

Furthermore, soil properties such as particle size and pore
distribution of the soil matrix influence slope instability. These
properties influence the soil’s holding capacity and rate in which water
moves through the soil. Coarse soils are known to hold less water
under unsaturated conditions than finer soils [11]. Rainfall intensity
and duration affect the soil’s saturation level. Hence, hydraulic
characteristics and matrix suction properties of soil are crucial in the
study of rainfall triggered shallow landslides [12]. In general, soil types
and their associated geotechnical, mechanical, physical and
hydrological properties are essential for the assessment of landslide
hazards [8].

Various studies that list, define areas of susceptibility and attempt to
forecast landslides have shed some light on the conditions and
mechanisms that influence slope instability [12-18]. Nonetheless, the
reliability of all proposed methodologies is dependent on the
availability of adequate temporal and spatial surface data in addition to
adequate reporting [19]. At local scales, deterministic methods are
considered to be most reliable because they are founded on
geotechnical properties [20]. Nevertheless, deterministic methods are
inadequate for the study of landslides at large scales as geotechnical
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and hydrological conditions vary persistently from location to location
[20].

Statistically based models are preferred at large scales as they are
known to have a good degree of reliability correlating instability
parameters to past distribution of landslides [14]. Logistic regression,
for example, is one of the most common statistical methods used for
landslide assessments [12,17,21-25]. Logistic regression is used to find
the best fitting relationship of multiple independent variables to a
dependent variable and does not require normally distributed landslide
conditioning parameters. Logistic methods are a multivariable analysis
technique where the dependent variable is not a continuous parameter
and where the result is a binary probability of values between 0 and 1
[22]. The advantage of logistic methods over regression analysis and
discriminant analysis for the study of landslides is the fact that the
dependent variable has the probability of only two values: an event
happening or not happening (0 or 1) [26,27].

The advancement of remote sensing techniques offers a better
opportunity to analyze landslide risk at large scales; however, great
discrepancies arise when monitoring landslides at high spatial
resolution over a large domain. Inventories usually depend on
information retrieved from newspapers, online news, and government
agencies where heterogeneous reporting is unavoidable. In many
instances, catalogs lack precise spatial and temporal distribution
making it hard to identify the precise conditions involved in the
development of landslide events. In addition, studies have shown that
susceptible slope angle is misrepresented at large scales. Kirschbaum
[6] for example, emphasizes that slope angle values in Hong [5] global
model are under-valued at around 21° due to averaging values over a
large area. Similarly, in a global landslide hotspot study, Nadim [26]
places susceptible slope angle between 8 and 32° top. Defining a better
technique than just finding the average can assist to reduce slope
under-estimations at large-scales and be very helpful for the analysis of
landslide risks.

This work proposes to address the scale dilemma by utilizing a
descriptive landslide inventory in addition to buffer and threshold
techniques that help minimize susceptibility overestimation at large
spatial scales. Precisely, the proposed blended techniques involve a
reducing the area of study as a suitable approach that delineates areas
of high risk where another approach that is appropriate for large
assessment is applied. It is then a multistage approach that is proposed
here to bridge the gap between different appraisal scales and reduce
slope misrepresentations. These two techniques are applied in the
spatial context of the Continental United States utilizing the best
available rainfall-triggered landslide inventory that represents most of
the dominant conditions of landslide prone localities. Subsequently,
logistic analysis is used to determine landslide probability at the
regional scale.

Methods
This work presents a multistage technique that bridges the gap

between landslide mapping at large and local scales. Based on a
descriptive (spatial and temporal) landslide record, buffers are used to
condense the area of study to that of the most likely area of slope
susceptibility. Consequently, various percentile thresholds for each
static parameter are tested in a logistic regression model to determine
the best fit. Validation of the model is performed by the random
division of the data in a 70-30% fashion and data partition and cross-
validation. A confusion matrix helps conclude details about the

performance of the model. Best fitting model is then represented in a
landslide probability map for the continental United States.

Data collection
Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) Global Digital Elevation Model (GDEM) 10 by
10 tiles were merged into a single DEM utilizing ArcGIS’s mosaic to
new raster function. Soil type was obtained from the Harmonize World
Soil Database Version (HWSD) 1.2. This dataset combines existing
regional and national updates of soil information from around the
world and incorporates them into the Food and Agriculture
Organization of the United Nations (FAO-UNESCO) soil Map of the
World at a 1 km resolution. Land cover was retrieved from the FAO
Global Land Cover-SHARE database at 1 km2 resolution. This dataset
integrates local and global land cover information, local information is
derived from datasets such as Africover and Corine LC and global data
is derived from the Moderate-resolution Imagine Spectroradiometer
MODIS Vegetation Continuous Fields VCF2010 [28,29].

Buffer analysis
Landslide inventory: Developing an approach for local and regional

monitoring of landslides is possible when a large and comprehensive
record of landslides events is available, this represents the main
limitation of this work. Obtaining event data or a consolidated
landslide inventory at large scales is extremely challenging due to
heterogeneous reporting and data availability even for a country such
as the United States. The United States Geological Survey (USGS) is
currently compiling a listing of global and local events [30] but
uniform reporting is not available yet. In addition, events listed in the
State geological surveys, in many instances, lack precise spatial and
temporal distribution.

To this day, the most uniform and comprehensive landslide
inventory found by the authors is being developed at the National
Aeronautics and Space Administration (NASA) and explained in
Kirschbaum [6]. The inventory is a systematic landslide catalog that
lists around 1,600 landslides globally and 270 for the United States for
the years 2003, 2007, 2008 and 2009. The inventory summarizes
rainfall-triggered landslides and debris flows reported in newspapers,
online news, and government agencies. Landslide events are reported
with an accuracy of 24 hours, and in the case of multiple landslides
occurring during one rainfall event, the first landslide is designated as
the event time.

This particular inventory stands out from other listings because two
qualitative indices were designated to represent locality and size
uncertainties that are otherwise kept undefined in other inventories.
Index 1: Confidence radius, represents general location accuracy, and
Index 2: Size radius, differentiates small from larger events as well as
minor events from catastrophic events. Both indices range on a scale
between 0 and 5 where 5 represent the most accurate location and the
biggest event respectively as seen in Table 1 [6].

In this study, size radius and confidence radius are adopted. Size
radius is incorporated as a measure of landslide size and confidence
radius as an extent of uncertainty. Only confidence radius of 5, 25 and
50 Km are considered as they represent the exact or near the exact
location, a location known to the extent of a city or nearby coordinates
of a village respectively.
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Landslide location classification Radius of Confidence in landslide location Reporting of landslide location

3 25-50 km Cannot locate city or village where event occurred but can identify
geographic coordinates of nearby cited location

4 5-25 km Landslide location known within the extent of city or village

5 <5 km Exact or near exact location within city or along road

Landslide size classification Relative landslide size Reporting of landslide size

3 Multiple sliding events over a region, medium to large
event affecting a large area or population

Multiple events within an area; multiple events along road cuts

4 Large to massive landslide, many landslide which
affected one general area

Landslide affected an entire village, city, or series of villages

5 Massive event or multiple large events, often causing
fatalities

Affected an entire region

Table 1: Kirschbaum et al. [6] excerpt Landslide inventory confidence and size radius.

Confidence radius greater than 50 Km are described in the
inventory as events occurring somewhere within a country or large
region making the uncertainty area too large and, therefore, are
excluded from the analysis. The resulting 230-landslide events in the
US are distributed between Longitudes 60 W and 130 W and Latitudes
30 N and 60 N resulting in a suitable representation of the locations
and characteristics that are known to be prone to landslides in the
continental U.S. as per Radbruch-Hall et al. [28]. Buffers equivalent to
the extent of the confidence radius are created around each landslide
event as seen in Figure 1.

This process helps reduce the area of study to that of the buffer and
therefore, it is reasonable to assume that the buffered area includes all
possible places in which the event might have occurred. By this means,
it is possible to statistically analyze the characteristics of the terrain
that could have led to the rain-triggered landslide. Buffer extraction
from the original dataset is carried on by an itinerating algorithm that
correlates the spatial coordinates of each event to the coordinates in
the dataset. Consequently, subsections corresponding to each buffered
area are extracted from each dataset and pixel values for each area are
converted into ASCII files. Each file corresponds to one buffer or one
event, resulting in 230 files for each dataset type.

Figure 1: Landslide inventory for 5, 25 and 50 km confidence radius
events in the USA.

Threshold sensitivity analysis
Slope: Rainfall-induced shallow landslides occur as relatively

shallow (0.3-2 m) failure surfaces parallel to the slope in landslide-
prone slants [31,32]. In the case of rainfall-induced landslides, slope
angle is the underlying factor in downslope movement after gravity
forces acting parallel to the slope have superseded friction and
cohesion forces. It is undeniably possible that some events could have
happened at less steep slopes as gravity alone does not determine
downward movement, nevertheless, the likelihood is higher as slope
angle increases. This work develops under this premise.

In this work, slope angle values for all 230-landslide events in the
continental U.S. are derived utilizing the mosaicked DEM. Pixel values
within each buffer are analyzed statistically by creating thresholds,
these thresholds are then partitioned and sorted in ascending order.
Values are organized in rank order from lowest to the highest, the
lowest score is in the 1st percentile and the highest score is the 99th

percentile. The percentile represents the value below which a given
percentage of the observations lie [33]. For example, if a slope value is
in the 99th percentile, it means that it is higher than 99% of the other
slope values.

Percentiles are then used as thresholds in each buffer zone, values
laying bellow the specific percentile are considered stable, and values
laying above the percentile are considered unstable. Thresholds for the
Tpoint=Pixel Point, T50=50, T75=75, T95=95, T99=99 and T100=Max, are
tested for all buffers. This technique leads to the assessment of the
slope percentiles that result in underestimations and over-estimations.
Buffers for 3 landslide events and their corresponding T99 threshold
can be seen in Figure 2.
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Figure 2: Landslide event buffer and threshold analysis represented
for 5, 25 and 50 Km for all variables.

Three different events with buffers of 5, 25 and 50 km and their
corresponding slope, elevation, land cover and soil type are
represented. Percentile threshold T99 is highlighted in red in each
histogram as well as in each buffer.

Elevation: Altitude values corresponding to the T99 percentile
threshold for all 230-landslide buffers are selected. As with the slope
buffers, 230 extractions from the DEM are converted into ASCII files.
Analysis of the mean, the standard deviation and other statistical
moments is investigated.

Land cover: Land cover classes are represented by numerical values
in each data-set; these values are extracted from each buffer and then
converted into ASCII files. Because land cover classes are categorical
no other statistical moment besides the mode is tested. The
corresponding mode for the T99 percentile threshold for each buffer is
selected as the prominent land cover value within the buffer.

Soil type: The HWSD lists 36 different soil types and their
corresponding physical-chemical properties. Textures, soil drainage,
available water storage capacity, soil phase among many other
characteristics for each soil are described in the database. Classes
found within each buffer are examined and the mode corresponding to
the T99 percentage threshold range is selected as the representative
value for each buffer as shown in Figure 2.

Threshold values for each file are calculated. A complete flow chart
for the analysis framework is illustrated in Figure 3.

Figure 3: Threshold sensitivity analysis schematic.

Logistic Regression (LR) model
The LR method is based on the generalized linear model that can be

expressed as Probability of Landslide (Pl):�� = 11 + �−�  Eq.1

Where Pl is the probability of a landslide event expressed in a
dichotomous way of 0 and 1, set by a classification cutoff point value of
0.5 for adjusting the estimated Pl values to 0 for Pl<0.5 and 1 for
Pl>=0.5. The logit Z is assumed to contain the independent variables
on which the landslide event may fall. The Z term is expressed in the
linear form as:� = �0+ �1�1+ �2�2+ ... + ���� Eq.2

Where β0 represents the intercept of the model, β1, β2…,n the
partial regression coefficients, X1, X2…, Xn represent each of the
independent variables.

In addition to the 230 rainfall-induced shallow landslide events, 230
random points that do not overlap with actual events are used to
represent the absence of landslides as areas of “no-event yet”. Buffers
and thresholds are not applied to random points because statistically,
these points have an equal probability of representing an event as
much as a no-event. In this case, the pixel value is selected as a
representative for random points.

The regression model calculations are performed using SPSS [34]
statistical software. Various models are examined utilizing all threshold
percentages, from where the best fitting threshold is selected.
Likelihood-ratio for all variables is evaluated for removal when the
contribution to the model is minimal. The contribution is deemed
minimal if the observed significant level is greater than the probability
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of remaining in the model. In this study, such value is placed at the
0.05 level of significance.

Results and Discussion
Buffers and thresholds were designed to present a feasible approach

to address misrepresentation of slope angle when monitoring landslide
activity at high spatial resolution over a large domain. Improper
identification of parameters, particularly for slope, often results in a
misrepresentation of areas at risk. The development of this approach is
only possible due to the availability of a comprehensive record of
landslides events that represent the dominant characteristics of
landslide-prone areas in the continental United States. A more
extensive landslide record with the same characteristics is not available
at the present moment, but using the buffer and threshold techniques
in more data points can help minimize overestimation of susceptible
areas at the large scale.

This work assumes that landslide risk is greater as slope angle
increases. As the landslide inventory does not list the slope angle of the
event because the locality is an estimate, slope values in each buffer
area are tested. Comparison of slope percentile thresholds
demonstrates that values below the T75 percentile threshold
misrepresent areas of susceptibility by not including slope angle values
higher than 35°, in this manner agreeing with previous studies [6,26].
Values below this threshold range between 0° and 35°, this could result
in susceptibility over estimations. In addition, this threshold does not
account for higher slopes present in the area possibly resulting in a
misrepresentation of reality as it is well known that landslides occur in
a wider range of slope angles [7,15,35-37].

This same comparison demonstrates that values above the T95
threshold percentage encompass a wider range of slope values, but it is
not clear whether these thresholds include over-estimations such as the
inclusion of outliers. Therefore, the T99 threshold is investigated.
Nevertheless, it is important to consider that threshold percentages
above T95 could potentially represent better susceptible slope angle
values, for this reason, each threshold is examined in a logistic
regression analysis. Distribution for Tpoint, T95, and T99 thresholds can
be seen in Figure 4.

Figure 4: Slope angle distribution for threshold sensitivity analysis.

Further analysis of each threshold percentage is tested in a logistic
regression model, it is determined that threshold T99 is the most
suitable value because it produces the most representative range of
slope values and it yields the best fitting model. In addition, results are
consistent with local slope instability studies around the world
[7,15,17,35-38]. Moreover, the highest amount of variation in the
dependent variable is explained by the strongest relationship between

the predictors and the prediction at 94.3%. This slope threshold is a
conservative assessment that no does not under or over-estimate slope
angle susceptibility.

The performance of each model describes how well each variable
describes the phenomenon as seen in Figure 5. Likelihood-ratio for all
variables is evaluated for removal when the contribution is minimal.
Contribution is deemed minimal if the observed significant level is
greater than the probability of remaining in the model. In this study,
elevation’s contribution to the tested models was deemed insignificant;
therefore elevation is excluded at this point from any further analysis.

Figure 5: Percentage thresholds and their accuracy.

The independent variables in logistic regression can be
characterized as useful predictors if the classification accuracy rate is
substantially higher than the accuracy attainable by chance alone. SPSS
calculates this chance accuracy criterion as the first step by not
including any variables in the model. As a result, the accuracy rate
computed for chance is 50.9% and the accuracy rate computed for the
model is 97.2%. This demonstrates that the variables included in the
model significantly enhance the outcome. Table 2 shows the model’s
coefficients for each variable that is found to be significant. Slope and
Land cover are significant variable predictors with p-values <0.01 while
soil type is less significant predictor with p-value<0.001. Slope’s
significance as a predictor in the model, emphasizes the importance of
its proper initial representation.

Variable B S.E. Wald df

Slope 0.422 0.056 57.186 1

Soil Type 0.009 0.046 0.042 1

Land Cover -0.928 0.232 16.021 1

Constant -5.012 1.549 10.464 1

Table 2: Variables in the Equation.

As validation, the data was divided randomly on a 70-30% ratio for
subsets as “model obtaining” and “validation” subsets respectively.
Furthermore, the data was partitioned in 20% subsets for cross-
validation. Five rounds of cross-validation were performed using
different partitions. Validation results represented by the average of the
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five rounds indicate that this model predicts the highest number of
cases correctly at 97.2% accuracy.

A confusion matrix helps determine details about the performance
of the model. The ability of the model to correctly identify the events is
represented by True Positive. Events that are not correctly identified
are represented by False Negative, and over predictions are represented
by False Positive [33] (Table 3).

Landslide Event

 Predicted Not Predicted Total

Landslide 220 true positive 6 false positive 226

Not landslide 7 false negative 227 true negative 234

Total 227 233 460

Table 3: Confusion Matrix POD and FAR for all landslide events.

It is important to emphasize that this study only investigates the
relationship of some static variables to landslide events. Rainfall, the
triggering factor for the landslides in this study is not incorporated. It
is assumed that by incorporating this factor in addition to other
proxies like soil moisture into the logistic regression model will result
in higher accuracy rate.

Landslide probability mapping
The logistic regression model is carried over to ArcGIS 10.2. All

variables are processed based on their corresponding coefficients. It is
important to reiterate that only static variables are used in this map
and better resolution information

The resulting map in Figure 6 is classified into 2 categories based on
a cut off value of 0.5: a) Not Probable (0-0.50: b) Probable (0.501-1).

Figure 6: Landslide Probability.

Conclusions
Landslide studies at large scales are limited by uncertainties. At the

present time, no system exists that can simultaneously address both
regional and local scales. This work proposes utilizing buffer and
threshold techniques to minimize uncertainty at the local scale so
further analysis can be done on a larger scale. Various threshold
percentages corresponding to 230 shallow landslides in the continental
United States are tested logistic regression analysis. Findings are as
follows:

Buffer analysis is efficient at narrowing large areas to more
manageable scales. This, of course, depends on the original availability
of a well-constructed landslide inventory that provides information on
the event’s locality.

Slope threshold percentage techniques confirm that slope
susceptibility is misrepresented when performing analysis at large
scales. Most slope values for thresholds lower than T75 do not include
slopes higher than 350, this result in the overestimation of susceptible
areas and a misrepresentation of reality as landslide-prone slopes has a
greater range.

It is determined that the threshold percentage T99 is a conservative
assessment that includes a wider range of slope angles and successfully
excludes outliers.

A regional logistic regression model demonstrates that utilizing the
threshold percentage T99 to model slope instability at large scales
results in an accuracy rate of 97.2%.

Likelihood-ratio for all variables is evaluated in the logistic model,
elevation’s contribution was deemed insignificant therefore excluded
from the model.

Using the buffer and threshold techniques in more data points can
help minimize overestimation of susceptible areas at the large scale.

Eliminating uncertainties at the local level improves the large scale
modeling accuracy.

It is important to note that given the restrictions of physically or in-
situ base data, this study is subject to the existence of a comprehensive
landslide inventory and reasonably scaled surface data. Better
resolution information and other static parameters can be tested in
logistic regression analysis, but awareness of limitations given the large
scale is imperative as some data may be deemed too general and not
sufficiently detailed for the mapping scale. In addition, although the
focus of this study is rain-triggered shallow landslides, neither rain nor
antecedent soil moisture information has been implemented in this
work. It is assumed that future implementation of these unaccounted
for variables and the addition of more detailed soil information (in the
continental U.S.) will help describe susceptibility conditions
dynamically, therefore, enhancing this platform. Moreover, it is
possible for this approach to be brought to other regions, as all the data
used in the present analysis is available globally. The approach should
be regional, leading to a global scale in order to minimize over
generalizations.
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