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ABSTRACT
Over the past decade, Deep Convolutional Neural Networks (DCNN’s) have emerged as a powerful tool for the classi-

fication of remotely sensed imagery. In this multi-disciplinary paper, we demonstrate a novel application of machine

learning in the field of remote sensing by developing a workflow to survey urban areas for residential properties suit-

able for electric vehicle charging. A fine-tune transfer learning approach is presented as a new method for analysing

remotely sensed image data. A unique dataset comprised of Google Street View images sourced from multiple UK

towns and cities is used to train can compare three neural networks and represents the first attempt to classify

residen- tial driveways from streetscape imagery using machine learning. When testing the full workflow on two

urban areas the full system achieves accuracies of 87.2% and 89.3% respectively. This proof of concept demonstrates

a promising new application of deep learning in the field of remote sensing, geospatial analysis, and urban planning.
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INTRODUCTION
Machine learning and computer vision algorithms have proven
to be powerful tools for classification of remotely sensed
imagery. Over the past decade, as distributed smart systems and
the Internet-of-Things have become increasing widespread, new
technologies have emerged to deal with the vast amount of data
produced by these systems. The rapid development of smart
devices, artificial neural networks, and computer vision has
meant recent approaches to image classification in remote
sensing rely increasingly on machine learning techniques
Srivastava et al. (2019); Leung and Newsam (2012); Kang et al.
(2018); Huang et al. (2018). Computer vision algorithms have
proven to be especially powerful tools due to their versatility,
scalability and low cost Enr´ıquez et al. (2017). Despite the large
amount of research into Land Use and Land Cover (LULC)
classification using remote sensing imagery, the identification
and classification of private off-street parking represents a
significant gap in the literature.

Following the Paris Climate Agreement in November 2016, the
UK government made a series of announcements to tackle

greenhouse gas emissions. The production and sales of petrol
and diesel engine vehicles are to be banned in the UK by 2040,
and Clean Air Zones (CAZ) are to be introduced across major
cities and local authorities Department for Environment Food
and Rural Affairs (b,a). Battery Electric Vehicles (BEVs) and
Plug-in Hybrid Electric Vehicles (PHEVs) are exempt to these
government restrictions and, depending on CO2 pipeline
emissions, plug-in vehicle grants are available for UK customers
Palmer et al. (2018). These factors, combined with their low
running costs and increasing affordability, make BEVs and
PHEVs serious contenders in the future of UK sustainable
personal mobility. The UK government recognize that
availability of accessible and affordable home charging options is
key to increasing the uptake of plug-in vehicles. At present, the
available evidence suggests that most plug-in vehicle owners will
carry out the largest proportion of their charging at home for
Low Emission Vehicles (2019). For this reason, the updated ‘UK
Electric Vehicle Homecharge Scheme’ was introduced this year
offering a grant of up to £500 to support customers towards the
purchase and installation of a home Electric Vehicle (EV)
charging point for Low Emission Vehicles (2019). In order to

Journal of Remote Sensing & GIS Research Article

*Corresponding Author: Flynn J, Materials and Manufacturing Academy, Swansea University, Fabian Way, Skewen, Swansea SA1 8EN; Tel:+
07443637510, Email: 827380@swansea.ac.uk

Received date: November 18, 2020; Accepted date: August 27, 2021; Published date: September 8, 2021

Citation: Flynn J (2021) A Machine Learning Classification to Identify Houses Suitable for Electric Vehicle Charging from Remotely Sensed 
Imagery. J Remote Sens GIS.Vol.10 .p147.

Copyright: © 2021 Flynn J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Remote Sens GIS, Vol. 10 Iss.7 No:1000P222 1

mailto:827380@swansea.ac.uk


qualify for the scheme, customers who are the registered keeper,
lessee or have primary access to an electric vehicle must have
designated private off-street parking accessible at all times for
Low Emission Vehicles (2019).

Even the most extensive mapping agencies in the UK such as
Ordnance Survey (OS) and Open Street Maps (OSM) lack
accurate data describing detailed features of individual
residential buildings. While both datasets do include some
building attribute data such as building type, active frontage,
square footage, etc., some of this information can be difficult to
obtain for various reasons. Firstly, obtaining data relating to
street frontage using traditional survey methods is often both
costly and time consuming, therefore this information is
difficult to keep up to date Law et al. (2017). Secondly, in the
late 1960’s following advances in aerial surveying, drawing and
printing techniques, as well as the introduction of digital
technologies, OS began to manually digitalize their historical
paper maps into what is now the OS Master Map. These
techniques, particularly the use of aerial remote sensing, make it
difficult to classify buildings or identify their frontal features
without ancillary data Hussain et al. (2007). This is especially
true for identifying areas suitable for EV charging points as it is
difficult to determine whether a property has road access from
an aerial view, and integral/semi-detached garages may be
concealed. Thirdly, mapping agencies such as OSM that
predominately rely on Volunteered Geographical Information
(VGI) find that the accuracy and attention to detail of various
measurements differs between areas depending on the skills and
patience of the contributor Haklay (2010). Furthermore, the
quality of VGI coverage drops considerably in suburban areas
where there are fewer contributors Haklay (2010). These
challenges make it difficult for companies to obtain data on
residential areas suitable for EV charging points.

In this paper we overcome these challenges by combining data
from OSM and Google Street View (GSV) to develop an end-to-
end workflow to survey small to medium urban areas for
residential properties suitable for EV charging. This paper also
presents the first case of using deep CNN’s to classify residential
off-street parking from remotely sourced imagery. The paper is
structured as follows. In section 2 we review the current
literature of machine learning in remote sensing. Following the
literature review, section 3 outlines the methodology to identify
residential properties for EV charging. This methodology is
presented as a 5 step, end-to-end workflow with each step
described in detail within the section. The methods used to
select, train, test and optimise the two CNN’s that are utilised
within this workflow are also discussed in the methodology.
Section 4 includes the results of the CNN optimisation as well
as a demonstration of the full workflow on two urban areas.
Finally, sections 5 and 6 include the discussion and conclusion
of our findings.

Related Work

Deep Learning in Remote Sensing

Over the past decade, Deep Convolutional Neural Networks
(CNN’s) have emerged as a powerful tool for remote sensing
applications due to their superior performance in visual pattern

recognition, object recognition image classi- fication and image
segmentation Kampffmeyer et al. (2016); Zhang et al. (2018);
Schmidhuber (2015). Based loosely on the perception
mechanisms of the visual cortex, a CNN architecture consists of
multiple layers of artificial neu- rons in a stacked arrangement to
perform three main operations: convolution, non-linearity and
pooling/subsampling Kampffmeyer et al. (2016); Schmidhuber
(2015). For image classification, a series of multispectral images
are fed into the first layer in the form of 2-D arrays. The
following sequential layers are then represented as input and an
output feature maps calculated by alternatively stacking
convolutional and pooling layers. The final layer is a fully
connected layer in which classification is performed. Alexnet,
GoogLeNet, VGG, and ResNet are the most common pre-
trained network architectures in the reviewed literature.

Alexnet is the most commonly used network for remote sensing
and LULC tasks due to its high efficiency and performance
Krizhevky et al. (2007) . Alexnet is an 8 layer CNN developed by
Krizhevsky et. al in 2007 as part of the ImageNet LSVRC-2010
contest. Alexnet was the first network to incorporate the
Rectified Linear Activation Function (ReLU) which marked a
major algorithmic change that greatly improved the performance
of feed-forward networks and permitted the development of very
deep neural networks Goodfellow et al. (2016). The network
features five convolutional layers and three max pooling layers
that result in approximately 60 million parameters, making it
the least complex network reviewed in this section. Due to this
relatively low complexity, modified versions of AlexNet have
been developed to run on embedded devices in real time Amato
et al. (2017). In their 2017 paper, Amato et al. (2017) develop a
CNN for parking lot occupancy detection based on AlexNet’s
architecture which was able to run in real time on a Rasbperry
Pi 2 model B.

Christian et al. (2015) introduced the architectural concept of
“Inception Modules” which was used to develop their
GoogLeNet network which won the ILSVRC14 competition. By
enabling multiple feature extractors to branch

from a single layer, the inception modules allow for filters of
different resolutions to operate in parallel. With different sized
filters at each layer, more accurate spatial information is retained
while the number of parameters is significantly reduced when
compared to similarly performing non-inception architectures.
This means that despite its 22 layers, GoogleNet has only 4
million parameters, making it less-sensitive to over-fitting.
Castelluccio et al. (2015) use GoogleNet and CaffeNet to
perform LULC classification on aerial images. In this paper the
focus is on how the method of training effects the final accuracy
of the network. GoogleNet outperformed CaffeNet at all tasks
and it was found that fine-tune transfer learning gave the best
results compared to training the network from scratch or using
feature vector.

The concept of a Residual Network (ResNet) was introduced in
2016 by He et al. (2016) as part of an attempt to overcome
degradation when building very deep networks. Degradation
refers to the tenancy for training error to suddenly increase as a
networks depth is increased beyond the point where accuracy
saturates. This issue is overcome by introducing feed-forward
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shortcut connections around multiple stacked layers within the
network architecture. This simplifies the process of mapping the
identity function onto the output of the skipped layers, meaning
additional layers can be added without increasing the number of
parameters or computational complexity. In Cai et al. (2018), a
modified ResNet50 network was demonstrated to outperform
existing unsupervised methods at measuring urban tree cover
from GSV images.

In Kang et al. (2018), CNN’s are compared in their ability to
classify buildings from GSV and aerial images at several cities in
North America. The paper looks at four CNN’s: VGG16,
AlexNet, ResNet18 and ResNet34. All 4 networks showed high
levels of error when trying to distinguish between houses and
garages. The paper identifies the source of this error being due
to the high number of images of residential houses with an
integral garage. VGG16 performed the best at the classification
task followed by the ResNet variants and AlexNet. In this paper
we do not consider VGG networks as they are too
computationally expensive.

The pre-trained networks discussed in this section are all trained
on ImageNet, a huge dataset containing millions of images and
1000 categories Li et al. (2009). When re-purposing these pre-
trained networks for remote-sensing applications, a common
challenge is the lack of publicly available training data
Castelluccio et al. (2015). This issue is common across many
different fields and solutions have been widely explored in the
literature Yosinski et al. (2014); Donahue et al. (2014); Zhu et al.
(2011). The most common method of adapting pre-trained
networks is fine- tune transfer learning whereby the user only
adapts a small number of high-level layers to the new task. This
means that the network retains knowledge of lower level features
that are widely transferable across tasks. Castelluccio et al.
(2015) demonstrates how a networks trained using the fine tune
approach outperforms the same network trained from scratch
on the same dataset in both final accuracy as well as
computation time.

Deep learning challenges and limitations

As yet, no attempts have been made to use CNN’s to identify
residential properties suitable for EV charging from streetscape
imagery. However, the challenges of such a task are widely
discussed in the literature. One major problem is occlusion.
Residential off-street parking facilities are often relatively small
features when compared to car parks, residential buildings and
industrial buildings that most classifiers deal with. Such features
can easily be obscured by structures, trees or vehicles in the
foreground. This issue can be resolved by using multiple GSV
images from different angles and positions although this may
not always be possible Enr´ıquez et al. (2017).

The second major problem involves the diversity of the class.
Some structures, such as religious buildings, are easier to classify
as they often contain unique, distinctive features that not
associated with other classes e.g. spire or a dome. Private
driveways vary greatly in size, shape, texture and their location
relative to the associated property, making them difficult to
distinguish from other features such as a front garden or
pathway. Furthermore, while one would assume that garages

could be easily distinguished by a large, metallic, square door,
previous attempts to classify garages have proven difficult and
are often misclassified as houses as the two often appear in the
same image. This issue is highlighted in Kang et al. (2018) where
four different CNN’s demonstrate poor accuracy when
attempting to identify garages with a significant portion
misclassified as houses.

MATERIALS AND METHODS
This section introduces our method for remotely surveying
urban areas to identify residential properties suitable for EV
charging. The method, illustrated by the workflow diagram in
Figure 1, is split up into five main steps. In steps 1 and 2, a
MATLAB code is used to request the geographical and image
data for the area to be surveyed. This image data is then filtered
and sorted by a CNN in step 3 before being passed onto a
second CNN in step 4 which identifies all images suitable for
EV charging. Finally, in step 5 a mailing list of all locations
identified as suitable for EV charging is presented as well as a
map of their locations. These steps are described in further
detail in this section, as well as the methods used to select, train,
test and optimise the two CNN’s that are utilised within this
workflow.

Figure 1: Diagram showing the total workflow of the proposed
method.

Training and Testing Data Acquisition

In order to train a CNN to recognize properties that are suitable
for EV charging point installation, a bespoke dataset was created
for both training and testing using GSV data collected from
eight different UK towns and cities, as shown in Figure 2. These
towns and cities are selected due to their varying lo- cal histories,
population densities, and geographical locations, which in turn
affects the age, density, and style of housing. This allows us to
build a diverse dataset, despite its small size, thus maximising
the accuracy of the overall system when testing in mul- tiple
areas. Open Street Maps (OSM) provides open source
geographical data and was used to acquire the geographic
information for these urban areas Con- tributors (2019). At each
location, described by rect- angular boundaries of longitude and
latitude, data is exported in XML format before using the
method de- veloped by Filippidis (2013) to extract the road net-
work coordinates . For every coordinate on the road network
four separate images were downloaded us- ing the Google Street
View API at headings of 0, 90, 180 and 270 degrees, each with
an image size of 600× 400 pixels. The pitch was kept constant at
0 de-grees. This same method is used to acquire both the
training and testing data, although for the testing data the road
network coordinates were interpolated to re- duce the distance
between nodes and ensure full coverage of the road network.
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Testing data was gathered from three locations: Oswestry,
Petersfield and Birmingham

Figure 2: A map showing the locations of the towns and cities
from which the training and testing data is sourced.

The Oswestry data is used for hyper-parameter optimisation and
network selection, while the Petersfield and Birm- ingham
datasets are used as case studies to demonstrate the application
of the workflow to survey an urban area for homes suitable for
EV charging.

Table 1: A breakdown of the image data used to retrain CNN 1.

Catego
ry

Blackp
ool

Peterb
oroug
h

Swans
ea

Cwmb
ran

Colche
ster

Exmo
uth

Total

Car
Parks

349 424 308 405 90 117 1,693

Trees
and
Foliage

318 1,658 573 311 348 402 3,610

Road
Views

354 388 434 334 337 375 2,222

Reside
ntial
Front
View

1,251 937 947 1,019 972 1,033 6,159

Totals 2,272 3,407 2,262 2,069 1,747 1,927 13,68

Table 2: A breakdown of the image data used to retrain CNN 2.

Catego
ry

Blackp
ool

Peterb
oroug
h

Swans
ea

Cwmb
ran

Colche
ster

Exmo
uth

Totals

EV
Suitabl
e

627 743 295 451 898 759 3,773

EV
Unsuit
able

542 379 411 94 322 415 2,732

Totals 1,169 1,122 706 545 1,220 1,174 6,505

Challenges of the data

Using OSM and GSV to source our data has several advantages,
most importantly the fact that they are open source. However,

there are certain characteristic of the data that present
challenges for detailed surveying. OSM relies on crowd sourced
data to develop and update maps. Despite quality assurance
tools being in place, mistakes are not uncommon and
information such as road names are often missing. OSM also
lacks detailed data on individual properties such as plot
boundary polygons, house numbers and names, as well as the
presence of any external features such as garages and driveways.
This, combined with the blurring of house numbers in GSV
data, makes it difficult to determine the address for any specific
property suitable for home EV charging without using auxiliary
datasets.

Another issue with this method of data acquisition lies in the
Google Street View API. At every point in the road network, 2
images need to be downloaded: an image directly facing the
properties on either side of the road at 90 degrees and 270
degrees relative to the vehicles direction of travel. However, in
section 3.1 it was stated that four images were downloaded at
each coordinate with headings of 0, 90, 180, and 270. The
reason for this is that the GSV headings are unreliable, and
because panoramic images do not fit the input size of the most
commonly used CNN’s we must download all four angles to
ensure a suitable image of the adjacent property is retrieved. The
result is that roughly half of the image downloads contain angles
unsuitable for processing, with views that look directly down the
road making it difficult and often impossible for the network to
identify the features of houses that identify them as suitable for
EV charging.

Data Pre-Processing

A large proportion of images downloaded from any area are
likely to contain images that are unsuitable for pro- cessing,
particularly in areas with lower housing density. To overcome
these challenges and remove any unsuitable images, a pre-
processing step is included in the workflow to remove images of
car parks, trees and foliage, unsuitable headings, as well as any
duplicate images. With these im- ages removed this should only
leave images of buildings taken at suitable headings that can be
passed on for pro- cessing. This is achieved using a CNN, know
henceforth as CNN 1, trained using the dataset shown in Table
1. CNN 1 was tested and optimised using a sample of the
Oswestry dataset containing 200 randomly selected images in
each of the 4 categories.

Figure 3: Results of the grid search to optimise the hyper-
parameters for the three networks.
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Network Selection

Two CNN’s are used in the workflow. CNN 1 is used to filter
through all image downloads from the target area and pass on
any images of buildings taken at suitable headings

on to CNN 2 which is then used to identify all properties for
EV charging. A breakdown of the image data used to train CNN
2 is presented in Table 2. For both networks, since the training
datasets are not large enough to train a network from scratch, a
fine-tune transfer learning approach is adopted. For image
classification this approach makes use of existing networks that
have already been pre-trained on large image datasets and
therefore have already leant certain low-level features such as
object edges, shapes, corners and intensity.

Based on related work identified in the literature, it was decided
that for both CNN 1 and CNN 2 the performance of three
different pre-trained deep CNN’s is to be compared: Resnet-18,
Googlenet, Alexnet. When comparing and optimising network
performance, the same two hyper-parameters are optimised
using a grid search approach by varying the mini batch size at
32, 64 and 128 while the initial learn rate is varied at 1e-3, 1e-4
and 1e-5. For all runs the learn rate drop period is set at 15
epochs with a drop factor of 0.1 and the L2 Regularization is set
at 1e-5 to reduce over-fitting. All other hyper-parameters are set
at the MATLAB defaults.

Data Post-Processing

For testing of the Petersifeld and Birmingham datasets, we
modify the ’openstreetmap’ interface code from Filip- pidis
(2013) to request image data for every 20m of the road network.
This ensures that we download all GSV image of the entire road
network. When each image is downloaded from Open Street
Maps additional properties associated with the requested
coordinate are also downloaded and tagged to each image, such
as road name and other address data if available. Once an image

is identified by the network as suitable for EV charging these
features are evaluated and returned to the user highlighting all
suitable locations within the area as well as a mailing list of all
roads ranked by the frequency of EV suitable properties.

Figure 4: Confusion matrices from the best performing
networks following the grid search optimisation for CNN 1 (left)
and CNN 2 (Right).

Experimental Results

Network Selection

In order to select suitable networks and hyper-parameters for
both CNN 1 and CNN 2 a grid search approach was adopted.
All runs were performed on a single Nvidia V100 PCI 16Gb
GPU. The graph in Figure 3 shows how the three networks
compared in their performance following the grid search
experiment. For CNN 1, when tested on a sample of the
Oswestry dataset containing 200 images per category, Googlenet
achieved the highest overall accuracy of 93.9% when using a
mini batch size of 32 and an initial learn rate of 0.001. More
importantly, as shown by the confusion matrix in Figure 4 this
network was 100% accurate at identifying images of Residential
Front Views suitable for processing. For CNN 2, when tested on
a sample of the Oswestry dataset containing 500 images per
category, Googlenet achieved the highest overall accuracy of
93.7% when using the same mini batch size and initial learn
rate of 32 and 0.001 respectively. The confusion matrix for the
optimised CNN 2 network is shown in Figure 4. Given the
results of this experiment, the Googlenet architecture was
selected with a mini batch size of 32 and an intial learn rate of
0.001 to be used for both CNN 1 and CNN 2.

Testing the full Workflow

In order to demonstrate the entire workflow on a larger scale we
are required to manually label every image in each survey area
order to evaluate the performance of the system. To make this
feasible all of the images within the test areas are split into 3
categories: ‘EV Suitable’, ‘Unsuitable (Residential Front View)’,
and ‘Unsuitable (Other)’. These three categories allow us to test
the performance of both networks. CNN 1 should filter out all
images in the ‘Unsuitable (Other)’ category which includes any
images of car parks, trees and foliage and unsuitable headings.
As before, images of buildings are then passed onto CNN 2
which analyses these remaining images to identify those suitable
for EV charging point installation before the results are then
plotted on a the map.
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Figure 5: The resultant confusion matrices for CNN 1 and
CNN 2 on the Petersfield testing data.

Test Area 1 - Petersfield

Data Acquisition

Petersfield is a rural town in Hampshire, South England with a
population of approximately 15,000 people accord- ing to the
most recent census data ONS (2011). Image data for the
Petersfield test area was requested at 30m intervals along all
roads within the boundary that were tagged as ’Residential’,
resulting in a total of 2,092 locations along the road network
shown on Figure 6. After downloading images at each of the
four headings and removing any duplicate images this gives a
total of 6,433 images in the Petersfield testing dataset. These
images are then manually labelled into the 3 test categories also
shown in Figure 6.

For the Petersfield test area CNN 1 is 90.7% accurate at
identifying images of ’Residential Front Views’ suitable for
processing, as shown in Figure 5. Following the CNN 1 step,
2,851 images are passed onto CNN 2 for processing. CNN 2
then identifies 1,693 images as suitable for EV charging,
achieving an 88.6% accuracy, as shown in Figure

Overall the system recognises 1,355 of the total 1,651 images
suitable for EV charging. Within the Petersfield test area 132
streets are identified with properties suitable for EV charging.
Figure 7 shows all suitable properties plotted on a map of the
road network. Table 7 shows the roads returned by the system as
having the highest number of residential properties suitable for
EV charging point installation.

Figure 6: The locations of all downloaded images from the
Petersfield test area (Left) and a breakdown of the image
categories (Right).

Figure 7: A plot of all coordinates within the Petersfield test area
identified as suitable for EV charging (Left). A list of the top 10
roads most suitable roads for EV charging (Right).

Figure 8: The resultant confusion matrices for CNN 1 and
CNN 2 on the Birmingham testing data.

Test Area 2

Data Acquisition

For the second test area we collected GSV data from a
residential area roughly 4 km east of Birmingham city centre,
the road network for which is shown in Figure 9. A total of
28,728 coordinates along the road network were downloaded,
which resulted in 14,766 in this dataset after removing duplicate
images. These images are then manually labelled into the same 3
test categories as before, as shown in Figure 9.

Figure 9: The locations of all downloaded images from the
Birmingham test area (Left) and a breakdown of the image
categories (Right).

Figure 10: A heat map showing the areas with the highest
density of EV suitable properties in the Birmingham test area as
well as the individual locations of EV suitable properties plotted
in red (Left). A list of the top 10 roads most suitable roads for
EV charging (Right).
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RESULTS
Once the images are downloaded they are passed through CNN
1 for pre-processing. For the Birmingham test area CNN 1 is
95.1% accurate at identifying images of Residential Front Views
suitable for processing, as shown in Figure 8. Following the
CNN 1 step, 7,408 images are passed onto CNN 2 for
processing which then identifies 5,376 images as suitable for EV
charging, achieving an 89.3% accuracy at identifying properties
suitable for EV charging, as shown in Figure 8. Overall the
system recognises 4,617 of the total 5,306 images suitable for EV
charging. Figure 10 shows all EV suitable properties plotted on a
map of the road network as well as the roads identified by the
system as having the highest number of residential properties
suitable for EV charging point installation.

DISCUSSION
The system is shown to be highly accurate at identifying EV
suitable properties in both the Petersfield and the Birmingham
test areas achieving 87.2% and 89.3% respectively. One of the
issues with this current method is that a significant proportion
of the original downloaded images are wasted. In the Petersfield
example, despite only downloading images from areas tagged as
residential, only 26% of the images contained properties
suitable for EV

charging. We are currently not charged for the small number of
images we are downloading (<24,000 per month),

however, when this method is scaled up to be used to survey
local authority areas, Google API applies a charge of
approximately £0.0007 per image. This challenge will have to be
addressed in future research by either using more precise
Ordnance Survey data in place of the current OSM data, or by
using aerial imagery as an auxiliary dataset. Another challenge of
this method is that using MATLAB to process the data makes it
difficult to retrieve certain features at some locations.
Approximately, 94% of the road names are unable to be
retrieved using our current method. This explains the low
frequency of suitable houses identified for each road as shown
in Figures 7 and 10. This challenge could be addressed by
further modifying the Filippidis (2013) code that was used to
import the .osm files to improve feature extraction, or Ordnance
Survey data could be used in conjunction with GIS software.
Using Ordnance Survey data would allow the user to get
addresses at an individual property level.

CONCLUSION
In this paper we demonstrate that surveying external building
characteristics of small to medium urban areas is possible using
freely available open source data. A system is developed capable
of identifying residential properties suitable for EV charging. To
achieve this we introduce a novel end-to-end workflow that
utilises Open Street Mapand Google Street View data which is
processed by two separate CNN’s. To select an appropriate
architecture for these tasks the performance of 3 pre-trained
networks is compared by means of a grid search experiment.
Googlenet outperformed AlexNet and ResNet18 at both image
classification tasks achiving accuracies of over 90%. To validate
the performance of the entire workflow we survey the entire
road network of two contrasting urban areas for properties
suitable for EV charging, returning the addresses of the most
suitable roads. In both cases the both CNN’s in the workflow
achieve accuracies of around 90%. This proof of concept
demonstrates a promising new application of deep learning
techniques in the field of remote sensing and urban planning.
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