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ABSTRACT

UV chromatographic data in combination with multivariate data analysis (MVDA) has been extensively used 
for bioprocess monitoring. However, they are usually attributed to shifts along the retention time and require 
preprocessing. Misaligned UV chromatographic data result in inconsistent MVDA models. Numerous preprocessing 
techniques are available, each varying in the number of meta-parameters to optimize, complexity and computational 
time. Therefore, we aimed at developing a generic workflow to screen for preprocessing techniques. We chose four 
datasets with increasing complexity containing UV chromatographic data from reverse-phase and size exclusion 
chromatography HPLC. We aligned all four datasets using three preprocessing techniques, namely icoshift, PAFFT 
and RAFFT algorithms. We chose several statistical tools to validate the performance of the preprocessing techniques 
and to screen for meta-parameters. We validated the performance of the preprocessing techniques in terms of 
data preservation, complexity and computational time, and identified the optimal ranges of meta-parameters 
for each dataset. Finally, we established principal component analysis (PCA) models to evaluate the chosen 
alignment technique. Summarizing, in this study a generic workflow has been developed to validate alignment of 
chromatographic data using statistical tools.
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INTRODUCTION

UV chromatography is a powerful tool, extensively used in 
bioprocess analytical techniques for quantitative and qualitative 
analysis [1,2]. The main advantages of UV chromatography are short 
analysis time, ability to generate high amounts of data containing 
process information, wide variety of column chemistry and high 
precision. However, UV chromatographic data are prone to shifts 
along the retention time, which render subsequent automation 
and establishment of modeling techniques cumbersome or even 
impossible. Particularly in biochemical assays done with label 
free LC analysis, alignment of various analyte profiles to their 
respective retention time would be of utmost importance [3,4]. 
HPLC is often coupled with different techniques for biochemical 
analysis [5-7]. Automation of such assays for extracting valuable 
process information in bioprocesses for real time analysis would 
necessitate correcting misalignments in peak profiles. In the past 
decades, various alignment techniques have been used to correct 

shifts along the retention time. Peak alignment is necessary for 
peak identification and quantification, but more importantly for 
automation and application of subsequent chemometric models, 
such as principal component analysis (PCA), hierarchical cluster 
analysis (HCA) and partial lease squares (PLS). For establishing 
such multivariate models, the chromatographic dataset must 
contain information about the changes in the process, which are 
associated with changes in the UV chromatograms. In other words, 
the retention time of a particular compound must not vary across 
different samples, as otherwise the predictive ability of the model 
is compromised [8,9]. A typical UV chromatogram with retention 
time shifts is shown in Figure 1.

Various peak alignment approaches to correct misalignments in 
retention time have been proposed in literature. Most alignment 
techniques require a reference chromatogram and additional meta-
parameters for misalignment correction. These meta-parameters 
are dependent on the dataset and have to be screened in a case-
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by-case approach [10]. Various target functions for alignment 
are also used, with the most common being Pearson correlation 
coefficient [11], Euclidean distance [12], fast Fourier transform 
(FFT) cross correlation [13] and other even more sophisticated 
methods. In general, the peak alignment techniques have three 
different correction methods, namely shifting, insertion/deletion 
and polynomials models. A more detailed collection of various 
alignment techniques, their mode of function and relevant meta-
parameters has been published recently [14].

Although different alignment techniques are available, generic, 
generally accepted criteria for choosing an alignment technique for 
processing UV chromatographic data are not available. The three 
main challenges with aligning chromatographic data are 1) choosing 
a relevant reference spectrum, 2) defining meta-parameters and 3) 
data preservation. A more detailed description of these challenges 
is shown in Table 1.

The reference spectrum, to which all other spectra are aligned, plays 
a critical role in the overall performance of the alignment technique 
[10]. It is important that the reference spectrum represents all peaks 
in the entire dataset. Different approaches have been reported 
for calculating the reference spectrum, the most common being 
calculating the average (mean) or median of the entire dataset 
[15]. In addition to the reference spectrum, each peak alignment 
technique would require different meta-parameters.

Alignment techniques are influenced by different meta-parameters, 
such as segment length or allowed shifts [16], which are defined 
prior to the alignment. However, these meta-parameters are 
dependent on the alignment technique and the dataset used and 
thus have to be screened. For multivariate modeling, the peak shape 
and intensity must not change during the alignment procedure, 
otherwise important information from the dataset is lost.

In this study, we established statistical tools to screen for meta-
parameters using correlation analysis, explained variance and peak 
factor. We compared the performances of three peak alignment 

techniques on three UV chromatographic datasets with different 
complexity based on the determined meta-parameters. We 
compared the peak alignment technique with the determined 
meta-parameters based on alignment correlation, peak factor and 
by visualization using heat maps and 2D plots. We chose three 
peak alignment techniques which use FFT cross correlation as 
target function, namely interval correlation optimized shifting 
(icoshift) algorithm [13,17], peak alignment by FFT (PAFFT) and 
recursive alignment by FFT (RAFFT) [18]. We chose them for their 
attributed low computational times and a lower complexity in terms 
of meta-parameters in comparison to warping peak algorithms 
[15]. We investigated different reference spectrum selection 
techniques for peak alignment and defined the optimal reference 
spectrum based on highest correlation of reference spectrum to 
each individual spectrum. Furthermore, we analyzed PCA models, 
established on the best and worst aligned UV chromatographic 
datasets and the original dataset, to highlight the impact of the 
peak alignment method on the multivariate models. Finally, we 
present a generic workflow for screening meta-parameters as well as 
choosing and evaluating different peak alignment methods for UV 
chromatographic data.

MATERIAL AND METHODS

UV chromatographic datasets

Datasets 1 and 2: UV chromatographic data from size exclusion 
(SE-) HPLC: Samples from four different E. coli cultivations 
were used for analyzing protein purity through SEC. UV 
chromatographic data at 280 nm were acquired using a modular 
HPLC device (PATfinderTM) purchased from BIAseparations 
(Slovenia). The setup comprised of an autosampler (Optimas), a 
pump (Azura P 6.1L) and a UV detector (Azura MWD 2.1 L). The 
samples were loaded onto a Superdex 75 10/300 GL size exclusion 
chromatography (SEC) column purchased from GE Healthcare 
(Germany). A loading buffer with 20 mM potassium phosphate, 

Figure 1: A typical UV chromatogram of multiple injections from RP-HPLC highlighting the shifts along the retention time.

Challenge Requirements

Choosing a reference spectrum Reference spectrum must represent all peaks in the UV spectrum. 

Defining meta-parameters Meta-parameters are usually defined on a case-by-case basis, since they are dependent on each peak alignment 
technique. The meta-parameters determined for a chosen dataset affect peak alignment.

Data preservation Peak alignment technique must not change peak shape, intensity and other important attributes which contain process 
information.

Table 1: Challenges and requirements of peak alignment techniques.
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The varying complexity of the datasets arises from the 
chromatographic method used. For clarity, the SEC-HPLC datasets 
(1 and 2) render Gaussian (or ‘bell’) shaped peaks which are 
broader in resolution, whereas RP-HPLC datasets are characterized 
by their needle shaped peaks. Furthermore, the number of peaks 
between SEC and RP-HPLC datasets vary enormously. Therefore, 
four datasets with varying complexity was considered for this study. 
Exemplary chromatograms to highlight the complexity in all four 
datasets considered in this study are shown in Figure 2.

Reference spectrum selection

The reference spectrum is usually selected based on a priori 
knowledge of the dataset. The reference spectrum must be 
representative of the (most) significant peaks in a dataset, which 
is important for extracting process information using multivariate 
models. Often, the reference spectrum is either calculated by 
determining the mean or median of the entire dataset or by 
choosing the latest sample in the sequence which usually represents 
the highest number of peaks [20,21]. Skov et al. [10] proposed 
a selection criterion for identifying the reference spectrum by 
calculating the product of correlation coefficients between the 
chosen reference spectrum and each individual sample [10]. The 
reference spectra and the rationale for selecting them are shown 
in Table 2. 

Although, mean and median measures contain significant peak 
information, they can be biased towards a few peaks with high 
maxima. Thus, we opted for a bi-weighted mean approach, which 
imposes a bias-correction to avoid maximum peak intensities 
which influences the peak alignment procedure. The maximum 
of all chromatograms in the dataset captures all maximum values 
or significant peak information and therefore, was considered also 
as a reference spectrum. In total, seven different reference spectra 
were used for identifying the optimal reference spectrum for 
further peak alignment methods.

150 mM sodium chloride, pH 7.0 was used. The flow velocity was 
kept constant at 0.5 mL/min. The dataset of UV chromatograms at 
280 nm from four different E. coli cultivations with 24 samples with 
each chromatogram having 9,001 data points is termed as Dataset 1.

Samples from downstream unit operations, in particular protein 
refolding, from E. coli bioprocesses were used for analyzing product 
yield and purity through SEC. The HPLC setup and analysis 
conditions were the same as from Dataset 1. UV chromatographic 
data at 280 nm were acquired with 15 samples with each 
chromatogram having 12001 data points is termed as Dataset 2.

Datasets 3 and 4: UV chromatographic data from reverse-phase 
(RP-) HPLC: Samples of corn steep liquor (CSL), which is used 
as media supplement for Penicillium chrysogenum cultivations 
[14], were analyzed for vitamin composition using a reverse-phase 
HPLC column (Acclaim PA; Thermo Fisher Scientific, USA). The 
HPLC setup (Ultimate 3000; Thermo Fisher Scientific, USA) 
comprised of a pump (LPG-3400SD), an autosampler (CTC 
autosampler), column oven (TCC-3000SD) and a diode array 
detector (DAD 3000). Samples were loaded with 25 mM potassium 
phosphate buffer, pH 3.5 and eluted with acetonitrile. A more 
detailed explanation of the data acquisition procedure is published 
elsewhere [19]. The flow rate was kept constant at 1 mL/min. The 
dataset of UV chromatograms at 260 nm was analyzed for vitamin 
composition from sixteen different CSL media stocks and termed 
as Dataset 3 comprising of 16 samples each with 4800 data points.

Samples from four different E. coli cultivations were used for 
quantifying metabolite concentrations through RP-HPLC 
column (Supelcogel C-610 H, Thermo Fisher Scientific, USA). 
Samples were loaded with a running buffer comprising of 0.1% 
phosphoric acid in distilled water. The flow rate was kept constant 
at 0.5 mL/min. The HPLC setup was the same as for Dataset 3. 
The UV chromatograms at 210 nm were analyzed for metabolite 
concentrations from E. coli cultivations and termed as Dataset 4 
with 51 samples each containing 9001 data points. For all Datasets, 
all samples were centrifuged and filtered prior to injection and a 
sample volume of 10 µL was injected.

Figure 2: An example UV chromatogram with varying complexity from Datasets 1-4, with Datasets 1 and 2 from SEC-HPLC and Datasets 3 and 4 from 
RP-HPLC.
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Peak alignment techniques

Three different peak alignment methods were tested in this study. 
The main properties of the different alignment techniques are 
shown in Table 3.

All individual chromatograms which had buffer artefact peaks were 
considered as outliers and removed based on the Hotelling’s T2 
statistic from the PCA models on raw chromatographic dataset 
prior to peak alignment procedures.

Icoshift: The icoshift algorithm was initially developed for ID NMR 
data [17], but it also has been used for UV-chromatographic data 
(e.g. [1,13]). The icoshift algorithm splits each UV chromatogram 
into segments and aligns these segments from the dataset to the 
segments in the reference spectrum by shifting the segments 
sideways to achieve maximum cross-correlation. It is driven by 
an FFT engine for simultaneous alignment and has been shown 
to outperform warping algorithms (e.g. COW; [13]). The main 
advantage of icoshift is its shifting procedure where the number 
of shifts of a particular segment can be determined either by the 
algorithm automatically or user-defined. In common warping 
algorithms, the search for the shift parameter is tedious as it is 
powered by dynamic programming (e.g. dynamic time warping 
(DTW); [20]). Some other advantages of the algorithm include high 
computational power, user-defined segments and option to fill in 
missing values (e.g. through interpolation) [17]. The algorithm is 
available from [22].

In this study, the number of segments was set between 1 (indicating 
the entire chromatogram of a sample as a segment), and the total 
number of data points in the datasets (eg. 4799 segments for 
Dataset 3). The maximum number of shifts allowed was not fixed 
and the algorithm was allowed to shift until it found the best fit. 
The chosen values for the different meta variables for icoshift 
are shown in the supplementary information (Table S1). Missing 
parts on segment edges were replaced by repeating the value of the 
segment edge.

Pafft: Similar to icoshift, the PAFFT algorithm also corrects 
misalignments by shifting the segments to achieve highest 
correlation. The optimal shift size is determined by sliding the 
segment of a sample over the corresponding segment in the reference 
spectrum to achieve maximum correlation. PAFFT does not allow 

addition of missing values with zeros or interpolations, therefore 
possible endpoint contamination (by addition of interpolated 
values) in the chosen segments may occur. On the other hand, 
since no extra data points are added to the UV chromatographic 
data, no artifacts are generated. Additionally, PAFFT provides 
an option to limit the number of shifts of a particular segment. 
PAFFT also uses the FFT engine for peak alignment. Since two 
meta-parameters need to be defined, we used a simple two factorial 
screening design for exploring the optimal meta-parameter 
combinations. The number of segments were chosen between 1 
(corresponding to all data points in each chromatogram) and 1/16 
of the chromatogram length (where the entire chromatogram is 
split into 16 parts, with each segment containing different data 
points in accordance with the dataset). The number of times the 
chromatograms were split (16) was chosen arbitrarily and can be 
changed. The number of shifts allowed by the PAFFT is dependent 
on the complexity of the dataset. In other words, it depends on 
the peak properties such as retention time and peak width in the 
dataset, therefore we assumed a maximum shift corresponding 
to 1 min in the retention time. Five combinations of shifts and 
segments based on the experimental design were chosen for the 
PAFFT algorithm and are shown in Table S1. The algorithm for 
PAFFT can be downloaded from [23].

Rafft: RAFFT is an extensively used peak alignment method which 
also uses FFT cross correlation for peak alignment [16,18]. In 
contrast to PAFFT, the RAFFT algorithm splits the entire spectrum 
into smaller segments for identifying the highest correlation. The 
maximum number of shifts allowed for each segment is specified 
by the user. At the beginning of the alignment procedure, the 
bigger segment is selected for alignment and this segment is 
gradually broken down to smaller segments until either the highest 
correlation is achieved or the maximum number of allowed shifts 
is reached. RAFFT has also been shown to be faster in comparison 
to other warping algorithms [16]. In this study, the maximum 
number of shifts allowed was fixed based on the retention time 
as in PAFFT. We assumed that the segment, comprising of a few 
peaks, should not shift more than 1 min of the retention time. 
Therefore, we chose fixed values with 61, 121, 181, 241 and 301 
shifts, corresponding to 0.2, 0.4, 0.6, 0.8 and 1 min in retention 
time. The algorithm for RAFFT can be downloaded [23].

No. Reference spectra Rationale

1 Mean renders a collective chromatogram containing all significant peaks in a dataset

2 Median

3 Bi-weighted mean avoids bias towards few peaks with high maxima

4 Maximum of all signals captures maximum values of all chromatograms in a dataset

5 Maximum cumulative product of correlation 
coefficients

chromatogram with maximum correlation with all chromatograms in a dataset

6 First injection represents all peaks at the beginning of the process

7 Last injection represents all peaks at the end of the process

Table 2: Reference spectra and the rationale for selecting them for subsequent preprocessing.

Peak alignment method Target function Correction method Technique Reference

icoshift FFT cross correlation Shift, Insert and Delete Segmentation model [13,17]

PAFFT Shift [18]

RAFFT Segmentation model + recursive 
alignment

[18]

Table 3: Properties of three different peak alignment methods used in this study.
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Evaluation criteria

Correlation analysis: Correlation of the aligned samples from 
each peak alignment method with the chosen reference spectrum 
renders similarity measures. If all peaks in the sample dataset are 
aligned precisely to the reference spectrum, we obtain a correlation 
value of 1. However, this measure is only a rough estimate of 
the alignment procedure and depends entirely on the reference 
spectrum selection.

Explained variance: The explained variance measure calculated 
from the PCA model can be used to evaluate the performance of the 
alignment method. Perfectly aligned chromatograms have a higher 
variance explained in the first principal components in comparison 
to misaligned data. Therefore, the sum of the explained variance 
of the first principal component(s) was calculated for all aligned 
datasets by establishing PCA models on all datasets. The explained 
variance in combination with the correlation analysis indicate the 
optimal setting for a given peak alignment method.

Peak factor: Skov et al. proposed the peak factor as a measure 
for analyzing the performance of peak alignment techniques [10]. 
The peak factor measures absolute changes in the spectroscopic 
data due to peak alignment procedures. This is relevant since the 
alignment technique must not modify the actual data since any 
changes affect the subsequent multivariate models. The peak factor 
is calculated by comparing the Euclidian length (norm) of a UV 
chromatogram before and after alignment. For warping algorithms 
such as DTW, peaks from the original data have been reported to 
be distorted [14]. However, if there is no change in the peak shape, 
the peak factor has a value of 1.

Computational time: Although this measure may not be relevant 
for the chosen peak alignment methods used in this study, owing to 
their fast computations, we included this measure for applicability. 
Chromatographic and spectroscopic data have been successfully 
used for bioprocess monitoring [24-26], which necessitates fast 
preprocessing techniques to be on par with bioprocess dynamics 
[27]. Warping algorithms often have very high computational times 
[28]. Initially, we considered including dynamic multi-way warping 
(DMW) as a peak alignment method in this study. However, DMW 
rendered a 1,000-fold higher computational time (data not shown) 
than icoshift, PAFFT and RAFFT and hence was not included. 
However, it is practical for the user to have an overview of time 
invested for a particular peak alignment method. Therefore, we 
calculated the computational time for the chosen peak alignment 
procedures. We performed all analyses in a stand-alone PC with 
Intel i5-3330 @ 3.00 GHz processor and 8 GB RAM.

Visualization: Visual inspection of datasets renders better 
understanding of peak alignment methods and contributes to 
further improvement of the alignment procedure by optimization 
of meta-parameters. Heat maps were used in this study for 
visualizing the UV chromatographic data based on their intensities. 
Strong misalignments can be easily identified using heat maps. For 
ease of visualization, 2D plots of the original and best alignment 
were generated to give the user a clear overview of the alignment 
procedure.

Multivariate models

As an application example, PCA models were developed on the 
original (misaligned) and the 'best' aligned datasets. In general, 
the PCA models are used to realize the impact of different 

peak alignment techniques on chemometric models. In short, 
PCA is an exploratory technique which decomposes the entire 
chromatographic dataset to a few latent principal components. 
Each sample is represented as a score and is projected across 
different principal components based on their similarities or 
differences. The resulting score plots from the PCA model can be 
used to identify possible groupings or similarities between samples 
in the UV chromatographic data.

Software

All data analyses were done using MATLAB R2016a (Mathworks, 
US). The PCA models were established in SIMCA v13.0 (Umetrics, 
Sweden).

RESULTS AND DISCUSSION

In this study we developed a methodology to screen for meta-
parameters and to choose a peak alignment technique based on 
different evaluation criteria such as correlation analysis, peak factor 
and computational time. Four UV chromatographic datasets with 
varying number of samples, complexity and data volume were 
analyzed in this study to show the generic applicability of our 
workflow.

Reference spectrum selection

Seven reference spectra were generated and correlated to each UV 
chromatogram from all datasets. The correlation coefficients from 
all datasets and their respective reference spectrum are shown as 
boxplots in Figure 3. The line inside the box indicates the absolute 
correlation of the chosen reference spectrum to all four datasets.

It is interesting to note that the first and last injections from all 
datasets cannot be used as reference spectrum. In Datasets 1 and 2, 
it is clear that the first and the last injections were not representative 
of all peak information. Similarly, the peak information in the 
first and last injections represent different vitamin compositions 
in Dataset 3 and metabolite profiles in Dataset 4 and render 
the least correlation. This can be explained with the changes in 
analyte concentrations over process time, which indicates release 
(appearance of new peaks) and/or utilization (disappearance of 
existing peaks) over time. Since the reference spectrum calculated 
with the arithmetic mean of UV chromatograms, of all samples 
from Datasets 1-4, rendered the highest correlation, it was chosen 
as the optimal reference spectrum.

Evaluation criteria

Correlation analysis: Three peak alignment methods were chosen 
based on their FFT cross correlation for high throughput analysis 
and less complexity in comparison to warping algorithms. Peak 
alignment was done using the chosen reference spectrum from 
respective datasets and correlation analysis was done between the 
reference spectrum and aligned datasets. For each peak alignment 
method five different meta-parameter constraints were used. The 
results from the correlation analysis for all four Datasets are shown 
in Figure 4.

All the chosen methods with the chosen meta-parameters achieved 
high correlations above 0.83 for Dataset 1 and 0.91 for Dataset 2. 
Nevertheless, the RAFFT algorithm performed marginally better 
for both datasets, namely 0.91 was achieved for Dataset 1 and 
0.94 for Dataset 2 were achieved as maximum correlation results. 
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In Dataset 1, it is interesting to note that the RAFFT algorithm 
has overall lower standard deviations (as indicated with the error 
bars) in comparison to icoshift or PAFFT algorithms. This can be 
explained by complete shifts of the chromatogram in the RAFFT 
algorithm rather than dividing the chromatographic data into 
segments as in icoshift and PAFFT algorithms.

For Dataset 3 (Figure 4), the correlation coefficients of the selected 
reference spectrum and icoshift increased with higher intervals to 
be shifted, but started to decline after 1200 intervals. This indicates 
that the optimum intervals to be shifted using icoshift algorithm 
should be close to 1200 intervals. Interestingly, with PAFFT 
algorithm we can see a clear trend between the correlation values 

and the number of segments. The lower the number of segments, 
the higher the correlation. The RAFFT algorithm performed 
consistently irrespective of the number of shifts used. With Dataset 
4, all peak alignment algorithms performed consistently with 
marginal differences within each alignment. RAFFT algorithm 
portrayed highest correlation in Dataset 4.

Between the two datasets from SEC-HPLC, Dataset 2 with lower 
number of samples rendered higher correlation and in comparison, 
between the two datasets from RP-HPLC, Dataset 3 in general 
offered a higher correlation to the chosen reference spectrum. 
This can be explained by the differences in the number of samples 
considered, for example 16 samples for Dataset 3 and 51 samples 

a) b)

c) d)

Figure 3: Correlation boxplots of features of different reference spectra and UV chromatographic data from SEC-HPLC and RP-HPLC. A, Dataset 1, B, 
Dataset 2, C, Dataset 3, D, Dataset 4. Partition line in the box and values at the top of the plot, absolute correlation between respective reference spectrum 
and the respective datasets (a value of 1.0 indicates a perfect fit). Left to right, Mean, Median, Bi-weighted mean, Maximum of all signals, Cumulative 
product of correlation coefficients, First injection and Last injection from the sequence.
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for Dataset 4. Higher sample numbers leads to a wide spread of 
metabolite profiles from four different bioprocesses, whereas the 
samples from Dataset 3 comprise of almost the same vitamins.

In general, Datasets 1 and 2 achieved higher correlation results 
in comparison with Datasets 3 and 4. As explained earlier, RP-
HPLC datasets have a complex data structure in comparison to 
SEC-HPLC datasets which hamper the peak alignment procedure. 
Summarizing the results from the correlation analysis, RAFFT 
algorithm with 121-301 shifts rendered similar results (0.91) 
for Dataset 1, whereas icoshift, PAFFT and RAFFT rendered at 
least one maximum correlation with their respective settings for 
Dataset 2. Only with the correlation analysis, it is hard to conclude 
which of the alignment techniques worked best for Dataset 2. For 
Dataset 3, icoshift with 1200 intervals, PAFFT with 300 segments 
with varying shifts, RAFFT with 241 shifts rendered the highest 

correlation and for Dataset 4, icoshift with 1 interval or the entire 
chromatogram, PAFFT with 9001 segments and 301 shifts and 
RAFFT also with 301 shifts rendered the highest correlation.

Explained variance: The explained variance was calculated using 
a PCA model on the dataset and used to indicate the degree of 
alignment. The explained variance from the principal components 
for all alignment methods and their chosen meta-parameters are 
shown in Figure 5.

Aligned chromatograms explain higher variance in the first PC 
from a PCA model, therefore, the higher the explained variance 
the better is the alignment of the dataset. For Dataset 1, the results 
from the explained variance are in agreement with the results 
achieved in correlation analysis. The RAFFT algorithm between 
121-301 shifts rendered the highest explained variance for Dataset 
1. It is more interesting to note in Dataset 2, the peak alignment 

a) b)

c) d)

Figure 4: Correlation analysis of the peak alignment methods used with different meta-parameters. A, Dataset 1, B, Dataset 2, C, Dataset 3, D, Dataset 
4. Partition line in the box and values on top of the plot, absolute value of correlation (a value of 1.0 indicates a perfect fit). From left to right, rawdata, 
icoshift with different intervals to be shifted, PAFFT with different segment sizes and shifts, RAFFT alignment technique with number of shifts allowed.
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procedure with different meta-parameters resulted in similar trend 
for both explained variance (> 57%) and correlation analysis (0.94). 
Based on the results from Dataset 2, we can clearly see icoshift 
algorithm 1 and 12000 intervals resulted in the highest explained 
variance (61.1%).

Results from the PCA models of Dataset 3 indicate that the first 
principal component in icoshift with 1200 segments explained 
44%, PAFFT with 300 segments and 61 shifts explained 57% 
and RAFFT with 241 shifts explained 39%. These results are 
in agreement with the results from the correlation analysis. For 
Dataset 4, icoshift with 1 interval, PAFFT with 9001 segments 
and 301 shifts and RAFFT with 181 shifts indicated highest 
explained variances in the PCA models. Correlation analysis 
with Dataset 4 and RAFFT algorithm indicated 301 to render the 

highest correlation. However, explained variance indicates 181 
shifts with RAFFT algorithm to be optimal, although 301 shifts 
(from correlation analysis) also has marginally the same value. 
Nevertheless, icoshift rendered better alignment in comparison 
with the other two algorithms for Dataset 4.

It is interesting to note, the higher the number of samples 
considered in the PCA model, the higher the average explained 
variance achieved. Summarizing, we chose 181 shifts for Dataset 1 
since it rendered a marginally higher explained variance, whereas 
icoshift with 1 interval was chosen for Dataset 2. PAFFT algorithm 
explained the highest variance (~57%) indicating better peak alignment 
performance in comparison to icoshift and RAFFT algorithms for 
Dataset 3. As for Dataset 4, icoshift with 1 interval considering the 
whole chromatogram gave the highest explained variance.

a) b)

c) d)

Figure 5: Explained variance plotted against first principal component from the PCA model. A, Dataset 1, B, Dataset 2, C, Dataset 3, D, Dataset 4. From 
left to right, rawdata (RS), icoshift with different intervals to be shifted, PAFFT with different segment sizes and shifts, RAFFT alignment technique with 
number of shifts allowed. The values on the top of the bar, explain variance from first principal component. 100 % corresponds to highest explained 
variance in the data.
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Peak factor: The peak factor indicates net changes in the aligned 
chromatograms in comparison to the original chromatogram. The 
optimal peak value is ‘1’ corresponding to ‘no change’. The peak 
factors for almost all meta-parameter settings and peak alignment 
methods for Dataset 1 were higher than 0.96 (icoshift: 1500 
intervals). This could be due to endpoint contaminations. For 
Dataset 2, all peak alignment methods resulted in a peak factor 
of 1, indicating no loss of information or distortion of peaks. The 
peak factor for Datasets 3 and 4 were higher than 0.97, which 
indicates that the used peak alignment methods did not alter 
the chromatographic information significantly (less than 3%). As 
mentioned earlier, peak shapes are altered mainly when warping 
or interpolation functions are integrated into the peak alignment 
procedure. However, for shift-based algorithms employed in this 
study little to no peak distortion is to be expected.

Computational time: The computational time was calculated to 
analyze the time taken for a peak alignment method to render 
aligned chromatograms for all datasets. For clarity, icoshift with 
different intervals to be shifted was analyzed in one block and, the 
computational time for all five settings, sixteen samples and 4,800 
data points in each chromatogram for Dataset 3 was calculated for 
the block. The computation time taken for alignment of the entire 
icoshift block in Dataset 1 was 1.85 s, for the PAFFT block it was 
0.23 s and RAFFT with 0.68 s. For Dataset 2, the icoshift block 
took 1.46 s, the PAFFT algorithm 0.18 s and RAFFT algorithm 
with 0.40 s. Dataset 3 with the entire icoshift block took 1.28 s, 
for the PAFFT block it was 0.13 s and RAFFT with 0.23 s. As 
for Dataset 4, icoshift algorithm took 4.47 s, PAFFT took 0.48 
s and RAFFT with 1.17 s for 51 samples with 9001 data points. 
Comparing all four datasets, the increasing order of computation 
time can be clearly seen with the increase in the number of samples. 
The PAFFT algorithm always rendered the minimal computational 
time for all the datasets considered in this study. However it has 
to be noted that the PAFFT algorithm performed less in terms of 
correlation and explained variance with comparison to other peak 
alignment procedures. Warping algorithms are usually 100-folds 
higher in computational time in comparison to the FFT correlation 
methods used in this study [10]. Overall, all algorithms used in this 
study took less than 5 seconds for peak alignment procedure.

Visualization: Heat maps or 2D plots can be used to visualize the 
alignment results. In heat maps, the intensities of the significant 
peaks are highlighted and possible misalignments are identified. 
Furthermore, any improvement on a peak alignment method based 
on a different set of meta-parameters can be directly seen. The 
results from the heat map and 2D plots of the chosen methods, from 
Datasets 1-4, showing the unaligned dataset and best alignments 
achieved are shown in Figure S1. The heat maps from the original 
and best aligned datasets clearly highlights the misalignments in 
the raw dataset and alignment efficiency of the algorithm. The 2D 
plots shows the efficiency of the alignment procedure, where one 
can clearly see the improvement in peak alignment. Finally, any 
outliers in the UV chromatographic data can be easily identified 
(e.g. buffer peaks) by visualizing peak distortions using heat maps.

From all these results, we can see that the correlation analysis and 
explained variance rendered similar indications to peak alignment 
performance for the chosen meta-parameters. Peak factor resulted 
in similar results and indicated no interference in the peak 
properties, thereby no loss in information. The correlation analysis 
and explained variance indicated RAFFT with 181 shifts for Dataset 
1 and icoshift with 1 interval for Dataset 2. For Dataset 3, PAFFT 

algorithm with 300 segment size and 61 shifts performed better than 
all other peak alignment algorithms used in this study, whereas for 
Dataset 4, icoshift algorithm with 1 interval considering the whole 
chromatogram outperformed all other algorithms. It is clear that 
no golden standard of preprocessing technique is available globally 
for all datasets. However, such a generic strategy must be used to 
screen for different preprocessing techniques to avoid misleading 
multivariate models. In order to describe deviations in modeling 
results, we chose the original datasets, the best aligned datasets and 
the worst aligned datasets for establishing multivariate models.

Multivariate models

PCA models were established on the 'best' alignments and worst 
alignments achieved from the peak alignment technique which was 
identified from all datasets. PCA models render different model 
variables such as scores and loadings which can be used to extract 
relevant information from the input datasets. In PCA, the closer 
the scores are to each other the more similar they are, with respect 
to the principal components. We analyzed the performance of the 
peak alignment technique based on the trends in score plots from 
the PCA models. The score scatter plots from the PCA model from 
Datasets 1-4 are shown in Figure 6A-6D.

In Figure 6, the score plot of the original data shows a wide spread 
of scores each representing a UV chromatogram. In the best 
alignment, we can see a compact trend where samples similar to 
each other are projected closer. This is further highlighted with 
the score plot from the worst alignment, where the scores are even 
more scattered than the scores from original data showing strong 
dissimilarities. We can see a clear improvement, between the 
original dataset and the best alignment with respect to clustering 
in the score plot, highlighting the peak alignment performance. 
Similarly, we can clearly see similarities between the original and 
worst aligned datasets for all datasets. In Figure 6, original and 
worst datasets yield almost identical results as suggested from the 
very similar results in the evaluation criteria (i.e. 36.1%, 36.8% 
explained variance for original and worst aligned datasets). It is 
interesting to note that in Dataset 4, the best and worst alignment 
was achieved with the same algorithm (icoshift) with different meta-
parameters (intervals). This further highlight the significance of 
meta-parameters in peak alignment procedures and the subsequent 
data driven models.

CONCLUSION

UV chromatographic data are prone to shifts along the retention 
time, which requires preprocessing prior to establishing 
multivariate models. In this study, we established a generic strategy 
for screening and validating different preprocessing techniques 
for UV chromatographic data. We chose different peak alignment 
techniques with different meta-parameters to evaluate their 
performance on four datasets. We analyzed the performance using 
different statistical tools to identify the optimal peak alignment 
technique and its meta-parameter ranges. The evaluation from 
statistical tools illustrated that peak alignment techniques, even 
though similar in correction methods and target functions, can 
render different results. The complexity and the sample numbers 
of each dataset also have an impact on the peak alignment 
procedure. Therefore, it is safe to hypothesize that the performance 
of the peak alignment technique is dependent on the initial, raw 
dataset and no global standard exists for all datasets. The impact 
of the meta-parameters of the chosen peak alignment technique 
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affects the model results, which can be highlighted with the score 
scatter plots from the PCA models. Summarizing, the proposed 
methodology was used to choose the reference spectrum, screen 
for meta-parameter ranges and validate the results using data 
driven models. The generic methodology can be used for different 
chromatographic datasets and has a modular-setup which allows 
incorporation of any peak alignment technique and any statistical 
tool as evaluation criterion. We envision the proposed workflow 
also for spectroscopic data which is usually hampered with peak 
and baseline shifts.
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