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ABSTRACT

UV chromatographic data in combination with multivariate data analysis (MVDA) has been extensively used
for bioprocess monitoring. However, they are usually attributed to shifts along the retention time and require
preprocessing. Misaligned UV chromatographic data result in inconsistent MVDA models. Numerous preprocessing
techniques are available, each varying in the number of meta-parameters to optimize, complexity and computational
time. Therefore, we aimed at developing a generic workflow to screen for preprocessing techniques. We chose four
datasets with increasing complexity containing UV chromatographic data from reverse-phase and size exclusion
chromatography HPLC. We aligned all four datasets using three preprocessing techniques, namely icoshift, PAFFT
and RAFFT algorithms. We chose several statistical tools to validate the performance of the preprocessing techniques
and to screen for meta-parameters. We validated the performance of the preprocessing techniques in terms of
data preservation, complexity and computational time, and identified the optimal ranges of meta-parameters
for each dataset. Finally, we established principal component analysis (PCA) models to evaluate the chosen
alignment technique. Summarizing, in this study a generic workflow has been developed to validate alignment of
chromatographic data using statistical tools.

Keywords: Preprocessing; Fingerprinting; Ultraviolet; HPLC; Alignment; Correction

shifts along the retention time. Peak alignment is necessary for
peak identification and quantification, but more importantly for

INTRODUCTION

UV chromatography is a powerful tool, extensively used in  automation and application of subsequent chemometric models,

bioprocess analytical techniques for quantitative and qualitative
analysis [1,2]. The main advantages of UV chromatography are short
analysis time, ability to generate high amounts of data containing
process information, wide variety of column chemistry and high
precision. However, UV chromatographic data are prone to shifts
along the retention time, which render subsequent automation
and establishment of modeling techniques cumbersome or even
impossible. Particularly in biochemical assays done with label
free LC analysis, alignment of various analyte profiles to their
respective retention time would be of utmost importance [3,4].
HPLC is often coupled with different techniques for biochemical
analysis [5-7]. Automation of such assays for extracting valuable
process information in bioprocesses for real time analysis would
necessitate correcting misalignments in peak profiles. In the past
decades, various alignment techniques have been used to correct

such as principal component analysis (PCA), hierarchical cluster
analysis (HCA) and partial lease squares (PLS). For establishing
such multivariate models, the chromatographic dataset must
contain information about the changes in the process, which are
associated with changes in the UV chromatograms. In other words,
the retention time of a particular compound must not vary across
different samples, as otherwise the predictive ability of the model
is compromised [8,9]. A typical UV chromatogram with retention
time shifts is shown in Figure 1.

Various peak alignment approaches to correct misalignments in
retention time have been proposed in literature. Most alignment
techniques require a reference chromatogram and additional meta-
parameters for misalignment correction. These meta-parameters
are dependent on the dataset and have to be screened in a case-
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Figure 1: A typical UV chromatogram of multiple injections from RP-HPLC highlighting the shifts along the retention time.

Table 1: Challenges and requirements of peak alignment techniques.

Challenge

Requirements

Choosing a reference spectrum Reference spectrum must represent all peaks in the UV spectrum.

Defining meta-parameters

Meta-parameters are usually defined on a case-by-case basis, since they are dependent on each peak alignment

technique. The meta-parameters determined for a chosen dataset affect peak alignment.

Data preservation
information.

by-case approach [10]. Various target functions for alignment
are also used, with the most common being Pearson correlation
coefficient [11], Euclidean distance [12], fast Fourier transform
(FFT) cross correlation [13] and other even more sophisticated
methods. In general, the peak alignment techniques have three
different correction methods, namely shifting, insertion/deletion
and polynomials models. A more detailed collection of various
alignment techniques, their mode of function and relevant meta-
parameters has been published recently [14].

Although different alignment techniques are available, generic,
generally accepted criteria for choosing an alignment technique for
processing UV chromatographic data are not available. The three
main challenges with aligning chromatographic data are 1) choosing
a relevant reference spectrum, 2) defining meta-parameters and 3)
data preservation. A more detailed description of these challenges
is shown in Table 1.

The reference spectrum, to which all other spectra are aligned, plays
a critical role in the overall performance of the alignment technique
[10]. It is important that the reference spectrum represents all peaks
in the entire dataset. Different approaches have been reported
for calculating the reference spectrum, the most common being
calculating the average (mean) or median of the entire dataset
[15]. In addition to the reference spectrum, each peak alignment
technique would require different meta-parameters.

Alignment techniques are influenced by different meta-parameters,
such as segment length or allowed shifts [16], which are defined
prior to the alignment. However, these meta-parameters are
dependent on the alignment technique and the dataset used and
thus have to be screened. For multivariate modeling, the peak shape
and intensity must not change during the alignment procedure,
otherwise important information from the dataset is lost.

In this study, we established statistical tools to screen for meta-
parameters using correlation analysis, explained variance and peak
factor. We compared the performances of three peak alignment
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Peak alignment technique must not change peak shape, intensity and other important attributes which contain process

techniques on three UV chromatographic datasets with different
complexity based on the determined meta-parameters. We
compared the peak alignment technique with the determined
meta-parameters based on alignment correlation, peak factor and
by visualization using heat maps and 2D plots. We chose three
peak alignment techniques which use FFT cross correlation as
target function, namely interval correlation optimized shifting
(icoshift) algorithm [13,17], peak alignment by FFT (PAFFT) and
recursive alignment by FFT (RAFFT) [18]. We chose them for their
attributed low computational times and a lower complexity in terms
of meta-parameters in comparison to warping peak algorithms
[15]. We investigated different reference spectrum selection
techniques for peak alignment and defined the optimal reference
spectrum based on highest correlation of reference spectrum to
each individual spectrum. Furthermore, we analyzed PCA models,
established on the best and worst aligned UV chromatographic
datasets and the original dataset, to highlight the impact of the
peak alignment method on the multivariate models. Finally, we
present a generic workflow for screening meta-parameters as well as
choosing and evaluating different peak alignment methods for UV
chromatographic data.

MATERIAL AND METHODS

UV chromatographic datasets

Datasets 1 and 2: UV chromatographic data from size exclusion
(SE-) HPLC: Samples from four different E. coli cultivations
were used for analyzing protein purity through SEC. UV
chromatographic data at 280 nm were acquired using a modular
HPLC device (PATfinderTM) purchased from BlAseparations
(Slovenia). The setup comprised of an autosampler (Optimas), a
pump (Azura P 6.1L) and a UV detector (Azura MWD 2.1 L). The
samples were loaded onto a Superdex 75 10/300 GL size exclusion
chromatography (SEC) column purchased from GE Healthcare
(Germany). A loading buffer with 20 mM potassium phosphate,
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150 mM sodium chloride, pH 7.0 was used. The flow velocity was
kept constant at 0.5 mL/min. The dataset of UV chromatograms at
280 nm from four different E. coli cultivations with 24 samples with
each chromatogram having 9,001 data points is termed as Dataset 1.

Samples from downstream unit operations, in particular protein
refolding, from E. coli bioprocesses were used for analyzing product
yield and purity through SEC. The HPLC setup and analysis
conditions were the same as from Dataset 1. UV chromatographic
data at 280 nm were acquired with 15 samples with each
chromatogram having 12001 data points is termed as Dataset 2.

Datasets 3 and 4: UV chromatographic data from reverse-phase
(RP-) HPLC: Samples of corn steep liquor (CSL), which is used
as media supplement for Penicillium chrysogenum cultivations
[14], were analyzed for vitamin composition using a reverse-phase
HPLC column (Acclaim PA; Thermo Fisher Scientific, USA). The
HPLC setup (Ultimate 3000; Thermo Fisher Scientific, USA)
comprised of a pump (LPG-3400SD), an autosampler (CTC
autosampler), column oven (TCC-3000SD) and a diode array
detector (DAD 3000). Samples were loaded with 25 mM potassium
phosphate buffer, pH 3.5 and eluted with acetonitrile. A more
detailed explanation of the data acquisition procedure is published
elsewhere [19]. The flow rate was kept constant at 1 mL/min. The
dataset of UV chromatograms at 260 nm was analyzed for vitamin
composition from sixteen different CSL media stocks and termed
as Dataset 3 comprising of 16 samples each with 4800 data points.

Samples from four different E. coli cultivations were used for
quantifying metabolite concentrations through RP-HPLC
column (Supelcogel C-610 H, Thermo Fisher Scientific, USA).
Samples were loaded with a running buffer comprising of 0.1%
phosphoric acid in distilled water. The flow rate was kept constant
at 0.5 mL/min. The HPLC setup was the same as for Dataset 3.
The UV chromatograms at 210 nm were analyzed for metabolite
concentrations from E. coli cultivations and termed as Dataset 4
with 51 samples each containing 9001 data points. For all Datasets,
all samples were centrifuged and filtered prior to injection and a
sample volume of 10 puL was injected.
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The wvarying complexity of the datasets arises from the
chromatographic method used. For clarity, the SEC-HPLC datasets
(1 and 2) render Gaussian (or ‘bell’) shaped peaks which are
broader in resolution, whereas RP-HPLC datasets are characterized
by their needle shaped peaks. Furthermore, the number of peaks
between SEC and RP-HPLC datasets vary enormously. Therefore,
four datasets with varying complexity was considered for this study.
Exemplary chromatograms to highlight the complexity in all four
datasets considered in this study are shown in Figure 2.

Reference spectrum selection

The reference spectrum is usually selected based on a priori
knowledge of the dataset. The reference spectrum must be
representative of the (most) significant peaks in a dataset, which
is important for extracting process information using multivariate
models. Often, the reference spectrum is either calculated by
determining the mean or median of the entire dataset or by
choosing the latest sample in the sequence which usually represents
the highest number of peaks [20,21]. Skov et al. [10] proposed
a selection criterion for identifying the reference spectrum by
calculating the product of correlation coefficients between the
chosen reference spectrum and each individual sample [10]. The
reference spectra and the rationale for selecting them are shown
in Table 2.

Although, mean and median measures contain significant peak
information, they can be biased towards a few peaks with high
maxima. Thus, we opted for a bi-weighted mean approach, which
imposes a bias-correction to avoid maximum peak intensities
which influences the peak alignment procedure. The maximum
of all chromatograms in the dataset captures all maximum values
or significant peak information and therefore, was considered also
as a reference spectrum. In total, seven different reference spectra
were used for identifying the optimal reference spectrum for
further peak alignment methods.
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Figure 2: An example UV chromatogram with varying complexity from Datasets 1-4, with Datasets 1 and 2 from SEC-HPLC and Datasets 3 and 4 from

RP-HPLC.
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Table 2: Reference spectra and the rationale for selecting them for subsequent preprocessing.

No. Reference spectra
Mean

Median
Bi-weighted mean

Maximum of all signals

[ O R S

Maximum cumulative product of correlation
coefficients

[o)}

First injection

7 Last injection

Rationale

renders a collective chromatogram containing all significant peaks in a dataset

avoids bias towards few peaks with high maxima
captures maximum values of all chromatograms in a dataset

chromatogram with maximum correlation with all chromatograms in a dataset

represents all peaks at the beginning of the process

represents all peaks at the end of the process

Table 3: Properties of three different peak alignment methods used in this study.

Peak alignment method Target function Correction method Technique Reference
icoshift FFT cross correlation Shift, Insert and Delete Segmentation model [13,17]
PAFFT Shift [18]
RAFFT Segmentation model + recursive [18]

Peak alignment techniques

Three different peak alignment methods were tested in this study.
The main properties of the different alignment techniques are
shown in Table 3.

All individual chromatograms which had buffer artefact peaks were
considered as outliers and removed based on the Hotelling’s T2
statistic from the PCA models on raw chromatographic dataset
prior to peak alignment procedures.

Icoshift: The icoshift algorithm was initially developed for ID NMR
data [17], but it also has been used for UV-chromatographic data
(e.g. [1,13]). The icoshift algorithm splits each UV chromatogram
into segments and aligns these segments from the dataset to the
segments in the reference spectrum by shifting the segments
sideways to achieve maximum cross-correlation. It is driven by
an FFT engine for simultaneous alignment and has been shown
to outperform warping algorithms (e.g. COW; [13]). The main
advantage of icoshift is its shifting procedure where the number
of shifts of a particular segment can be determined either by the
algorithm automatically or user-defined. In common warping
algorithms, the search for the shift parameter is tedious as it is
powered by dynamic programming (e.g. dynamic time warping
(DTW); [20]). Some other advantages of the algorithm include high
computational power, user-defined segments and option to fill in
missing values (e.g. through interpolation) [17]. The algorithm is
available from [22].

In this study, the number of segments was set between 1 (indicating
the entire chromatogram of a sample as a segment), and the total
number of data points in the datasets (eg. 4799 segments for
Dataset 3). The maximum number of shifts allowed was not fixed
and the algorithm was allowed to shift until it found the best fit.
The chosen values for the different meta variables for icoshift
are shown in the supplementary information (Table S1). Missing
parts on segment edges were replaced by repeating the value of the
segment edge.

Pafft: Similar to icoshift, the PAFFT algorithm also corrects
misalignments by shifting the segments to achieve highest
correlation. The optimal shift size is determined by sliding the
segment of asample over the corresponding segment in the reference
spectrum to achieve maximum correlation. PAFFT does not allow
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alignment

addition of missing values with zeros or interpolations, therefore
possible endpoint contamination (by addition of interpolated
values) in the chosen segments may occur. On the other hand,
since no extra data points are added to the UV chromatographic
data, no artifacts are generated. Additionally, PAFFT provides
an option to limit the number of shifts of a particular segment.
PAFFT also uses the FFT engine for peak alignment. Since two
meta-parameters need to be defined, we used a simple two factorial
screening design for exploring the optimal meta-parameter
combinations. The number of segments were chosen between 1
(corresponding to all data points in each chromatogram) and 1/16
of the chromatogram length (where the entire chromatogram is
split into 16 parts, with each segment containing different data
points in accordance with the dataset). The number of times the
chromatograms were split (16) was chosen arbitrarily and can be
changed. The number of shifts allowed by the PAFFT is dependent
on the complexity of the dataset. In other words, it depends on
the peak properties such as retention time and peak width in the
dataset, therefore we assumed a maximum shift corresponding
to 1 min in the retention time. Five combinations of shifts and
segments based on the experimental design were chosen for the
PAFFT algorithm and are shown in Table S1. The algorithm for
PAFFT can be downloaded from [23].

Rafft: RAFFT is an extensively used peak alignment method which
also uses FFT cross correlation for peak alignment [16,18]. In
contrast to PAFFT, the RAFFT algorithm splits the entire spectrum
into smaller segments for identifying the highest correlation. The
maximum number of shifts allowed for each segment is specified
by the user. At the beginning of the alignment procedure, the
bigger segment is selected for alignment and this segment is
gradually broken down to smaller segments until either the highest
correlation is achieved or the maximum number of allowed shifts
is reached. RAFFT has also been shown to be faster in comparison
to other warping algorithms [16]. In this study, the maximum
number of shifts allowed was fixed based on the retention time
as in PAFFT. We assumed that the segment, comprising of a few
peaks, should not shift more than 1 min of the retention time.
Therefore, we chose fixed values with 61, 121, 181, 241 and 301
shifts, corresponding to 0.2, 0.4, 0.6, 0.8 and 1 min in retention
time. The algorithm for RAFFT can be downloaded [23].
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Evaluation criteria

Correlation analysis: Correlation of the aligned samples from
each peak alignment method with the chosen reference spectrum
renders similarity measures. If all peaks in the sample dataset are
aligned precisely to the reference spectrum, we obtain a correlation
value of 1. However, this measure is only a rough estimate of
the alignment procedure and depends entirely on the reference
spectrum selection.

Explained variance: The explained variance measure calculated
from the PCA model can be used to evaluate the performance of the
alignment method. Perfectly aligned chromatograms have a higher
variance explained in the first principal components in comparison
to misaligned data. Therefore, the sum of the explained variance
of the first principal component(s) was calculated for all aligned
datasets by establishing PCA models on all datasets. The explained
variance in combination with the correlation analysis indicate the
optimal setting for a given peak alignment method.

Peak factor: Skov et al. proposed the peak factor as a measure
for analyzing the performance of peak alignment techniques [10].
The peak factor measures absolute changes in the spectroscopic
data due to peak alignment procedures. This is relevant since the
alignment technique must not modify the actual data since any
changes affect the subsequent multivariate models. The peak factor
is calculated by comparing the Euclidian length (norm) of a UV
chromatogram before and after alignment. For warping algorithms
such as DTW, peaks from the original data have been reported to
be distorted [14]. However, if there is no change in the peak shape,
the peak factor has a value of 1.

Computational time: Although this measure may not be relevant
for the chosen peak alignment methods used in this study, owing to
their fast computations, we included this measure for applicability.
Chromatographic and spectroscopic data have been successfully
used for bioprocess monitoring [24-26], which necessitates fast
preprocessing techniques to be on par with bioprocess dynamics
[27]. Warping algorithms often have very high computational times
[28]. Initially, we considered including dynamic multi-way warping
(DMW) as a peak alignment method in this study. However, DMW
rendered a 1,000-fold higher computational time (data not shown)
than icoshift, PAFFT and RAFFT and hence was not included.
However, it is practical for the user to have an overview of time
invested for a particular peak alignment method. Therefore, we
calculated the computational time for the chosen peak alignment
procedures. We performed all analyses in a stand-alone PC with

Intel i5-3330 @ 3.00 GHz processor and 8 GB RAM.

Visualization: Visual inspection of datasets renders better
understanding of peak alignment methods and contributes to
further improvement of the alignment procedure by optimization
of meta-parameters. Heat maps were used in this study for
visualizing the UV chromatographic data based on their intensities.
Strong misalignments can be easily identified using heat maps. For
ease of visualization, 2D plots of the original and best alignment
were generated to give the user a clear overview of the alignment
procedure.

Multivariate models

As an application example, PCA models were developed on the
original (misaligned) and the 'best' aligned datasets. In general,
the PCA models are used to realize the impact of different
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peak alignment techniques on chemometric models. In short,
PCA is an exploratory technique which decomposes the entire
chromatographic dataset to a few latent principal components.
Each sample is represented as a score and is projected across
different principal components based on their similarities or
differences. The resulting score plots from the PCA model can be
used to identify possible groupings or similarities between samples
in the UV chromatographic data.

Software

All data analyses were done using MATLAB R2016a (Mathworks,
US). The PCA models were established in SIMCA v13.0 (Umetrics,
Sweden).

RESULTS AND DISCUSSION

In this study we developed a methodology to screen for meta-
parameters and to choose a peak alignment technique based on
different evaluation criteria such as correlation analysis, peak factor
and computational time. Four UV chromatographic datasets with
varying number of samples, complexity and data volume were
analyzed in this study to show the generic applicability of our
workflow.

Reference spectrum selection

Seven reference spectra were generated and correlated to each UV
chromatogram from all datasets. The correlation coefficients from
all datasets and their respective reference spectrum are shown as
boxplots in Figure 3. The line inside the box indicates the absolute
correlation of the chosen reference spectrum to all four datasets.

It is interesting to note that the first and last injections from all
datasets cannot be used as reference spectrum. In Datasets 1 and 2,
itis clear that the first and the last injections were not representative
of all peak information. Similarly, the peak information in the
first and last injections represent different vitamin compositions
in Dataset 3 and metabolite profiles in Dataset 4 and render
the least correlation. This can be explained with the changes in
analyte concentrations over process time, which indicates release
(appearance of new peaks) and/or utilization (disappearance of
existing peaks) over time. Since the reference spectrum calculated
with the arithmetic mean of UV chromatograms, of all samples
from Datasets 1-4, rendered the highest correlation, it was chosen
as the optimal reference spectrum.

Evaluation criteria

Correlation analysis: Three peak alignment methods were chosen
based on their FFT cross correlation for high throughput analysis
and less complexity in comparison to warping algorithms. Peak
alignment was done using the chosen reference spectrum from
respective datasets and correlation analysis was done between the
reference spectrum and aligned datasets. For each peak alignment
method five different meta-parameter constraints were used. The
results from the correlation analysis for all four Datasets are shown
in Figure 4.

All the chosen methods with the chosen meta-parameters achieved
high correlations above 0.83 for Dataset 1 and 0.91 for Dataset 2.
Nevertheless, the RAFFT algorithm performed marginally better
for both datasets, namely 0.91 was achieved for Dataset 1 and
0.94 for Dataset 2 were achieved as maximum correlation results.
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Figure 3: Correlation boxplots of features of different reference spectra and UV chromatographic data from SEC-HPLC and RP-HPLC. A, Dataset 1, B,
Dataset 2, C, Dataset 3, D, Dataset 4. Partition line in the box and values at the top of the plot, absolute correlation between respective reference spectrum
and the respective datasets (a value of 1.0 indicates a perfect fit). Left to right, Mean, Median, Bi-weighted mean, Maximum of all signals, Cumulative
product of correlation coefficients, First injection and Last injection from the sequence.

In Dataset 1, it is interesting to note that the RAFFT algorithm
has overall lower standard deviations (as indicated with the error
bars) in comparison to icoshift or PAFFT algorithms. This can be
explained by complete shifts of the chromatogram in the RAFFT
algorithm rather than dividing the chromatographic data into
segments as in icoshift and PAFFT algorithms.

For Dataset 3 (Figure 4), the correlation coefficients of the selected
reference spectrum and icoshift increased with higher intervals to
be shifted, but started to decline after 1200 intervals. This indicates
that the optimum intervals to be shifted using icoshift algorithm
should be close to 1200 intervals. Interestingly, with PAFFT
algorithm we can see a clear trend between the correlation values

Biochem Anal Biochem, Vol. 8 Iss. 1 No: 373

and the number of segments. The lower the number of segments,
the higher the correlation. The RAFFT algorithm performed
consistently irrespective of the number of shifts used. With Dataset
4, all peak alignment algorithms performed consistently with
marginal differences within each alignment. RAFFT algorithm
portrayed highest correlation in Dataset 4.

Between the two datasets from SEC-HPLC, Dataset 2 with lower
number of samples rendered higher correlation and in comparison,
between the two datasets from RP-HPLC, Dataset 3 in general
offered a higher correlation to the chosen reference spectrum.
This can be explained by the differences in the number of samples
considered, for example 16 samples for Dataset 3 and 51 samples
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for Dataset 4. Higher sample numbers leads to a wide spread of
metabolite profiles from four different bioprocesses, whereas the
samples from Dataset 3 comprise of almost the same vitamins.

In general, Datasets 1 and 2 achieved higher correlation results
in comparison with Datasets 3 and 4. As explained earlier, RP-
HPLC datasets have a complex data structure in comparison to
SEC-HPLC datasets which hamper the peak alignment procedure.
Summarizing the results from the correlation analysis, RAFFT
algorithm with 121-301 shifts rendered similar results (0.91)
for Dataset 1, whereas icoshift, PAFFT and RAFFT rendered at
least one maximum correlation with their respective settings for
Dataset 2. Only with the correlation analysis, it is hard to conclude
which of the alignment techniques worked best for Dataset 2. For
Dataset 3, icoshift with 1200 intervals, PAFFT with 300 segments
with varying shifts, RAFFT with 241 shifts rendered the highest
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correlation and for Dataset 4, icoshift with 1 interval or the entire
chromatogram, PAFFT with 9001 segments and 301 shifts and
RAFFT also with 301 shifts rendered the highest correlation.

Explained variance: The explained variance was calculated using
a PCA model on the dataset and used to indicate the degree of
alignment. The explained variance from the principal components
for all alignment methods and their chosen meta-parameters are
shown in Figure 5.

Aligned chromatograms explain higher variance in the first PC
from a PCA model, therefore, the higher the explained variance
the better is the alignment of the dataset. For Dataset 1, the results
from the explained variance are in agreement with the results
achieved in correlation analysis. The RAFFT algorithm between
121-301 shifts rendered the highest explained variance for Dataset
1. It is more interesting to note in Dataset 2, the peak alignment
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Figure 5: Explained variance plotted against first principal component from the PCA model. A, Dataset 1, B, Dataset 2, C, Dataset 3, D, Dataset 4. From
left to right, rawdata (RS), icoshift with different intervals to be shifted, PAFFT with different segment sizes and shifts, RAFFT alignment technique with
number of shifts allowed. The values on the top of the bar, explain variance from first principal component. 100 % corresponds to highest explained

variance in the data.

procedure with different meta-parameters resulted in similar trend
for both explained variance (> 57%) and correlation analysis (0.94).
Based on the results from Dataset 2, we can clearly see icoshift
algorithm 1 and 12000 intervals resulted in the highest explained
variance (61.1%).

Results from the PCA models of Dataset 3 indicate that the first
principal component in icoshift with 1200 segments explained
44%, PAFFT with 300 segments and 61 shifts explained 57%
and RAFFT with 241 shifts explained 39%. These results are
in agreement with the results from the correlation analysis. For
Dataset 4, icoshift with 1 interval, PAFFT with 9001 segments
and 301 shifts and RAFFT with 181 shifts indicated highest
explained variances in the PCA models. Correlation analysis

with Dataset 4 and RAFFT algorithm indicated 301 to render the

Biochem Anal Biochem, Vol. 8 Iss. 1 No: 373

highest correlation. However, explained variance indicates 181
shifts with RAFFT algorithm to be optimal, although 301 shifts
(from correlation analysis) also has marginally the same value.
Nevertheless, icoshift rendered better alignment in comparison
with the other two algorithms for Dataset 4.

It is interesting to note, the higher the number of samples
considered in the PCA model, the higher the average explained
variance achieved. Summarizing, we chose 181 shifts for Dataset 1
since it rendered a marginally higher explained variance, whereas
icoshift with 1 interval was chosen for Dataset 2. PAFFT algorithm
explained the highestvariance (~ 57%) indicating better peak alignment
performance in comparison to icoshift and RAFFT algorithms for
Dataset 3. As for Dataset 4, icoshift with 1 interval considering the
whole chromatogram gave the highest explained variance.



Rajamanickam V, et al.

Peak factor: The peak factor indicates net changes in the aligned
chromatograms in comparison to the original chromatogram. The
optimal peak value is ‘1’ corresponding to ‘no change’. The peak
factors for almost all meta-parameter settings and peak alignment
methods for Dataset 1 were higher than 0.96 (icoshift: 1500
intervals). This could be due to endpoint contaminations. For
Dataset 2, all peak alignment methods resulted in a peak factor
of 1, indicating no loss of information or distortion of peaks. The
peak factor for Datasets 3 and 4 were higher than 0.97, which
indicates that the used peak alignment methods did not alter
the chromatographic information significantly (less than 3%). As
mentioned earlier, peak shapes are altered mainly when warping
or interpolation functions are integrated into the peak alignment
procedure. However, for shift-based algorithms employed in this
study little to no peak distortion is to be expected.

Computational time: The computational time was calculated to
analyze the time taken for a peak alignment method to render
aligned chromatograms for all datasets. For clarity, icoshift with
different intervals to be shifted was analyzed in one block and, the
computational time for all five settings, sixteen samples and 4,800
data points in each chromatogram for Dataset 3 was calculated for
the block. The computation time taken for alignment of the entire
icoshift block in Dataset 1 was 1.85 s, for the PAFFT block it was
0.23 s and RAFFT with 0.68 s. For Dataset 2, the icoshift block
took 1.46 s, the PAFFT algorithm 0.18 s and RAFFT algorithm
with 0.40 s. Dataset 3 with the entire icoshift block took 1.28 s,
for the PAFFT block it was 0.13 s and RAFFT with 0.23 s. As
for Dataset 4, icoshift algorithm took 4.47 s, PAFFT took 0.48
s and RAFFT with 1.17 s for 51 samples with 9001 data points.
Comparing all four datasets, the increasing order of computation
time can be clearly seen with the increase in the number of samples.
The PAFFT algorithm always rendered the minimal computational
time for all the datasets considered in this study. However it has
to be noted that the PAFFT algorithm performed less in terms of
correlation and explained variance with comparison to other peak
alignment procedures. Warping algorithms are usually 100-folds
higher in computational time in comparison to the FFT correlation
methods used in this study [10]. Overall, all algorithms used in this
study took less than 5 seconds for peak alignment procedure.

Visualization: Heat maps or 2D plots can be used to visualize the
alignment results. In heat maps, the intensities of the significant
peaks are highlighted and possible misalignments are identified.
Furthermore, any improvement on a peak alignment method based
on a different set of meta-parameters can be directly seen. The
results from the heat map and 2D plots of the chosen methods, from
Datasets 1-4, showing the unaligned dataset and best alignments
achieved are shown in Figure S1. The heat maps from the original
and best aligned datasets clearly highlights the misalignments in
the raw dataset and alignment efficiency of the algorithm. The 2D
plots shows the efficiency of the alignment procedure, where one
can clearly see the improvement in peak alignment. Finally, any
outliers in the UV chromatographic data can be easily identified
(e.g. buffer peaks) by visualizing peak distortions using heat maps.

From all these results, we can see that the correlation analysis and
explained variance rendered similar indications to peak alighment
performance for the chosen meta-parameters. Peak factor resulted
in similar results and indicated no interference in the peak
properties, thereby no loss in information. The correlation analysis
and explained variance indicated RAFFT with 181 shifts for Dataset
1 and icoshift with 1 interval for Dataset 2. For Dataset 3, PAFFT
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algorithm with 300 segment size and 61 shifts performed better than
all other peak alignment algorithms used in this study, whereas for
Dataset 4, icoshift algorithm with 1 interval considering the whole
chromatogram outperformed all other algorithms. It is clear that
no golden standard of preprocessing technique is available globally
for all datasets. However, such a generic strategy must be used to
screen for different preprocessing techniques to avoid misleading
multivariate models. In order to describe deviations in modeling
results, we chose the original datasets, the best aligned datasets and
the worst aligned datasets for establishing multivariate models.

Multivariate models

PCA models were established on the 'best' alignments and worst
alignments achieved from the peak alignment technique which was
identified from all datasets. PCA models render different model
variables such as scores and loadings which can be used to extract
relevant information from the input datasets. In PCA, the closer
the scores are to each other the more similar they are, with respect
to the principal components. We analyzed the performance of the
peak alignment technique based on the trends in score plots from
the PCA models. The score scatter plots from the PCA model from
Datasets 1-4 are shown in Figure 6A-6D.

In Figure 6, the score plot of the original data shows a wide spread
of scores each representing a UV chromatogram. In the best
alignment, we can see a compact trend where samples similar to
each other are projected closer. This is further highlighted with
the score plot from the worst alignment, where the scores are even
more scattered than the scores from original data showing strong
dissimilarities. We can see a clear improvement, between the
original dataset and the best alignment with respect to clustering
in the score plot, highlighting the peak alignment performance.
Similarly, we can clearly see similarities between the original and
worst aligned datasets for all datasets. In Figure 6, original and
worst datasets yield almost identical results as suggested from the
very similar results in the evaluation criteria (i.e. 36.1%, 36.8%
explained variance for original and worst aligned datasets). It is
interesting to note that in Dataset 4, the best and worst alignment
was achieved with the same algorithm (icoshift) with different meta-
parameters (intervals). This further highlight the significance of
meta-parameters in peak alignment procedures and the subsequent
data driven models.

CONCLUSION

UV chromatographic data are prone to shifts along the retention
which requires preprocessing prior to establishing
multivariate models. In this study, we established a generic strategy

time,

for screening and validating different preprocessing techniques
for UV chromatographic data. We chose different peak alignment
techniques with different meta-parameters to evaluate their
performance on four datasets. We analyzed the performance using
different statistical tools to identify the optimal peak alignment
technique and its meta-parameter ranges. The evaluation from
statistical tools illustrated that peak alignment techniques, even
though similar in correction methods and target functions, can
render different results. The complexity and the sample numbers
of each dataset also have an impact on the peak alignment
procedure. Therefore, it is safe to hypothesize that the performance
of the peak alignment technique is dependent on the initial, raw
dataset and no global standard exists for all datasets. The impact
of the meta-parameters of the chosen peak alignment technique

9
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Figure 6: Score scatter plots from PCA models established from Datasets 1-4. From top to bottom, Datasets 1, 2, 3 and 4. From left to right, original,
best aligned and worst aligned datasets from the respective preprocessing techniques. Best alignment settings: Dataset 1, RAFFT with 181 shifts, Dataset
2, icoshift with 1 interval, Dataset 3, PAFFT with 300 segments and 61 shifts and Dataset 4, icoshift with 1 interval. Worst alignment settings: Dataset
1, icoshift with 1500 intervals, Dataset 2, icoshift with 2000 intervals, Dataset 3, icoshift with 1 interval and Dataset 4, PAFFT with 9001 segments and

61 shifts.

affects the model results, which can be highlighted with the score
scatter plots from the PCA models. Summarizing, the proposed
methodology was used to choose the reference spectrum, screen
for meta-parameter ranges and validate the results using data
driven models. The generic methodology can be used for different
chromatographic datasets and has a modular-setup which allows
incorporation of any peak alignment technique and any statistical
tool as evaluation criterion. We envision the proposed workflow
also for spectroscopic data which is usually hampered with peak
and baseline shifts.
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