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Abstract
Leukemia Stem Cells (LSCs) are a subpopulation of leukemic cells that display characteristics of self-renewal, 

differentiation and tumor-initiating capacity. They are also thought to be responsible for Chemoradiotherapy resistance 
and the recurrence of leukemia. Recently, Nanomedicine has been widely used for cancer treatments with improved 
targeting efficiency and reduced side effects. In this review, we have summarized the studies of LSCs identification 
and therapeutic strategies with a commentary on recently developed cancer stem cell and LSCs targeting strategies 
by Nanomedicine. 
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Introduction
Cancer Stem Cells (CSCs) are a subset of cancer cells with self-

renewal, differentiation and tumor-initiating properties. They are 
considered as the leading cause of tumor initiation, promotion, and 
relapse in most types of cancers [1]. The first experimental evidence for 
CSCs was given by Bonnet and Dick in 1997. They found that single 
CD34+CD38– Acute Myeloid Leukemia (AML) cell was able to initiate 
AML in NOD-SCID mice [2]. Furthermore, this small subset population 
was found to be responsible for chemotherapy and radiotherapy 
resistance because CSCs have enhanced DNA repair ability, enriched 
anti-apoptotic proteins, improved drug efflux transporters, and are 
protected in specific microenvironment or niche [2]. Therefore, these 
leukemia initiating cells (LIC) or leukemia Stem Cells (LSCs) are 
considered as a critical target for leukemia therapy. Subsequently, CSCs 
in solid tumors have been identified from brain, prostate, breast, colon, 
and pancreas cancer [2]. 

Traditional cancer treatments, such as Chemotherapy and 
Radiotherapy, are cytotoxic to both normal and cancerous cells, 
which cause severe side effects, like bone marrow suppression, 
cardiomyopathy, and neurotoxicity. These side effects significantly 
limit their tumor therapeutic applications in clinic [3,4]. Recently, 
developed nanoscale devices have been used for drug delivery in clinic, 
because these nanoparticles are within 100 nanometers and can readily 
interact with biomolecules on the cell surface or within the cells. They 
can improve the drug delivery efficiency and stability in vivo [5]. This 
nanotechnology based drug delivery strategy has opened a novel avenue 
for cancer treatment and particularly improved the feasibility of CSCs 
targeting therapy in vivo [6]. 

Nanomedicine is the medical applications of nanothechnology. 
There are several applications of Nanomedicine by using nanomaterials 
in clinic inducing in vivo medical imaging for diagnosis and drug delivery 
for therapy [6]. In this review, we are focusing on the Nanomedicine 
involved targeted therapy particularly with a comment on the future 
applications of Nanomedicine in LSC treatment. 

Leukemia Stem Cells
Like Hematopoietic Stem Cells (HSCs), LSCs are thought to reside 

at the apex of the leukemia hierarchy. LSCs give rise to leukemic 
progenitors and leukemic blasts with reduced capacity to self-renew and 

differentiate [7-9]. Studies suggested that LSCs originate from HSCs 
or progenitor cells. For example, BCR/ABL1, an oncogenic tyrosine 
kinase in Chronic Myeloid Leukemia (CML), can be detected in 
several hematopoietic lineages [10,11]. DNMT3a mutations, common 
oncogenic mutation in AML are found in HSCs, progenitor and mature 
cell [12]. These studies indicated that leukemic genetic alterations might 
be initiated from stem cells and accumulate in committed progenitors 
and mature blood cells during differentiation, which eventually initiate 
leukemogenesis.

Identification of Leukemia Stem Cell Surface Markers
Identifying specific LSC specific markers is extremely helpful to 

develop new therapeutic strategies for LSC targeting therapy. However, 
previous evidence suggested that LSCs share similar cell surface markers 
with normal HSCs in mouse and human leukemia models [13]. Human 
LSCs were first identified as CD34+CD38– clones, which overlap with 
normal HSCs [14]. Recent progresses have identified several novel 
surface markers, which can distinguish LSCs from normal HSCs, such 
as CD44 [15], CD123 [16], CLL-1 [17], TIM-1 [18], CD96 [19], CD47 
[20]. In the following section, we will review several cell surface markers 
for LSC identification.

CD44 is a transmembrane glycoprotein that acts as a receptor for 
hyaluronan acid (HA) and other receptors, including osteopontin, 
collagens, Matrix Metalloproteinases (MMPs) [21]. CD44 is highly 
expressed in CD34+CD38–AML cells. Jin et al. reported that CD44 
antibody could significantly reduce LSC numbers and prolong survival 
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in AML xenograft mouse model. Furthermore, leukemic cells obtained 
from CD44 antibody treated mice failed to develop leukemia which 
indicates that CD44 is critical for the self-renewal maintenance of LSCs 
[15]. CD123 is known as interleukin 3 receptor, alpha (IL- 3Rα). Jordan 
et al. first found CD123 was highly expressed in CD34+CD38– cells from 
AML specimens but not from normal BM derived CD34+CD38– cells. 
Functionally, CD34+CD123+ cells have competitive leukemogenesis 
capacity [22]. Consistent with this, high CD123 expression was detected 
in AML and CML patients [23]. CLL-1 is a type II transmembrane 
glycoprotein and belongs to C-type lectin-like receptor family. CLL-
1 was found specifically enriched in CD34+CD38– LSCs in AML 
patients (77 out of 89 positive). CD34+CLL-1+cells can initiate AML 
in immunocompromised mice and interestingly CLL-1 expression 
is completely absent on CD34+CD38– cells from normal controls 
[24]. T cell immunoglobulin mucin-3 (TIM-3), is highly expressed in 
AML LSCs but absent in normal HSCs. Furthermore, TIM-3+ but not 
TIM-3–AML cells can reconstitute human AML in immune-deficient 
mice [25,26]. Similarly, CD96 and CD47 are also highly expressed in 
CD34+CD38– AML cells but weakly expressed in the normal HSCs 
[19]. Increased CD47 expression is correlated with poor survival in 
three independent cohorts of adult AML patients [20]. CD32 and CD25 
were suggested to be associated with Chemotherapy-resistant capacity 
in human AML LSCs [27], however further LSC markers need to be 
developed for efficient LSC targeting. These data demonstrated that 
LSCs can be distinguished from normal HSCs basing on cell surface 
markers. We have summarized the reported LSCs markers with their 
LSCs targeting potential in Figure 1.

Therapeutic Strategies for LSCs Targeting Strategies 
Because traditional cytotoxic chemotherapies often kill rapidly 

dividing normal cells, the primary goal of targeted therapies is to 
eliminate cancer and cancer stem cells more precision with less side 
effects. Besides all the targeted therapies, monoclonal antibody and small 
molecule therapies have achieved the most promising anti-tumor results 

[28]. Monoclonal antibody treatments have remarkable specificity for 
target therapies and their side effects are well limited. Small molecular 
are more efficient and cost-effective compared to antibody therapies, 
however how to select and modify the best compound for targeting is 
still challenging in the field [29]. Targeting LSCs, which are maintained 
by self-renewal, is expected to eradicate leukemia and reduce recurrence 
[9]. With the increased understanding of LSCs, recently several 
promising therapeutic strategies have been developed to target LSCs, 
such as targeting cell surface antigens, signaling transduction and the 
niche of LSCs (Table 1). 

Targeting Antigens on LSCs 
Monoclonal antibodies are the best candidates for cell surface 

antigen targeting therapy [30]. Anti-CD44 and anti-CD123monoclonal 
antibodies have been used for LSC targeting in AML mouse model, in 
which LSCs cannot home to their BM protective niche [15,16]. Anti-
CD47 and Anti-Tim-3 can decrease LSC proliferation in AML xenograft 
models [25,31]. Notably, in most cases antibody based therapeutic 
strategies can specifically target LSCs but spare normal HSCs. 

Targeting Signaling Transduction in LSCs
Both LSCs and normal HSCs are maintained by self-renewal, which 

is regulated by multiple key signals. How to distinguish the self-renewal 
signals between normal HSCs and LSCs is critical for developing novel 
LSCs targeting strategies [32,33]. 

Recently, several key signals have been identified for LSC self-
renewal maintenance including Wnt, Hedgehog, and Notch signal 
pathways. The Wnt/β-catenin pathway is hyper-activated in different 
forms of AML [34]. Loss of β-Catenin impairs self-renewal of LSCs 
in CML, with BCR-ABL fusion protein mutation [35,36], however, 
normal hematopoiesis was maintained in mouse models [37,38]. High 
level β-catenin was considered to be critical for leukemia initiation 
and drug resistance. Inhibition or deletion of β-catenin reduced the 

Figure 1: Nanomedicine based Leukemia Stem cell (LSC) treatment, Nanocarriers are conjugated with specific ligands or antibodies to target LSC specific surface 
markers. Nanocarriers can increase the stability and permeability of their cargos including chemical drugs, peptides, miRNA, or DNA fragments. Nanocarriers are 
enriched in tumor through Enhanced Permeability and Retention (EPR) effect, and certain modifications such as PEG modification can further increase their tumor 
targeting specificity.
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High ROS lever results in compromised DNA repair system, increased 
mutation rates and nuclear damage. Interestingly LSCs have higher 
ROS level compared to the bulk of leukemia cells and normal HSCs, 
these ROS tolerance allow LSCs are able to accumulate more mutations 
for their survival [50]. Several ROS generators, such as Parthenolide, 
Fenretinide and Auranofin, are used in leukemia therapy. Parthenolide 
can induce robust apoptosis in primary human AML cells and blast 
crisis CML cells by increasing their ROS level and repressing their 
NF-κB activation, however normal hematopoiesis is not effected [44]. 
Fenretinide and Auranofin, other ROS generators, were proven to 
eliminate LSCs in CML by selectively increasing their cellular ROS level 
[51,52]. Chaperone protein, Hsp90, can sustain BCR-ABL activity and 
promote pathogenesis in CML [53]. Hsp90 is also highly expressed in 
CD34+ LSCs in AML which sustain Bcl2 protein for anti-apoptosis 
and enhanced survival of LSCs in AML [54]. Therefore, HSP90 
inhibitors hold anti-LSCs potential as they do in solid tumors [55]. 
Many epigenetic modifiers such as histone deacetylase (HDAC) and 
DNA methyltransferase (DNMT) inhibitors have been widely used for 
leukemia treatment [56]. AR-42, a novel histone deacetylase inhibitor, 
can selectively induce apoptosis of LSCs in AML by inhibiting NF-
κB activity and Hsp90 interaction with its various associated proteins 
[57]. Overall, the current advances in LSCs studies will develop better 
therapeutic strategies for leukemia treatment.

Targeting the Niches of LSCs
The bone marrow microenvironment or niche has provided a 

protective shelter for normal HSCs [58,59]. However, recent studies 
suggested that LSCs can share or hijack this refuge for their own survival 
[58,60]. Furthermore, LSCs can even remodel the bone marrow niche 
for better proliferation and chemotherapy evading [60]. Since LSCs 
reside in their own protective nice in the BM, theoretically expulsing 
LSCs from their protective niche would significantly improve the 
traditional chemotherapy efficiency [61-64]. Therefore, HSC homing 
signal CXCR4-CXCL12 has been studied for their leukemia treatment 
effect [58]. Brault et al. found that CXCR4 expression is associated with 
poor prognosis in AML patients and the interaction between CXCR4 
and CXCR12 is critical for the survival and retention of AML cells within 
the BM niche [65]. CXCR4 up-regulation is associated with increased 

growth of human MLL leukemic cells or completely abolished the 
oncogenic potential of MLL-transformed cells [39]. Overall, these 
evidences indicate that Wnt/β-cateninis required for LSCs in multiple 
types of leukemia but not for homeostasis hematopoiesis, which 
makes Wnt/β-catenin pathway a potential candidate for LSCs targeting 
therapy. Hedgehog (Hh) signaling pathway plays an important role in 
sustaining stem cell self-renewal. Deletion of smoothened (Smo), a key 
transducer of the Hh pathway, or Hh inhibitor treatment can eliminate 
LSCs in CML. Consistently, constitutive activated Hh signaling leads 
to augmented LSCs and accelerated disease progress [40]. Conditional 
Smoothened (Smo) deletion or over-activation has no significant effects 
on adult HSC self-renewal and function [41]. Notch signaling is silenced 
in both human and mouse AML cells. Activated Notch signal can induce 
rapid cell cycle arrest, differentiation, and apoptosis of LSCs in AML 
models [42].

Several key survival pathways are involved in LSC maintenance by 
promoting proliferate and preventing apoptosis in LSCs. For example, 
survival pathway in cancer, NF-κB, was found constitutively activated 
in LSCs. Blocking NF-κB signaling pathway by chemical inhibitors 
resulted in rapid cell death in LSCs, however normal HSCs were much 
less effected [43-45]. These data indicated that NF-κB signaling pathway 
could serve as a potential target for LSC targeting therapy in AML. 
The PI3K/AKT/mTOR signaling pathway is activated in most cancers 
including leukemia. Phosphatase and Tensin Homologue (PTEN), a 
negative regulator of the PI3K/Akt/mTOR pathway, maintains normal 
HSCs function and prevents the leukaemogenesis [46,47]. Tissue 
specific deletion of PTEN in hematopoietic cells led the mice to develop 
AML and Acute Lymphoid Leukemia (ALL), Rapamycin (mTOR kinase 
inhibitor) can significantly deplete LSC population in PTEN mutant 
leukemic mouse model [46,47]. Consistently, PI3K/AKT/mTOR 
pathway inhibitors such as wortmannin and LY294002 have achieved 
certain LSC targeting effects in animal models [48]. Recently, Kang et al. 
showed that The LAIR1–SHP-1–CAMK1–CREB pathway sustains the 
survival and self-renewal of LSCs in AML but is dispensable for normal 
hematopoiesis, which highlighted the potential therapeutic value of this 
pathway in eliminating LSCs in vivo [49]. 

Reactive oxygen species (ROS), Heat shock proteins (HSP) and 
Epigenetic modifications have also been suggested in LSC regulation. 

Target Targeting Strategy Leukemia type Reference

Surface marker antibody/
ligand

CD44
CD123
CLL-1
CD47
Tim-3

CD44 monoclonal antibody H90 
CD123 monoclonal antibody 7G3 
CLL-1 monoclonal antibody 1075.7
CD47 monoclonal antibody B6H12.2 and BRIC126
Tim-3 monoclonal antibody ATIK2a

AML
AML
AML
CML
AML

[21]
[22]
[118]
[35]
[31]

Self-renewal
Wnt/β-catenin

Hedgehog
Notch

β-catenin shRNA
Cyclopamine (Hh signaling inhibitor)
Recombinant Dll4-Fc Notch ligand

MLL; CML
CML
AML

[39,40,43]
[44,45]

[46]

Signaling Transduction
NF-κB

PI3K/AKT/mTOR
LAIR1

Parthenolide; MG-132; AS602868 
Rapamycin (mTOR kinase inhibitor)
shRNA-226(shRNA specifically targeted lair1 mRNA)

AML
AML
AML

[47-49]
[50,51]

[53]

Reactive oxygen species ROS-related drugs Parthenolide; Fenretinide; Auranofin AML; CML [48,54-56]

Heat shock proteins HSP90 7-AAG (selective inhibitor of HSP90); PU-H71 (small-molecule Hsp90 
inhibitor)

AML; CML [58,59]

Epigenetic mechanism
Histone deacetylase

miRNA

AR-42 (Histone deacetylase inhibitor); Brd4 (The epigenetic sensor) 
shRNAs or JQ1 (the small-molecule Brd4 inhibitor)
antagomiR-126

AML

AML

[61,119-121]
[116].

Microenvironment
CXCR4/CXCL12

VPS33B

CXCR4 neutralizing antibody 12G5; CXCR4 antagonist such as 
Plerixafor and AMD3465
shVPS33B (shRNA specifically targeting VPS33B)

AML

AML

[69-72]

[74]

Table 1: Therapeutic approaches aiming at LSCs.
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migration and G0-G1 arrest and survival in LSCs of CML [66]. CXCR4/
CXCL12 neutralizing antibodies, CXCR4 antagonist such as plerixafor 
and AMD3465 were developed for leukemia therapy. Pretreatment 
of primary human AML cells with neutralizing CXCR4 antibodies 
or CXCR4 inhibitors blocked AML cell homing to the BM niche in 
transplanted NOD/SCID mice [65-68]. Recently, researchers found 
that LSCs can metabolically adapted to adipose tissue niche to evade 
chemotherapy, which suggested another promising target for LSCs 
treatment [69]. Autocrine signals are critical for stemness maintenance. 
Recently, Gu et al. have shown that HSC secreted exosomes promote 
HSC maintenance and leukemogenesis via VPS33B mediated GDI2/
RAB11A/RAB27A pathway [70]. Overall, current understanding 
of LSC maintenance mechanisms provides us with opportunities to 
integrate our theoretical achievements to LSC treatment in pre-clinical 
practice. 

Targeting LSCs by nanomedicine

Recently, nanomaterials, devices within 100 nanometers, have been 
used in medical research such as drug delivery and biosensor imaging, 
which are called Nanomedicine [71,72]. In this section, we will discuss 
how nanomaterial based drug delivery system, nanocarriers, is used in 
cancer treatment and its potential application in LSCs targeting. 

Chemical drugs used in cancer chemotherapy often have less water 
solubility and targeting specificity [73]. Compare to traditional drug 
incorporation system, Nanomedicine based drug deliver can easily 
cross tight epithelial and endothelial barriers with better targeting 
specificities and less side effects. Nanomedicine can also help to 
increase drug stability and solubility, with controlled drug releasing and 
improved delivery capacities. All these can be helpful for improving 
current therapeutic strategies in multiple disease treatments [6,74]. 
For example, Layer-by-Layer (LbL) Nanocarriers can selectively 
target tumor by recognizing hypoxic tumor PH and hualuronan 
modification can recognize CD44 [75], a CSC surface markers. Thus, 
hualuronan modified LbL Nanocarriers significantly increased their 
tumor targeting efficiency [76]. Furthermore, Nanocarrier system has 
enhanced drug stability in vivo, because these nanomaterial capsules 
have improved biocompatibility, which can protect chemical drugs 
from degradation and clearance. For example, nanocarriers coated with 
PEG (polyethylene glycol), can effectively repress the endocytosis of 
mononuclear phagocyte and prolong the drug retention time in blood 
[77]. The nanocarrier based drug delivery system is especially useful for 
unstable biological drugs such as siRNA and plasmid DNA. Researchers 
found that lipopeptide modified nanoparticles can serve as siRNA 
carriers for gene silencing in vivo with wide therapeutic index [78]. 
Compared to traditional viral siRNA deliver system, this Nanocarrier 
system has much lower biosafety risk and improved efficiency with 
lower cost [34,78]. As a result, the nanocarrier encapsulated drugs have 
much improved stability compared to free drugs which dramatically 
enhanced their in vivo cancer therapy efficacy. For example, Doxil, 
a liposomal based nanocarrier for doxorubicin, exhibited more 
than 100 times longer half-life in blood circulation than that of 
doxorubicin alone, which dramatically reduced cardio toxicity caused 
by doxorubicin treatment [79]. Furthermore, multiple nanocarriers 
have enhanced drug accumulation in the bulk of tumor than normal 
tissues such as liver, spleen and heart via enhanced permeability 
and retention (EPR) effect. Because tumor vessels are usually poorly 
aligned defective endothelial cells, lacking a smooth muscle layer and 
effective lymphatic drainage, which lead to abnormal molecular and 
fluid transport dynamics, especially for macromolecular drugs. This 
phenomenon is referred to the EPR effect, especially occurred in most 

solid tumors [80-87]. Because of their nano scale size, the nanocarrier 
based drug delivery system can pass through blood-brain barrier 
[88,89]. Investigators found that those carriers can either open up a 
tight junction or undergo endocytosis to cross the blood-brain barrier, 
which prevents the passage of most traditional drugs [90-95]. 

Recently, switchable nanocarriers have been developed, in which the 
drug unloading is controlled by the changes of temperature, pH, light, 
ultrasound, or magnetic field [96,97]. These advances will significantly 
improve the drug deliver efficiency and specificity for cancer therapy.  

Although multiple LSCs targeting strategies have been developed, 
the way of efficiently delivering drug in vivo is still challenging. 
Therefore, Nanomedicine provides a great opportunity for CSC and 
LSC targeting in pre-clinic applications. CD44, a major receptor for 
Hyaluronan (HA), is highly expressed in CSCs and LSCs. Therefore, 
the HA/CD44 interaction can serve as a potential target for CSC and 
LSC targeting therapy [98,99]. HA incorporated nanocarriers can 
deliver traditional chemotherapeutic drugs, such as doxorubicin and 
cyclosporine, to successfully target CD44 expressing CSCs both in vitro 
and in vivo [75]. This Nanomedicine based CSC targeting strategies 
have achieved prolonged survival in multiple animal cancer models 
including AML [76, 100-103]. Antibody incorporated nanocarriers 
have also been used for CSC targeting. For example, anti-CD133 
incorporated nanocarrier can deliver pacilitaxel to destroy liver CSCs 
in animal models [104,105]. Interesting, some nanomaterials have 
high CSC affinity although the potential mechanisms are unclear. For 
example, graphene oxide can selectively induce CSC differentiation 
by inhibiting multiple key pathways for CSC self-renewal including 
WNT, Notch and STAT-signaling. Since graphene oxide is non-toxic, 
this therapeutic strategy is promising for CSC eradication [106]. The 
metallofullerenol nanomaterial, Gd@C82(OH)22, can block epithelial-
to-mesenchymal transition with resultant efficient elimination of breast 
CSCs, potentially through a bi-potent inhibition of HIF-1α and TGF-β 
activities [107].

Besides traditional chemotherapy, Nanomedicine can also improve 
the therapeutic efficiency of recent developed cancer treatment strategies 
such as hyperthermia therapy and Photodynamic Therapy (PDT). For 
example, gold-coated nanoshells can increase the sensitivity of CSCs 
to hyperthermia therapy in breast cancer xenograft model [108-110]. 
Barth et al. reported Calcium Phosphosilicate Nanoparticles (CPSNPs) 
can encapsulate nearinfrared fluoroprobe Indocyanine Green (ICG) 
for diagnostic imaging and drug delivery. For LSC targeting, ICG-
CPSNPs reacted with antibodies to target CD117 or CD96 expressing 
LSCs. They found that their nanocomplexes accumulated in LSCs, 
dramatically improved PDT efficacy and resulted in 29% disease-free 
survival in mouse leukemia model [111].

Taking advantage of the protective role of nanorarriers, unstable 
nucleotide drugs, such as siRNAs and miRNAs, can be applied for in 
vivo cancer treatment. siRNA has been considered as one of the most 
promising candidate for gene therapy in cancer treatment, however 
their instability significantly limited their clinical applications [112]. 
Recently, Dorrance et al. have successfully delivered antagomiR-126 
into AML mouse models by using nanocarrier, in which LSCs were 
depleted [113]. Another advantage of nanocarrier based delivery system 
is that it can transport multiple drugs simultaneously. Palamà et al. have 
shown that nanocarriers can deliver Imatinibmesylate and doxorubicin 
simultaneously into CML cells. Such combo treatment achieved much 
improved efficacy than single drug treatment [114].
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Future Perspective
Nanomedicine based LSC targeting strategies have opened a 

novel avenue for leukemia treatment. Nanocarriers can specifically 
deliver traditional chemotherapeutic drugs and gene therapy drugs 
such as siRNA and even Cripr-Cas9 gene editing tools into LSCs. The 
accomplishment of these strategies will significantly reduce the risk of 
leukemia recurrence. Several research directions need to be further 
explored by us to achieve this ultimate goal.

The first aim is to distinguish normal HSCs with LSCs. Although 
in previous studies, LSCs are thought to share the similar cell surface 
markers and intrinsic regulatory signals with normal HSCs. Recent 
studies have uncovered several key signals that can distinguish LSCs 
with normal HSCs [115]. Those cell surface markers such as CD44 and 
CD133, and intrinsic molecules, like PTEN and β-catenin can be used 
as potential drug targets for LSC targeting therapy. In the future, how 
to develop better strategies to target these candidates would be critical, 
fortunately Nanomedicine has already shown its promising applicable 
prospects. 

The second aim is to improve the in vivo targeting efficiency. 
Although accumulating studies have discovered critical drug targets 
for CSC self-renewal regulation, the complete cure of the cancer has 
not been achieved. The main reason is that most drugs, especially those 
unstable chemical drugs, cannot be efficiently delivered into tumor. To 
compromise the instability issue, physicians have to increase the drug 
dosage, which unfortunately leads to enhanced cytotoxicity to normal 
tissues in cancer patients. Therefore, nanocarriers provide one of the 
best solutions to solve this issue, which may remarkably improve cancer 
treatment in the near future.  

The third aim is to improve the biological drug treatment efficiency. 
Biological drugs, such as special peptides, miRNA and siRNA, have 
been proved with great advantage for cancer treatment. However, their 
limited stability hindered their clinical applications. Recently several 
nanocarriers have shown promising results in biological drug delivery 
in vivo (Figure1) [113,116].

 Overall, LSCs studies have discovered increasing LSC targeting 
candidates with great clinical potential. How to efficiently target those 
candidates for improving cancer treatment would be critical. Currently, 
Nanomedicine has been proved with promising success in CSC and 
LSC targeting treatments. 
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