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ABSTRACT

Accountable Care Organizations (ACOs) involve groups of healthcare providers, who voluntarily come together to 
deliver coordinated, high-quality care to aligned beneficiaries. Many ACOs, such as the Medicare shared savings 
program and the ACO REACH program, can participate in alternative payment models that differ from the prevalent 
Fee-for-Service model. In these alternative payment models, providers and payers share financial risk to align the 
ACOs’ financial incentives with the dual aims of reducing the total cost of care and improving the quality of care. 
In other words, ACOs could profit by keeping their patients healthy and preventing unnecessary hospitalization. 
However, to make this financial structure work as intended, there needs to be a Risk Adjustment (RA) model to 
change reimbursement proportional to a beneficiary’s risk; otherwise, ACOs may enroll only healthy patients, i.e., 
adverse selection. While most ACOs adopt RA models for this reason, the original RA methodology has mostly 
stayed the same over the last several decades. As a result, some ACO participants have found ways to “game” the 
system: to receive disproportional payments for the risk they bear. To mitigate the waste, the federal government has 
added various post-adjustment mechanisms, such as mixing the risk-adjusted benchmark with historical spending, 
adjusting by a coding intensity factor, capping risk score growth rate and incorporating health equity incentives. 
Unfortunately, those mechanisms build on top of each other in nonlinear and discontinuous ways, causing their 
actual effects and efficacy to be difficult to disentangle and evaluate. In this paper, we will summarize our lessons 
from operating one of the most successful ACOs in the nation to help rebuild the RA model based on a data-driven 
approach. Next, we outline the characteristics of an ideal RA model. Then, we propose a new one that addresses such 
requirements, eliminating the need for a multi-step process involving nonlinear and discontinuous staging. Finally, 
we provide experimental results by applying this model to our ACO data and comparing them with the current 
RA implementation. Our experimental results show that our data-driven approaches can achieve better predictive 
performances measured in R-squared, Cumming’s Prediction Measure, and Mean Absolute Prediction Error.
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INTRODUCTION

In February 2022, the Centers for Medicare and Medicaid 
Services (CMS) under the Biden-Harris Administration launched 
a new Accountable Care Organization (ACO) model named 
ACO Realizing Equity, Access and Community Health [1]. ACO 
REACH is the latest revision of many ACO models, such as the 
Global and Professional Direct Contracting (GPDC) model, 
the Next Generation ACO (NGACO) model, the Pioneer ACO 
model and the Medicare Shared Savings Program (MSSP) model. 
The significant difference between the ACO REACH model and 
the previous models is the emphasis on health equity, granting 
financial incentives for serving underserved communities. As 
can be seen, CMS has experimented with various ACO models, 
addressing and improving on its alignment with ACOs to achieve 

its goals. However, with every iteration, the underlying financial 
and risk adjustment models have become more complex.

The ACO REACH model and its predecessors are viable alternative 
payment models to the prevalent Fee-For-Service (FFS) model for 
Original Medicare beneficiaries. For instance, CMS reported 
that one of the ACO models saved $1.66 billion in 2021 [2]. In 
a traditional FFS reimbursement model, payers, whether CMS or 
insurance companies, reimburse providers according to a set rate 
for each service provided. This payment model may incentivize 
providers to provide more or potentially unnecessary services. Many 
healthcare economists have pointed out this financial misalignment 
as the root cause of the rapid increase in healthcare expenditures [3]. 
On the other hand, a payer and the ACO often share financial risk, 
leading to financial alignment and accountability. The ACO and 
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its stakeholders, which often include its physicians and healthcare 
providers, become responsible for their patients’ total cost of care. 
For example, if an ACO and its affiliated providers can prevent an 
unnecessary hospitalization event, the payer and the ACO would 
share the resulting savings in healthcare expenditures. In this way, 
the payer and the ACO and its constituent healthcare providers 
become aligned on focusing on preventive and necessary care to 
help patients stay healthy.

Risk Adjustment (RA) is critical for designing and operating a 
successful care delivery reimbursement model. As illustrated, an 
ACO is rewarded for the difference between the projected cost (also 
known as the “benchmark”) and the actual spending for its aligned 
beneficiaries. In other words, if the actual spending is less than the 
projected benchmark cost, the ACO and the payer are able to share 
in a positive financial outcome. The construction of an appropriate 
benchmark is nontrivial. A naive approach to constructing a 
benchmark might be to calculate the average healthcare spend per 
patient in the overall population and multiply that by the number 
of patients in an ACO. Although simple, this method of benchmark 
calculation might incentivize an ACO to recruit healthier 
patients with below-average healthcare expenditures, leading to 
outperformance relative to that benchmark. This phenomenon is 
called adverse selection, which can be mitigated by appropriate RA 
mechanisms.

The core idea of RA is to adjust the per-capita spending projection 
based on the patient’s current and previous medical and physical 
conditions. Patients with multiple chronic conditions would utilize 
more healthcare services than healthy patients; thus, an ideal 
RA model would raise the per-capita spending for multi-chronic 
patients. Over the last few decades, statisticians and healthcare 
researchers have developed many RA models based on medical 
claims data. Among those, the Hierarchical Condition Categories 
(HCC) model, developed by Pope, et al, was widely adopted in 
various government programs, including the Medicare ACO 
models and the Medicare Advantage program [4]. 

An ideal RA model should be able to: 

1. Accurately predict future costs.

2. Promote best practices for treating patients so that they can 
stay healthy. 

Under these two requirements, we can make the ACO market fair 
and reduce any gain/loss by random chance (the first requirement). 
At the same time, we can encourage providers to do more necessary 
and preventive services (the second requirement). The latter 
requirement is also the reason many RA models focus on using 
diagnosis variables rather than other features, such as procedures 
and prescription drugs. For example, on using a prescription drug 
as a model feature, Pope, et al. commented that “prescription 
drug risk markers might create perverse incentives for influencing 
treatment patterns to gain in the risk adjustment program” [5]. It 
is important to note that an ideal RA model should not dictate the 
details of treatments while rewarding the best outcomes.

The original HCC model met these two requirements in its early 
days. However, the model has remained mostly the same over the 
last decades, and many ACO and similar model participants have 
learned to game the system over time. For example, Kronick and 
Chua measured how Medicare Advantage organizations tend to 
over-diagnose their patients to increase RA-related payments [6]. 
Moreover, Gilfillan and Berwick claimed that the Global and 

Professional Direct Contracting model, an ACO model, is also 
part of a similar “risk-score” game as the medicare advantage 
organizations [7]. The ability for organizations to act in ways to 
circumvent the original intent of RA not only leads to waste in the 
Medicare budget, but also substantially over-burdens providers. For 
example, many payers evaluate providers on how they document 
diagnosis codes; this could cause providers to face more daily 
paperwork, which often contributes to physician burnout.

CMS has developed various mechanisms to reduce the effect 
of the gaming nature of the HCC model in deriving the final 
benchmark rates (i.e., projected costs), such as mixing the risk-
adjusted benchmark with historical spending, adjusting with 
coding intensity factor, capping the risk score growth rate, and 
incorporating health equity incentives. But, unfortunately, those 
mechanisms often build on top of each other in highly nonlinear 
and discontinuous ways, as seen in Figure C (in the supplemental 
material section) and their actual effects are difficult to disentangle 
and evaluate. The complexity of the benchmark calculation has also 
become a barrier to entry to participating in an ACO program. For 
these reasons, many healthcare thought leaders such as Chopra, et 
al. are beginning to discuss the idea of revamping the current RA 
methodology [8].

In this paper, we will summarize our lessons from operating one 
of the most successful ACOs in the nation to help rebuild the RA 
model based on a data-driven approach. Our contributions are as 
follows:

• We lay out the principles for an ideal RA model

• We propose a framework that meets the principles

• We provide experimental results using our ACO data

• We discuss the potential impacts of the proposed solution

Implementing an actual RA model requires much more rigor and 
consensus from many stakeholders. However, we hope our proposal 
serves as a starting point for further discussion and experiments, 
specifically from the perspective of data scientists.

Hierarchical Condition Categories (HCC)

Currently, the HCC Model serves as the standard RA Model for 
many Medicare-funded programs, including many ACO models 
and the Medicare Advantage program. The model originates 
from the Diagnostic Cost Group (DCG) model by Ash, et al. to 
accurately and fairly determine the capitation payments for Health 
Maintenance Organizations (HMOs) [9]. Since then, the DCG 
model has gone through several upgrades, notably, Hierarchical 
Coexisting Conditions, Diagnostic Cost Groups and finally, 
Hierarchical Condition Categories [10,11]. These models all 
use diagnosis and demographic variables as their input features. 
However, each iteration provided improved predictive performance 
covering various corner cases.

The HCC model is not just a predictive model. Pope, et al. intended 
that the model should bias toward better actions and outcomes in 
the healthcare market [11]. They designed the model based on ten 
design principles. We list a few of those that we view as relevant to 

this paper:

1. Diagnostic categories should be clinically meaningful.

2. Diagnostic categories should predict medical expenditures.
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bottom half, there is a negative adjustment of $6 PBPM.

This solution may in broad strokes yield the desired realignment 
of resources to achieve health equity goals. However, health equity 
is a multidimensional problem, and discontinuous and nonlinear 
models such as that presented above may not accurately or fairly 
capture the true impact of various elements of health inequity 
on a beneficiary’s risk profile. A more straightforward, concise, 
and quantitative representation of the problem is needed. Many 
countries and researchers have developed various health equity 
indices, of which ADI is one [15]. Other health equity indices 
include the Social Vulnerability Index (SVI), developed by 
Flanagan, et al. and the Social Deprivation Index (SDI), developed 
by Robert Graham Center-Policy Studies in Family Medicine and 
Primary Care [16,17]. These indices all use census data and attempt 
to infer individuals’ socioeconomic levels based on their home 
addresses. However, the resulting indices vary depending on their 
data engineering and applied algorithms. For example, Park, et al. 
and Knighton, et al. found that ADI heavily correlates with housing 
values compared to other indices [18,19].

Rather than adjusting the benchmark in a post hoc fashion, a 
more fundamental approach is to solve for appropriate benchmark 
adjustments due to health equity within the RA model itself. 
For example, Zink and Rose estimated the coefficients of an RA 
model that is more accurate for Mental Health and Substance 
Use Disorders (MHSUD) population [20]. They formulated 
new objective functions focusing on the underserved group’s 
goodness-of-fit and used convex optimization techniques to derive 
new coefficients. Although the mathematical methods may seem 
more complicated, this approach is more data-driven and more 
straightforward to analyze than setting an arbitrary incentive 
adjustment amount or applying any number of non-linear and/
or discontinuous adjustments in a post processing step, our work 
follows a similar path.

MATERIALS AND METHODS

Principles for an ideal RA model

Following the ten design principles that guided the development 
of the HCC model, we outline our seven design principles for an 
ideal RA model:

1. The model should be accurate in predicting future costs (P1)

2. The model should not encourage specific treatment patterns 
(P2)

3. The model should be flexible to take in more input variables 
(P3)

4. The model should be easy to share and run (P4)

5. The model should be able to auto-correct over-diagnosed or 
under-diagnosed cases (P5)

6. The model should update as frequently as possible (P6)

7. The model should utilize the existing data infrastructure as 
much as possible (P7)

It has been more than two decades since the original HCC model was 
introduced. Since then, there has been substantial development in 
machine learning and artificial intelligence research. Furthermore, 
the amounts and types of data available to such algorithms have 
significantly increased. Many of the new principles owe to the 
recent ground-breaking progress in computing technologies. 

3. The diagnostic classification should not reward coding 
proliferation.

To see how the HCC model works, we brought an example from 
the original paper; see Figure A in the supplemental material 
section. First, we collect all diagnosis codes in a one year span of 
medical claims for each patient. Next, the algorithm sequentially 
groups these diagnosis codes into DxGroups (DXGs), Condition 
Categories (CCs) and Hierarchical Condition Categories (HCCs). 
The original model has 101 HCCs; however, the details of grouping 
logic are slightly different from the exact model version. From a 
machine learning perspective, we view this process as a feature 
engineering step. Diagnosis codes are too fine-grained; hence, we 
group those features into something more manageable.

Once the feature engineering is completed, the model calculates the 
Risk Adjustment Factor (RAF) score (r) via a linear combination of 
the derived features and coefficients as follows:

T T T
r d h hβ β

→ → → →

= +  

Where β
→

d and d
→

 represent the coefficients and feature vector 
for demographic variables such as age and gender, and β

→

h and h
→

 
represent the coefficients and feature vector for the HCC variables.

The risk score, the output from the HCC model, is then further 
post processed to calculate the final benchmark rate in order to 
reduce the effect of behaviors designed specifically to maximize 
benchmarks that do not correspond to actual improvements in 
healthcare delivery.

BENCHMARK=r x growthCap(r) x retroAdj x ...

For example, in some models, risk score growth from the previous 
year is capped at 3%, and the capped risk score is then mixed with 
historical spending. Over many years, payers have deployed many 
non-linear treatments to derive the final benchmark amounts. 
However, from a machine learning perspective, the act of publishing 
the model specifications itself may cause the underlying data to 
shift, i.e., dataset shift. Rather than applying various non-linear 
transformations in a post processing step, the most straightforward 
solution may be to update model coefficients directly.

Health equity indices

The most significant healthcare agenda in the Biden-Harris 
Administration is arguably “health equity” [12]. Accelerated by 
the COVID pandemic in 2020, disparities in access to quality 
healthcare resulted in a substantial loss of lives in the United States 
of America. Furthermore, data shows that healthcare providers in 
traditionally underserved communities are less likely to participate 
in value-based care programs, such as ACO programs, which would 
be a barrier to bending the healthcare expenditure growth rate [13].

To combat such problems, CMS designed the latest version of the 
ACO model, ACO REACH, to increase participation in high-
quality, accountable care delivery to underserved communities via 
a new benchmark adjustment mechanism named the Healthcare 
Equity Benchmark Adjustment (HEBA) [14]. In a nutshell, HEBA 
intends to increase the benchmark for healthcare expenditures 
associated with beneficiaries in underserved communities by 
combining a beneficiary’s Area Deprivation Index (ADI) and 
dual-eligible Medicaid Status to determine an overall score. If the 
combined score is in the top decile, there is a positive adjustment of 
$30 Per Beneficiary Per Month (PBPM) to the benchmark; if in the 
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Framework walk-through

The most significant difference between the current RA model and 
the proposed model is that the proposed model has everything in 
one calibration layer (the Machine Learning layer). In contrast, the 
current model consists of many non-linear transformation layers 
sequentially built on each other, where each layer’s effect is difficult 
to untangle from each other. For example, the current model 
requires many post-processing steps after calculating the RAF 
score, such as multiplying the coding intensity factor, bracketing 
the growth rate, mixing with historical spending, and adjusting the 
final rates based on ADI and dual-eligible status in a discontinuous 
way. On the other hand, the proposed model takes all these input 
variables and applies coefficients derived directly from the data, 
rather than through an arbitrary set of adjustments. This makes 
analyzing and auditing the interactions and correlations between 
the features and the predicted output easier (Table 1).

Table 1: Example Coefficients from an ElasticNet.

Feature Coeff

Cost 0.351

RAF 2921.18

ADI National Rank 40.59

Percent Black 10438.87

Let’s walk through an example with ElasticNet in Table 1. We 
estimated the coefficients in the table from one of the ElasticNet 
models we trained. Suppose we have a male patient whose total 
cost of care this year was $10,000, and the RAF score was 1. 
Furthermore, his ADI national rank is at the 50th percentile and he 
lives in an area where half of the neighbors are black. This profile 
gives that his next year’s spending would be:

$13, 669/year=0.35 × 10, 000+2, 921 × 1+40.59 × 50+10, 438 × 0.5

What if he lived in an area where everybody was black and ADI was 
at the 100th percentile?

$20, 918/year=0.35 × 10, 000+2, 921 × 1+40.59 × 100+10, 438 × 1

The resultant estimates are different from the current RA model. 
For example, many ACO models use a 65% weight on historical 
spending, while the data-driven model weighs the variable only 
35%. Moreover, the HEBA incentive provides $30 per month, 
which equates to only an additional $360 per year. However, as the 
above example shows, patients in underserved communities can 
cost thousands of dollars more; $360 is not even close to filling 
the gap and may result in further systemic underinvestment in 
underserved communities.

Implications for health equity

Achieving health equity is not just the current administration’s 
top agenda but one of the most critical generational problems. 
Therefore, our proposed framework incorporates various health 
equity indices as its inputs (the P3 principle). However, even 
seemingly neutral technology may have unintended consequences 
for health equity. For example, Seyyed-Kalantari, et al. found 
that state-of-the-art radiology diagnostic technologies consistently 
underdiagnosed underserved populations, which can lead to 
unequal access to timely treatment. In this case, technologies are 

Chopra, et al. a former Chief Technology Officer of the United 
States of America, also provided similar thoughts on revamping the 
RA model as follows [8]:

Odernize the CMS-HCC risk-adjustment model paradigm by taking 
advantage of advancements in applied technologies (for example, 
advancements in predictive analytics or digital health records) that 
incentivize better care over coding in value-based models. 

These principles could lower the barrier of entry to the ACO model 
while reducing some of the misaligned behavior present in the 
current program.

Our approach

The challenge of building an ideal RA model is that the model 
must be more than just a predictive one. It needs to satisfy other 
requirements while being able to produce reasonably accurate cost 
predictions (Figure 1).

To meet the principles we laid out, we propose a new RA framework 
as shown in Figure 1. The proposed framework utilizes many existing 
data infrastructures, such as the derived HCC from the diagnosis 
variables, the RAF scores from the HCCs, historical spending, 
demographic variables, and health equity variables derived from 
the demographic variables. We can minimize administrative 
burden, improve familiarity by all stakeholders, and improve model 
stability even on smaller datasets by using the same input variables 
as in the existing RA framework (P7). Also, the framework does not 
encourage specific treatment patterns as it does not use medication 
or procedure variables (P2). Modeling all of the input variables 
together, using well-known machine learning algorithms, allows 
for higher predictive accuracies (P1) as well as simple, quantitative 
expansions of the model to incorporate new datasets or input 
variables as necessary (P3).

The remaining principles P4, P5, and P6, affect the choice of 
machine learning models we should use. To easily share and run 
the models, the models need to be widely available in different 
machine learning toolkits. In addition, such models must be 
time-tested and the model parameters must be compact. Based on 
these observations, we decided to select three machine learning 
models: ElasticNet, RandomForests and XGBoost are one of the 
most popular implementations of Gradient Boosting Machine by 
Friedman [21-24]. We did not include deep-learning models as their 
parameter spaces tend to be massive, and tree-based models, such as 
RandomForests and XGBoost, often still outperform deep-learning 

Figure 1: Proposed framework for machine learning models.

models at least for tabular data [25].
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used as the training set, and the claims in 2021 and 2022 were 
used as the test set. The task is to predict future costs; therefore, 
the target variable comes from one year in the future relative to the 
feature variables. For example, in the test set, we created the input 
features based on the claims in 2021 and made the target variable 
based on the claims in 2022, i.e., the total cost in 2022. To protect 
the anonymity of the submission, we do not provide the details of 
the dataset, but we will deliver the details, such as the volume of 
patients, our ACO coverage areas, etc., once accepted.

Evaluation metrics

We use these four metrics that are widely used to evaluate RA 
models [31]:

R-squared (R2), also known as Coefficient of Determination, is 
the proportion of total variance of the target variable explained 
variance by the model. The exact formula is as follows:
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Where y represents the target variable, in our case, the next year 
cost and  and  are the average of the next year cost and the 
predicted next year cost by the model, respectively. The value ranges 
from 0 to 1, where 1 means the perfect prediction.

Cumming’s Prediction Measure (CPM) is similar to R-squared but 
uses absolute error instead of squared error. Using the absolute 
error mitigates the effect of large errors. The metric’s formula is as 
follows:
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Where the same notation is used as in R-squared, the value ranges 
from 0 to 1, where 1 means the perfect prediction.

Mean Absolute Prediction Error (MAPE) is similar to CPM but is 
the average error rather than the explained variance ratio,  

^
y y
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n

−
=
∑

....................(3)

where n represents the total number of samples. MAPE has no 
upper bound, and the lower, the better. 

Predictive Ratio (PR) differs from the above three metrics; it 
measures the budget-level performance. It compares the total 
predicted dollar amount versus the total actual dollar amount:  

^
y

PR
y

= ∑
∑

 ....................(4)

PR needs to be close to one for an ideal case. PR less than 1 indicates 
the model predicted lower than the actual on average.

These four metrics highlight slightly different aspects of model 
performance. In practice, many RA models, such as CMS-
HCC and HHS-HCC [4,5], primarily focus on improving the 
R-squared metric, and other metrics are used to understand the 
model characteristics better. Therefore, we use these traditional 
metrics to compare the proposed framework with the current one. 
However, with the growing emphasis on health equity in industry 
and academia, evaluation metrics must evolve to assess the model 
performance fairly, such as (sub) group-level statistics rather than 

accelerating the divergence of access to care and treatment [26]. 
Thus, we seek to clarify the health equity implications of our 
proposed model in the context of our ideal RA model.

First, we highlight that RA models predict future healthcare costs 
due to the ACO model design. Like other CMS value-based care 
programs, the three-part aims determine ACO’s success: 

1. Better care for individuals

2. Better health for populations 

3. Lower cost

Quality and outcome measures are used to assess the first two aims, 
such as HEDIS by NCQA. RA models are necessary to accurately 
and fairly assess the final aim, which relates to our P1 principle. 
Thus, to jointly satisfy all three aims, we need to evaluate each aim 
fairly while maintaining the right balance among the aims.

Second, RA models are predictive payment models, not clinical 
decision support models. RA models intend to set the accurate cost 
benchmark but should not promote specific treatment patterns 
(our P2 principle). This is important as demonstrated that using 
costs as representative outcomes can exacerbate disparities [27]. 
Furthermore, acknowledging the difference between the two is 
critical for interpreting the model coefficients. For example, in 
Table 2, living in high ADI areas does not “cause” higher healthcare 
costs; instead, the model says that people in high ADI areas tend 
to have higher healthcare costs. Of course, one can build a causal 
inference model using observational data [28], which may provide 
deeper insights into the relationship between SDoH variables 
and healthcare costs. However, such models require identifying 
treatment variables and carefully examining eligibility criteria for 
each treatment variable. It is impractical when the current RA 
model inputs are primarily demographic and descriptive variables. 
RA models should be interpreted at a population level as they are 
predictive payment models that rely on the law of large numbers.

Finally, our proposed framework embeds a few fundamental 
principles for designing ethical machine learning algorithms. For 
example, McCradden, et al. emphasized transparent and robust 
auditing processes for the algorithm outputs and a collaborative 
decision-making process engaging diverse stakeholders [29]. 
Similarly, Chen et al. remarked on the importance of output audits 
and human-in-the-loop feature selection processes [30]. As the 
current RA model consists of many sequential non-linear steps, it is 
often challenging to evaluate why the cost prediction is high or low. 
It can be due the past costs or a new coding intensity factor, but 
there is no easy way to tell as they are applied one after the other. 
Our proposed framework reduced those various steps into one 
layer, where users can easily map the relationships between inputs 
and output, which relates to our P4 principle. Furthermore, our P3 
and P6 principles allow diverse stakeholders to engage and update 
any unintended pitfalls as quickly as possible.

We view our proposed framework as a work in progress rather than 
a final form of the ideal RA model. Moreover, our framework is a 
significant step forward from the current RA model in achieving 
health equity.

RESULTS

Dataset

Our dataset contains the medical claims for our ACO patients 
between 2019 and 2022. The claims in 2019, 2020 and 2021 were 
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hyperparameter spaces to find the best model.

DISCUSSIONS

Before presenting our full experimental results, we want to 
illustrate some characteristics of predicting the future cost. Figure 2 
shows the coefficient path plot from one of the ElasticNet models 
we trained. The exact coefficient paths are slightly different based 
on the settings, but the prominent trend remains the same. The 
plot shows the coefficient values as the ElasticNet model relaxes 
its regularization strength (from left to right). The first coefficient 
to pick up is usually the cost variable, and the next is the RAF 
score. Often other health equity indices follow the paths of these 
two variables. Furthermore, the top variables from the XGBoost 
model with 100 iterations (xgb_n100) are Cost, RAF, Age, HCC23, 
Percent Black and Percent High Needs. As can be seen, the selected 
variables are similar to the results from the ElasticNet coefficient 
paths. 

We summarize these observations as follows:

• The original HCC model and the RAF score are still very 
“relevant” in predicting the future cost.

• The historical cost has a significant momentum for the future 
cost.

• Socioeconomic variables have non-negligible impacts when 
predicting future costs.

These findings indirectly justify all the CMS’ efforts in mixing the 
historical spending and adding health equity adjustments. But 
unfortunately, the current implementation needs more justification 
for quantifying these variables. Through our data-driven approach, 
we can scientifically estimate the complex interactions of these 
variables (Figure 2).

As can be seen, the machine learning models exhibit superior 
predictive performance on three metrics, R-squared, CPM, and 
MAPE. Unfortunately, the baseline model has the highest PR. We 
believe this is due to the timeframe of our dataset. The training 
dataset comes from the right in the middle of the pandemic. 
During the pandemic, although the Intensive Care Units usages 
skyrocketed, the utilization rate of many elective surgeries and basic 
services was lower than usual; hence overall healthcare spending 
was lower during the pandemic. We did not adjust the machine 
models to account for this specific condition, which is why the PR 
values are lower for the machine learning models (Table 2).

The best-performing model is xgb_n100, XGBoost with 100 
iterations, marking the best score in CPM and MAPE and reasonably 
close to the top score on R-squared. The result is not surprising, as 
XGBoost has consistently outperformed many machine learning 
models in various predictive tasks [23]. Noticeably, the ElasticNet 
with the positive coefficient constraint performed the best in terms 
of the R-squared metric. This result is encouraging because the 
coefficients of ElasticNet are perhaps the most approachable, as 
it is equivalent to a linear model. If we want to aim for the best 
predictive accuracy, we can use XGBoost; otherwise, if we’re going 
to disrupt the infrastructure minimally, we can choose ElasticNet.

One of the main reasons to reform the RA model is to reduce the 
prevalence of actions taken specifically for the purpose of increasing 
benchmarks with no value to high-quality care delivery. A part 
of the “gaming” that occurs comes from the subjective nature of 
documenting specific diagnosis codes for a particular timeframe. 
In practice, many providers need to review past documented 

population-level statistics [30]. We leave this as our future work.

Models

Earlier, we recommended three machine learning models to use 
in our framework: ElasticNet, RandomForests, and XGBoost. 
However, these three models are initial picks, not the final roster. 
We should experiment with many other machine learning models 
while meeting the principles we laid out.

On top of the three models, we added two simple algorithms to 
compare. They are linear regression and decision tree algorithms. 
We used these algorithms to show the baseline performance, as 
their performance and design are comparable to the current RA 
implementation.

The complete list of the models in our experiments is as follows:

lm_basic: The first model is a linear regression with only one 
variable, the RAF score, with an intercept. This model mimics the 
current RA implementation to some degree. The intercept and the 
coefficient for the RAF score would track the inflation trend and 
the geographic rate for the region.

lm_cost: The second model is an extension of the first model with 
the cost variable. The model should mimic the mix of historical 
spending and risk-adjusted geographic rates. The performance of 
this model is usually better than the first one, as the historical 
cost is one of the most indicative variables for the future cost. 
Furthermore, the predictive performance of this model tends to 
be higher than the current RA implementation, as the weight for 
the historical cost variable is set by the data rather than an arbitrary 
65%.

lm_adi, lm_sdi: The following two models add Health Equity 
Indices to the second model, ADI and SDI. These models reflect 
the cost impact of socioeconomic status.

rp_cp01, rp_cp001: We add two decision tree models, “rpart” in 
the R programming language, varying its complexity parameters. 
The simple tree, rp_cp01, only uses the cost variable, while the 
complex tree, rp_cp001, uses other variables, such as the RAF score 
and other HCCs.

enet_: We apply ElasticNet with two settings; one with no constraint 
on the coefficients and the other with a positive constraint (enet_
pos_). In practice, negative coefficients are difficult to interpret. As 
we curated many variables that may increase future spending, the 
negative coefficients are often due to confounding and correlation 
effects. For each setting, we present two sub-versions: one with the 
minimum error estimate (_min) from cross-validation and a more 
conservative estimate (_1se) that potentially resists overfitting.

rf_: We trained RandomForests with three settings-16 nodes base 
trees (rf_max16), 32 nodes base trees (rf_max32), and 64 nodes 
base trees (rf_max64). As the base tree is a binary tree, 64 nodes 
translate to a complete tree with a depth of 5. We used 100 base 
trees for all three settings.

xgb_: Lastly, we applied XGBoost with two settings, one with 200 
iterations (xgb_n200) and the other with 100 iterations (xgb_n100). 
Again, it’s because Gradient Boosting can overfit as the number of 
iterations increase. We used the base trees with a maximum depth 
of 4 and a learning rate of 0.1.

We present various hyperparameter settings for illustration 
purposes; to show the data’s characteristics, complexity, and 
overfitting nature. In practice, we need to extensively search their 
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even without any future documentation. This dataset would be 
the equivalent of healthcare providers in the dataset documenting 
the same chronic condition in all their patients each future year 
without fail once the condition is detected in a given year.

Table B in the supplemental material section shows the results 
from the additional experiment. The results are, in fact, surprising. 
The performance of the baseline model improved. However, the 
performance of the machine learning models either remained the 
same or degraded. We believe there are two reasons. First, the size of 
the training dataset shrank as we needed to propagate the diagnosis 
for the following year. In other words, we needed to throw away 
one-year records. Another reason is that the propagated chronic 
conditions do not add much information to the models, as such 
relationships are already embedded in the models. Although we 
need deeper investigation on this topic, it is promising that the 
machine learning models can auto-correct over-and under-diagnosis 

diagnosis codes and provide the same documentation repeatedly. 
This practice can result in two adverse effects: over-diagnosis and 
paperwork burden. To reduce these adverse effects, Chopra, et al. 
proposed propagating chronic condition documentation without 
needing to re-document every time [8].

We believe that good machine-learning models should be able to 
identify the relationships between variables and infer any missing 
covariates. So, for example, the data should tell that patients in 
underserved communities tend to miss visits with their doctors, and 
hence their records show many missing diagnosis codes. For such 
cases, the model should be able to identify the relationship and 
adjust its prediction for future spending. To test this hypothesis, 
we ran another set of experiments. We prepared a new dataset in 
which we propagated forward in time all chronic condition HCCs; 
we did not propagate acute conditions such as sepsis. For example, 
if a patient had HCC19-Diabetes without Complications in 2019, 
we imputed the dataset to have the same HCC in future years, 

Figure 2: Coefficient Paths from the ElasticNet model. The x-axis represents the strength of the L1 Norm. Note: ( ) Cost; ( ) RAF; ( ) 
HCC23; ( ) ADI National Rank; ( ) ADI State Rank.

Table 2: Predictive Performance of Various RA Models.

Model and Description R2 CPM MAPE PR

lm_basic, Linear Regression (LR) with RAF 0.130 0.149 12628 0.985

lm_cost, lm_basic plus the cost variable 0.197 0.242 11259 0.919

lm_adi, lm_cost plus the ADI variable 0.195 0.265 10905 0.866

lm_sdi, lm_cost plus the SDI variable 0.197 0.242 11258 0.919

rp_cp01, Decision Tree (simple) 0.172 0.258 11010 0.828

rp_cp001, Decision Tree (complex) 0.143 0.264 10924 0.864

enet_min, ElasticNet (ENet, best cross-validated) 0.198 0.279 10706 0.840

enet_1se, ENet (conservative estimation) 0.177 0.224 11518 0.878

cases.
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enet_pos_min, ENet with Positive Coeffs. (best CV) 0.200 0.266 10893 0.873

enet_pos_1se, ENet with Pos. Coeffs. (conservative) 0.170 0.219 11598 0.870

rf_max16, RandomForests with 16 nodes 0.186 0.264 10931 0.851

rf_max32, RandomForests with 32 nodes 0.194 0.280 10685 0.839

rf_max64, RandomForests with 64 nodes 0.196 0.283 10645 0.842

xgb_n200, XGBoost with 200 iterations 0.185 0.298 10426 0.826

xgb_n100, XGBoost with 100 iterations 0.195 0.299 10400 0.830

CONCLUSION

This paper summarized our lessons from operating one of the most 
successful ACOs in the nation to help rebuild the RA model based 
on a data-driven approach. We, then, outlined the principles for 
an ideal RA model and proposed a framework to address such 
requirements. Finally, we provided experimental results using our 
ACO data to support our proposed framework.

Although our results are promising, we must verify that the 
proposed approach can produce similar results with larger datasets. 
Such datasets would include the IBM Marketscan Research 
Database and other ACO datasets. Another route is to partner with 
companies that have the CMS innovator license to access the entire 
Medicare Fee-For-Service (FFS) data.

With larger datasets, we also must carefully lay out the appropriate 
computing platforms. Fortunately, many open-source projects 
in distributed computing, such as Hadoop and Spark, enable 
large-scale data management and training in advanced machine 
learning algorithms. Moreover, it would allow us to adapt the 
models with various inputs and estimate the model parameters as 
quickly as possible. We would be able to adapt the models before 
program participants have the opportunity to engage in non-useful 
behaviors. The most straightforward path to defend against data 
shift is to update the underlying models as quickly as possible in a 
reasonable and prospective fashion.

The RA model has been under much scrutiny due to its abuse in 
the industry. However, RA still plays a critical role in the design 
of an aligned and effective reimbursement model; for example, 
we cannot prevent adverse selection in many value-based care 
programs without RA. Therefore, we must embrace that we need 
to enhance the RA model more accurately and make it difficult 
to game. This paper outlines a path using a data-driven, objective 
approach, but we must work in all aspects to implement a truly fair 
reimbursement system which aligns payers and providers in their 
combined mission to provide high-quality, accessible healthcare to 
all.
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