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Introduction
Human genome sequence data and affiliated databases are growing 

in size at tremendous rates [1]. This treasury of sequence information 
has greatly enhanced the discovery of genetic variation [2] and vastly 
amplified the ability to relate a particular genetic variant to a disease 
phenotype [3]. Although the number of genetic association tests, 
whether by single gene or genome-wide, performed in the last few 
years has exploded, especially since 2007, a significant limitation in 
those studies can be summarized as only a small portion of genetic 
heritability has been described [4].

In many cases onset of diseases such as cardiovascular disease, 
coronary artery disease, hypertension and type 2 diabetes can be 
prevented or greatly delayed with adjustments to lifestyle. In addition, 
once such a metabolic disease or other disease with a metabolic basis 
has been diagnosed, clinical biomarkers of disease status can often be 
ameliorated also with adjustments to lifestyle. Such lifestyle factors 
include diet, physical activity, alcohol and tobacco use, sleep, latitude 
and altitude of residence (seasonality and oxygen tension, respectively), 
as well as many others. Numerous genes involved in homeostasis of 
these disease biomarkers have alleles that either associate with the 
biomarker at baseline or have alleles showing gene-environment 
(GxE) interactions [5,6]. A GxE interaction is exemplified by a point of 
sequence variation in the genome where one version or allele associates 
with an adverse health risk only when an environmental factor passes a 
given threshold. There are two implications of this phenomenon. One, 
a risk allele actually may not be risk in all individuals. Two, a test of 
genetic association undertaken in the absence of information on diet, 
exercise and other lifestyle choices is or can be rather incomplete. Thus, 
cataloging GxE interactions will provide the basis of which lifestyle 
factors an individual could adopt and to what degree prior to taking a 
pharmaceutical therapeutic, which itself may have harmful side effects 
[7]. 

Currently, there is much discussion, even that bordering on 
outright debate, on where the missing heritability is to be found [4,8-
10]. Possibilities offered include: a sample size too small to detect 
variants of small effects, the disease marker is not in complete linkage 
disequilibrium with the causal variant and thus underestimates 
heritability [11], overestimation of heritability based on family-based 
populations, rare or even “private” mutations, inherited patterns of 
epigenetic marks [12], epistasis [13], gene-gene interactions [14] and 
gene-environment interactions [5,6]. It is indeed evident that the 
environment affects the human genome. For example, the emergence 
of the hemoglobin S variant coincided with resistance to malaria as has 
lactose tolerance with dairy farming in Europe and Africa. Many other 
examples are known or hypothesized. Unfortunately, genome-wide 
association studies (GWAS) have not incorporated GxE interactions 
for any of a number of reasons. One, appropriate environmental factors 
have not been collected for many GWAS cohorts, often because of 
oversight or the costs involved. Two, many measures of environmental 
exposure are difficult to quantify and standardize, especially across 
cohorts, and some measures are met with skepticism. Three, thus there 
is a requirement of GxE interaction studies for much larger sample sizes 
but effective sample size is reduced because either the environmental 
factor of interest has not been measured in all GWAS participants or 
data from multiple studies cannot satisfactorily be merged. Four, there 
is no strong consensus on how to assess genome-wide significance in 
the face of multiple GxE tests but the limited amount of heritability 
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Abstract
As the role of the environment – diet, exercise, alcohol and tobacco use and sleep among others – is accorded a more 

prominent role in modifying the relationship between genetic variants and clinical measures of disease, consideration 
of gene-environment (GxE) interactions is a must. To facilitate incorporation of GxE interactions into single-gene and 
genome-wide association studies, we have compiled from the literature a database of GxE interactions relevant to 
nutrition, blood lipids, cardiovascular disease and type 2 diabetes. Over 550 such interactions have been incorporated 
into a single database, along with over 1430 instances where a lack of statistical significance was found. This database 
will serve as an important resource to researchers in genetics and nutrition in order to gain an understanding of which 
points in the human genome are sensitive to variations in diet, physical activity and alcohol use, among other lifestyle 
choices. Furthermore, this GxE database has been designed with future integration into a larger database of nutritional 
phenotypes in mind.
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explained by genetic association studies strongly supports the need 
for GxE interaction analysis. Hence, building a database of GxE 
interactions gives the potential to tease apart the process of how such 
variants interact with their respective environmental cues and find 
common threads that, taken together, will help describe the interplay 
between alleles and environmental factors. We believe that cataloging 
GxE interactions offers great potential to understand which genes and 
biological pathways are sensitive to variation in a manner that elicits 
an altered phenotype, particularly toward greater risk of disease. From 
another perspective, this database provides a means to corroborate 
assertions of genetic tests. As personal genomics and personalized 
medicine and nutrition move into the fore, a full catalog of GxE 
interactions will be required for appreciating the intricacies of the 
human genome.

Materials and Methods

Literature mining

In order to identify the publications that present statistically 
significant interactions between a genetic variant, typically a single 
nucleotide polymorphism (SNP) and an environmental factor, we 
searched the scientific literature via PubMed at the National Center 
for Biotechnology Information with certain keywords. One specific 
strategy employed a genetic variation keyword (polymorphism, 
variant or SNP) and either “interaction” or an environmental factor 
keyword (diet, exercise, alcohol, tobacco/cigarette or sleep). Another 
search strategy used the terms “gene” and “interaction” coupled with 
a specific environmental factor (e.g., alcohol or exercise). Searches 
were also conducted for authors based on the results of the above 
keyword searches. The abstracts of the identified papers were culled 
to those focusing on metabolic diseases and obesity. The articles were 
retrieved for close examination of the reported results from which we 
retained those GxE interactions restricted to statistical interactions 
in epidemiologic studies. Reports on studies involving children and 
adolescents were not parsed for GxE data.

Tabularizing the data

Data were manually extracted from a reading of the collected 
articles. Several data fields were established for the placement of these 
data: Gene, SNP accession, aliases or common names of the SNPs, risk 
allele, phenotype, environmental factor, condition of environmental 
factor, gender (in which the interaction was observed), population, 
first author, PubMed ID and year of publication. The field “condition 
of environmental factor” describes the value of the environmental 
factor above or below which the GxE interaction was observed as 
passing statistical significance. Although P-values of the published 
GxE interactions are sensitive to characteristics of a particular study 
or population and are not listed here, only those GxE interactions 
described as statistically significant, generally with a P-value ≤ 0.05, 
were retained from the literature mining.

Due to difficulties in assigning interactions to one variant that is 
a member of a haplotype that shows an interaction, such haplotype-
environment interactions, although very few in number, were selectively 
not added to this database. The only exception to this is the epsilon 
haplotype of APOE defined by SNPs rs429358 and rs7412.

Pathway analysis

Significant over-representation of biochemical pathways from 
KEGG and Reactome as well as gene ontology terms were taken from 
the output of g:Profiler, http://biit.cs.ut.ee/gprofiler/ [15]. Lists of genes 

(n > 10) pertaining to a given type of GxE interaction, i.e., either a 
particular phenotype or environmental factor, served as input to the 
pathway/ontology tool. g:Profiler was run with default settings.

Results
Building the database

Mining the scientific literature allowed identification of a large 
number of articles presenting results on gene-environment interactions 
involving candidate genes from longitudinal, cross-sectional, 
interventional and clinical studies. Studies examining effects on less 
than 20 individuals were not included. 554 different gene-environment 
interactions pertinent to nutrition, metabolic disorders such as type 
2 diabetes, cardiovascular disease, obesity and dyslipidemia and 
reaching statistical significance were collected from literature reports 
published from 1994, the earliest example, to 2010 (Table 1 provided as 
supplementary file). These are described by gene, SNP, risk allele (when 
known), phenotype, environmental interaction factor, population 
(origin/location, gender) and PubMed ID. In addition, we collected 
1439 examples where the test for a GxE interaction failed to reach 
statistical significance.

When the environmental factor (EF) involved in a gene-
environment interaction was described as a continuous variable, close 
examination of the published data revealed the value of the EF where 
there is a change in risk allele. A hypothetical example shown in Figure 
1 indicates that when dietary protein, as percent total energy intake, is 
below 15, individuals who are AA at a hypothetical genetic locus show 
higher levels of serum LDL-cholesterol. At the same time, when protein 
intake levels are above 15, individuals carrying the other allele at this 
same locus (either AG or GG genotypes) show higher levels of LDL-
cholesterol. The data on gene-environment interactions presented here 
reflect these changes in risk allele(s) observed at such inflection points.

Standardization of terms

Because the genetic variants of many older examples of gene-
diet and other gene-environment interactions were analyzed with 
low-throughput methods and in a time before wide acceptance of 
standard databases of human variation, SNP accession numbers are 
not available in those publications. We therefore traced through the 
literature to a source that fully described the genotyping assay in order 
to unequivocally identify the polymorphism with an rs accession 
number. We were successful in providing an rs accession in nearly all 
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Figure 1: A hypothetical gene-environment interaction presented with dietary 
protein intake as a continuous variable affecting LDL-cholesterol levels. At a 
protein intake of about 15% of total energy, there is a switch in risk genotype 
from AA to G carriers.



Citation: Lee YC, Lai CQ, Ordovas JM, Parnell LD (2011) A Database of Gene-Environment Interactions Pertaining to Blood Lipid Traits, Cardiovascular 
Disease and Type 2 Diabetes. J Data Mining in Genom Proteomics 2:106. doi:10.4172/2153-0602.1000106

Page 3 of 8

Volume 2 • Issue 1 • 1000106
J Data Mining in Genom Proteomics
ISSN:2153-0602 JDMGP an open access journal

such cases but there are a few data rows where the SNP rs identifier 
is unknown. A few other variants, mostly short insertions/deletions, 
have no dbSNP accession. In order to maintain such nomenclature 
connections, the database also includes the older, common names of the 
variants under the column “SNP alias.” We also sought to standardize 
terms used to describe the phenotypes and to a lesser degree the 
environmental factors constituting the gene-environment interaction. 
Thus, different publications regarding, for example, GxEs for “high-
density lipoprotein,” “HDL,” “HDL-C” and “HDL-cholesterol” were all 
classified under the term HDL-C.

The database

Mining available scientific reports yielded 554 different gene-
environment interactions of relevance to metabolic diseases and 
biomarkers of their progression. These interactions involve 146 
different SNPs and short insertion/deletions that map to 88 different 
genes. Of the 554 GxE interactions, HDL-C as a phenotype and 
physical activity as an environmental factor have the highest number 
of examples in their respective categories at 85 and 109. An assortment 
of different phenotypes serving as indicators of obesity number 98 GxE 
interactions, of which 40 are for BMI. Summary characteristics of the 
collected gene by environment interactions are provided in Table 2. The 
assembled data, taken from 184 published reports plus one unpublished 
observation, as well as future updates will be accessible at the dbNP 
website (http://www.dbnp.org). The numbers of unique genes and SNPs 
involved in GxE interactions for each of several main phenotypes are 
listed in Table 3. For most of the phenotypes listed, the most commonly 
observed environmental term in the GxE interaction represents about 

20-25% of all GxEs for that phenotype. Plasma TG levels are different in 
this respect, only five of 44 GxEs involve a high-fat challenge, the most 
common environmental factor, suggesting added complexity to the 
relationship between genetic variation, environment and triglyceride 
levels.

Pathway analysis of GxE genes

Pathway analysis on those genes carrying variants that are sensitive 
to a particular environmental term or relate to a given phenotype will 
give insight into which biochemical, physiological or disease pathways, 
or sub-networks thereof, are more sensitive in an allele-specific manner 
to variation in the environment. Results from such pathway analysis 
for selected phenotypes and environmental factors are listed in Table 4. 
It is noteworthy that of those sets of genes containing SNPs that show 
GxE interactions involving either obesity phenotypes in general, BMI 
specifically, HDL-C, triglycerides, total cholesterol, physical activity, 
dietary fat or dietary saturated fat all contain an abundance of genes 
mapping to the PPAR signaling pathway. While this result could 
arise from research bias, it does underscore the immense importance 
of genetic variation within the three genes central to this pathway: 
PPARA, PPARD and PPARG, as well as two co-regulators PPARGC1A 
and PPARGC1B.

Replicated gene-environment interactions

Replication of gene by environment interactions in other, 
independent studies gives confidence that such interactions are 
more universal and less specific to the particulars of one population. 
Replication is not often observed because of inherent differences 

Phenotype Number of GxE data points Environmental factor Number of GxE data points
obesity phenotypes 98 physical activity 109
BMI 40 fat, total, percent energy from 57
waist circumference 17 SFA, percent energy from 46
delta body weight 12 PUFA, percent energy from 33
delta fat mass 6 high-fat challenge 29
lipid phenotypes MUFA, percent energy from 24
HDL-C 85 alcohol 20
triglyceride 44 Mediterranean diet 15
cholesterol, total 33 low-energy diet 12
LDL-C 29 low-fat diet 12
delta LDL-C 9 PUFA, N-3, percent energy from 12
APOA1, plasma 8 fish oil 11
APOB, plasma 7 diet, in general 10
APOC3, plasma 7 smoking 10
delta cholesterol, total 7 dietary cholesterol 9
delta HDL-C 7 PUFA, N-6, percent energy from 9
triglyceride:HDL-C ratio 7 SFA:CHO ratio 9
LDL-C:HDL-C ratio 5 NCEP-1 diet 7
insulin phenotypes fenofibrate 6
insulin resistance (HOMA-IR) 17 PUFA:SFA ratio 5
glucose, 2-h 8
type 2 diabetes 8
glucose, fasting 6
insulin, fasting 6
vascular phenotypes
blood pressure, systolic 9
intima-media thickness 9
homocysteine, plasma 5
C-reactive protein, plasma 4

Table 2: Phenotypes and Environmental factors with the greatest number of examples in their respective categories.

Table 3: The number of unique genes and unique SNPs showing GxE interactions for a given phenotype.
The most common environmental factor is also listed, where n = the number of data points

Phenotype # Genes # SNPs # GxEs Most common EF, n
HDL-C 22 31 85 physical activity, 17
triglyceride 16 21 44 high-fat challenge, 5
cholesterol, total 12 17 33 physical activity, 8
LDL-C 10 18 29 dietary SFA, 5
HOMA-IR 7 8 17 SFA:CHO ratio, 9
obesity phenotypes 38 48 98 physical activity, 20; dietary fat, 17
BMI 19 23 40 physical activity, 9; dietary SFA, 7

http://www.dbnp.org
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between populations and a multitude of environmental factors, some of 
which may confound, exert influence on or contribute to a given GxE 
in an unknown manner. Nonetheless, a scan through the GxE database 
described here allows identification of interactions that in some cases 
appear rather strongly to replicate. Although there is danger in such 
literature-based meta-analysis [16], we still consider it of value to 
identify GxE interactions that show a high degree of similarity in terms 
of gene, variant, associated phenotype and the environmental factor 
modifying that relationship. These are results deserving of further 
attention. We have extracted from the database 13 different phenotype-
risk allele-environmental factor combinations that replicate and involve 
nine different markers in seven distinct genes (Table 5). This effort does, 
however, illustrate the conundrum of replication of GxE studies. For 
example, the APOA5 marker rs662799 (-1131T>C, -600T>C, S13) is 
reported by three different groups to form a GxE with plasma TG levels, 
but in different populations the environmental factor is either total fat 

from a high-fat challenge (measured as percent energy), percent energy 
from dietary PUFA, or percent energy from dietary N-6 PUFA [17-19].

Interactions not replicated

Instances where an observed interaction was not found in a second 
study can be determined. Examples include the Gln380His variant of 
APOA4 on both HDL-C and LDL-C with dietary saturated fat [20,21], 
APOA5 promoter SNP rs662799 on TG and dietary fat in two distinct 
populations [18,19], SNP rs708272 of CETP with changes in total 
cholesterol and dietary saturated fat [21,22], LIPC SNP rs1800588 with 
HDL-C and dietary saturated fat and with conflicting risk alleles [23-
25], LPL variant rs328 with cholesterol and dietary saturated fat [21,22] 
but which did not replicate in African Americans [25]. Other examples 
are rs662 of PON1 with heart disease and smoking [26,27], PPARG 
SNP rs1801282 with type 2 diabetes and physical activity [28,29], and 

Table 4: Pathway and gene ontology analysis for select phenotypes and envionmental factors showing GxE interactions.

Phenotype Gene ontology terms Pathways

obesity phenotypes

BP: fat cell differentiation, regulation of lipid metabolic process, triglyceride metabolic 
process, response to insulin stimulus, regulation of appetite, regulation of response 
to food, positive regulation of fatty acid oxidation, regulation of cholesterol transport, 
ovulation

PPAR signaling, adipocytokine signaling, 
mitochondrial uncoupling

MF: interleukin-6 receptor binding
CC: none

BMI
BP: positive regulation of fatty acid metabolic process, triglyceride metabolic process, 
response to insulin stimulus, regulation of fat cell differentiation, regulation of lipid 
metabolic process, regulation of gluconeogenesis, fatty acid beta-oxidation

PPAR signaling, adipocytokine signaling

MF: carnitine O-palmitoyltransferase activity
CC: none

HDL-C

BP: reverse cholesterol transport, negative regulation of interleukin-1 beta production, 
regulation of intestinal cholesterol absorption, regulation of cholesterol storage, 
triglyceide-rich lipoprotein particle remodeling, HDL particle remodeling, cholesterol 
homeostasis, triglyceride homeostasis

PPAR signaling, chylomicron-mediated lipid 
transport, CETP-mediated lipid exchange: 
spherical HDL gains triacylglycerol

MF: cholesterol transporter activity, phosphatidylcholine-sterol O-acyltransferase 
activator activity, triglyceride lipase activity
CC: HDL particle, chylomicron, VLDL particle

triglycerides

BP: reverse cholesterol transport, lipoprotein metabolic process, triglyceride metabolic 
process, cholesterol homeostasis, triglyceride homeostasis, lipoprotein particle 
clearance, response to wounding, HDL particle remodeling, LDL particle remodeling, 
regulation of cholesterol transport, cholesterol metabolic process

PPAR signaling, chylomicron-mediated lipid 
transport, CETP-mediated lipid exchange: LDL 
gains cholesterol ester

MF: cholesterol transporter activity, lipoprotein receptor binding
CC: HDL particle, chylomicron, IDL particle, VLDL particle

cholesterol, total

BP: triglyceride-rich lipoprotein particle remodeling, HDL particle remodeling, CDC42 
protein signal transduction, cholesterol transport, cholesterol homeostasis, triglyceride 
homeostasis, positive regulation of cholesterol efflux, triglyceride metabolic process, 
regulation of lipoprotein lipase activity

PPAR signaling, chylomicron-mediated lipid 
transport

MF: HDL receptor binding, LDL receptor binding, cholesterol transporter activity
CC: HDL particle, chylomicron, IDL particle, VLDL particle

Environmental factor

physical activity

BP: plasma lipoprotein particle remodeling, regulation of inflammatory response, positive 
regulation of gluconeogenesis, brown fat cell differentiation, blood circulation, vascular 
process in circulatory system, regulation of blood vessel size, cholesterol homeostasis, 
regulation of cholesterol transport, reverse cholesterol transport, response to hypoxia, 
negative regulation of IL1B production

PPAR signaling, neuroactive ligand-receptor 
interaction, adrenoreceptors, chylomicron-
mediated lipid transport, CETP-mediated lipid 
exchange: spherical HDL gains triacylglycerol

MF: cholesterol transporter activity, HDL receptor binding, apolipoprotein receptor 
binding, beta-adrenergic receptor activity
CC: spherical HDL particle

dietary fat

BP: lipid homeostasis, triglyceride homeostasis, reverse cholesterol transport, 
triglyceride metabolic process, positive regulation of fatty acid metabolic process, 
negative regulation of macrophage derived foam cell differentiation, cell cycle arrest, 
VLDL particle remodeling, HDL particle remodeling

PPAR signaling, lipoprotein metabolism

MF: triglyceride binding
CC: HDL particle, chylomicron, VLDL particle

dietary saturated fat

BP: reverse chlolesterol transport, cholesterol efflux, lipoprotein particle clearance, 
cholesterol homeostasis, triglyceride homeostasis, regulation of cholesterol transport, 
regulation of cholesterol storage, negative regulation of macrophage derived foam 
cell differentiation, triglyceride mobilization, VLDL particle remodeling, LDL particle 
remodeling, HDL particle remodeling, plasma lipoprotein particle assembly, lipid 
localization

PPAR signaling, adipocytokine signaling, 
chylomicron-mediated lipid transport, CET-
mediated lipid exchange: LDL gains cholesterol 
ester

MF: HDL receptor binding, cholesterol transporter activity
CC: HDL particle, chylomicron, IDL particle, VLDL particle

BP: biological process
MF: molecular function
CC: cellular component
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PPARGC1A SNP rs8192678 [28,30] and rs1800849 of UCP3 both with 
obesity and physical activity [31,32]. Although different in composition, 
two different low-calorie diets gave conflicting risk alleles with FABP2 
SNP rs1799883 for glucose measures [33,34] as did CETP variant 
rs708272 with coronary heart disease and alcohol consumption [35,36].

Replicated lack of interaction

Repeated observations of a lack of GxE interaction can also be 
extracted from this database. It has been reported twice that APOB 
SNP rs1042031 shows no interaction with dietary cholesterol on 
LDL-C levels [21,37]. Two studies showed a lack of GxE interaction 
for obesity and physical activity involving MC4R variant rs17782313 
[38,39]. Lastly, the APOE and CETP genes offer several instances where 
GxE interactions were not replicated in some populations where such 
an interaction was examined (Table 1 provided as supplementary 
file). Overall, tests for GxE interaction that fail in some but not other 
studies, or in all studies for which we could find information to that 
effect, provide a means to focus statistical analysis in a new study or to 
investigate important differences between populations.

GxE genes found in important nutrigenomics datasets

Recently, nutrigenomics datasets have detailed both the PPARA and 
PPARG networks, as well as described genes differentially expressed 
after consumption of either phenol-rich (extra virgin) olive oil or a 

mixture of compounds with known or proposed anti-inflammation 
properties (AIDM) [40-43]. This allows asking which genes contain 
polymorphisms associating with metabolic syndrome traits in a 
manner modified by environmental factors and which phenotypes 
and environmental factors are most often found in the interactions 
involving those shared genes. In other words, we can begin to identify 
the central players, in terms of phenotypes and environmental factors, 
which are subject to allele-specific sensitivity to diet, exercise, or other 
environmental factors within each of these four gene networks. For 
example, the AIDM regimen was proposed to exert anti-atherogenic 
effects by reducing inflammation. Integration with our GxE database 
shows that certain AIDM genes tend to modulate allele-specific effects 
on HDL-C, LDL-C and total cholesterol in a manner influenced by 
dietary MUFA. Epidemiological evidence shows that olive oil and the 
Mediterranean diet of which it is a central component are enriched 
in MUFA, and importantly that these exert anti-inflammatory effects 
[43,44], but this may be confounded by other olive oil components like 
polyphenolics, which are also anti-inflammatory. A second notable 
result of this comparison is the finding that 28 of 224 PPARA network 
genes [41] show significant allele-specific interaction(s) in the GxE 
database. This is a 26-fold enrichment given a genome size of 22000 
genes and 87 identified GxE genes. Comparison of the four datasets 
to the GxE database, including highly represented phenotypes and 
environmental factors of the shared genes, is given in Table 6.

Table 5: Gene-environment interactions replicated in other populations.

*this result was not observed in two Spanish studies [20398902, 20581105]
NR = not reported

Gene SNP Risk allele Phenotype Environmental 
factor

Condition of 
environmental factor Note PubMed 

ID
APOA2 rs5082 C BMI SFA high replicated in both sexes in three populations 19901143

APOE rs429358, 
rs7412 E2 HDL-C physical activity active in Spanish males 11474482

high intesity in Swiss males 11788473
CETP* rs708272 T HDL-C alcohol 15-30g/day in American males 18063597

any amount in Chinese males 18835593
CETP rs1532624 NR HDL-C physical activity NR reported in three populations 20066028
LIPC rs1800588 C HDL-C total fat less than 30% total energy American 12403660

less than 30% total energy Indian in Singapore 14608050
less than 33.2% total 
energy

in African American females, but not in African 
American men or in American Whites 17157861

rs1800588 T triglycerides total fat greater than 30% of total 
energy

3 populations of Singapore: Malay, Indian, 
Chinese 14608050

T triglyceride:HDL-C 
ratio total fat greater than 22% 3 populations of Singapore: Malay, Indian, 

Chinese 14608050

PLIN1 rs1052700 T insulin resistance 
(HOMA-IR) SFA:CHO ratio greater than 0.19 2 populations of Singapore females: Malay, 

Chinese 16732014

PLIN1 rs894160 A insulin resistance 
(HOMA-IR) SFA:CHO ratio greater than 0.19 3 populations of Singapore females: Malay, 

Indian, Chinese 16732014

PPARG rs1801282 G insulin, fasting PUFA:SFA ratio low UK population, both sexes 14681835
C greater than 0.66 UK population, both sexes 11246892
C BMI total fat high found in both sexes from Quebec, Canada 12630956
C found in American females 14506127

SLC2A2 rs5400 NR cholesterol, total physical activity NR reported in two populations 20066028
SLC2A2 rs5400 NR cholesterol, total diet NR reported in two populations 20066028

Table 6: Comparison of four nutrigenomics gene sets to the GxE database.
n = number of genes in the respective gene set

Gene set PPARA network PPARG network AIDM Olive oil response
n 224 252 422 103

shared genes

ACSL1, ACSL5, ANGPTL4, APOA1, APOA2, 
APOA5, APOC3, CD36, CPT1A, CPT1B, 
CYP3A5, FABP2, FADS1, IL1B, IL6, IL6R, 
LEPR, LIPC, LIPE, LIPG, LPL, MTTP, 
NFKB1, NR1H3, PLIN1, TNF, UCP2, UCP3

ACSL1, CD36, EDNRA, 
FHL1, LIPE, LPL, NR1H3, 
PLIN1, PPARG, UCP2

ADIPOQ, APOA1, APOC3, 
CETP, F7 CDKN2A, IL1B, IL6

fold enrichment 26.7 10.0 3.0 7.4
highly represented phenotypes HDL-C, triglyceride HDL-C, HOMA-IR, BMI HDL-C, LDL-C, total cholesterol ND
highly represented 
environmental factors dietary fat, high-fat challenge, PUFA, SFA physical activity, dietary fat, 

SFA, fish oil MUFA ND
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Discussion
In order to better and more fully comprehend the interplay between 

genome, environment and measures of disease or health status, we 
sought to populate a database with published gene-environment 
interactions that pertain to blood lipids, obesity and affiliated diseases 
such as atherosclerosis, heart disease and diabetes mellitus (Table 1 
provided as supplementary file). In essence, these are phenotypes under 
the umbrella of metabolic syndrome. The database described here 
contains 554 such examples involving diet, physical activity, alcohol 
and tobacco use, as well as other environmental factors in a manner 
altering the genotype-phenotype relationship with clinical measures of 
metabolic syndrome. Furthermore, growing interest in the use of allele-
specific pathway fluxes and differential networks [45] both necessitate 
that an extensive cataloging of gene-environment interactions be 
undertaken. Such pathway fluxes and network associations that 
depend on or are sensitive to genetic variation are already described 
with respect to therapeutic regimens, particularly anti-oncogenic 
[46,47], and the number of these examples is increasing. Here, we 
describe collecting gene-environment interaction data from published 
sources and cataloging that information. We also provide a few short 
examples of mining those data which serve to illustrate the utility of 
such a database. The PPAR signaling pathway is highly represented 
by genes containing variants that show association with an array of 
phenotypes and environmental factors. Cholesterol and triglyceride 
homeostasis are also biological functions common to many phenotypes 
and environmental factors (Table 4). Comparison with some key 
nutrigenomics data indicates that genes within a PPARA network tend 
to be sensitive to dietary fat, PPARG network genes tend to be sensitive 
to physical activity, and many MUFA-sensitive genes are shared with 
those showing altered expression in response to administration of 
an anti-inflammation diet mix (Table 6). In addition, we also note a 
number of GxE interactions observed in more than one study (Table 5).

MicroRNA-based regulation of cholesterol metabolism and 
transport genes is an emerging and intriguing development. Control 
of cholesterol homeostasis via SREBP1 and SREBP2, sterol regulatory 
element-binding proteins which function as transcriptional regulators, 
in concert with intron-encoded microRNA MIRN33 occurs by acting 
upon cholesterol transporter ABCA1 [48,49]. Interestingly, the results 
of our g:Profiler analysis, which provides data on enrichment of 
putative microRNA-mRNA interactions, indicate that MIRN768, or 
SNORD71, is enriched in genes containing SNPs constituting GxE 
interactions involving total fat and saturated fat in the diet. SNORD71 
was upregulated during adipocyte differentiation and more highly 
expressed in both pre-adipocytes and subcutaneous fat tissue from 
obese over lean individuals [50]. Thus, mining the GxE data can 
generate new hypotheses and allows us to speculate that SNORD71 is 
involved in the allele-specific response to dietary fat.

In order to maximize the potential of applying “omics” technologies 
to nutrition research so as to encourage optimal health in the 
individual, a federated and openly available database, termed the 
nutritional phenotype database (dbNP), has been established [51]. 
Two keys to this effort are collection of data types that are specific and 
important to nutrition research and offering standard annotation of the 
included data entries. With regard to genetics, those data will reside 
within the “analytical technology” segment of the dbNP, along with 
data on biological information, such as food intake, transcriptome, 
metabolome, proteome, imaging and biomarkers. A significant aspect 
of this genetics component is the gene by diet or gene by environment 
interaction. With this in mind, the GxE data described here have been 
incorporated into dbNP.

A GxE database can serve as a launching pad to begin experiments 
in genetics, population genetics, molecular biology, or computational 
analysis (e.g., motif analysis) in order to uncover the mechanisms by 
which the environment is sensed by the genome or alters the response 
at the level of the cell, organ or organism. Such a perspective is being 
applied to the genetics of cancer and metabolic diseases as we found 
that these are by far the two broad disease categories with the greatest 
number of publications describing gene-environment interactions. 
There are also studies of the impact of socio-economic status as an 
environmental variable on access to health care, health outcomes 
and achievement in school. Lastly, there are also some studies of the 
influence of environment on cognitive function, mainly dominated by 
the role of APOE.

The limitations of this database deserve discussion. First, the 
environmental factors collected in the current database may not be 
comprehensive in terms of broader areas in sociology (e.g., psychosocial 
factors and social environment) [52] and environmental science (e.g., 
pollution). However, we believe that this database contains most of the 
important GxE interactions pertaining to metabolic syndrome and 
related traits. Second, some interactions are biologically significant, 
but they may not be statistically significant [53]. Although the primary 
interest of current research has focused on statistical interactions, 
more effort needs be applied to biological interactions. Third, the 
data included here all emanate from candidate gene studies. The 
case of CYP1A2 variants, caffeine intake and myocardial infarction, 
where an association was not observed until dual stratification of 
genotype and caffeine intake was considered [54], illustrates a potential 
shortcoming of such studies, but does suggest that still many other GxE 
interactions may be described with careful incorporation of accurate 
data on environmental exposures. Fourth, the assessment methods 
of environmental exposures and outcomes are often different in each 
study, and so some data terms may include a mixture of data with 
different levels of confidence. An example of this is a value based on self-
report compared to a direct measurement. In addition, small sample 
sizes may contribute to false positive gene-environment interactions. 
Last, with regard to the nature of epidemiological studies, different 
levels of evidence generated from diverse study designs, quality of the 
study, statistical analyses, and sample size have been combined when 
cataloging the studies.

Despite some weaknesses, this database does provide unique 
strengths, including indication of risk alleles in each condition of 
environmental factors; study populations sampled, and even examples 
of lack of interaction. This information is important for investigators 
to extract evidence and generate a new hypothesis and can offer 
corroboration of claims asserted by genetic tests. By collecting and 
mining published results, we believe that such data can serve as a 
useful resource to explore a research interest with a broader scope (e.g., 
across genes, environmental factors, or phenotypes) as we demonstrate 
in this report. This database should be used as a tool during analysis 
of genotype association data. Researchers will be able to query this 
database prior to statistical analysis as a means to focus those analyses 
to a particular gene, phenotype or environmental factor. Doing so will 
reduce the number of multiple comparisons and lead to more robust 
significance values. In conclusion, by making this database available 
and integrating it into the broader dbNP, it is our hope that interested 
researchers will be able to more easily pursue questions of how the 
human genome senses and responds to lifestyle choices. Furthermore 
and perhaps most importantly, this database can be one of many items 
to be implemented in research questions of health in the context of 
nutrition.
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