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ABSTRACT
Objective: We present a country-specific, modified Susceptible, Exposed, Infectious, and Removed (SEIR) model 
of SARS-CoV-2 transmission aiming to provide accurate prediction of COVID-19 cases to optimize clinical trial 
recruitment, inform mitigation strategies, and facilitate rapid medication development.

Methods: Epidemiological data from more than 170 countries were obtained from the Johns Hopkins University 
COVID-19 Dashboard. Intercountry differences in initial exposure, cultural/environmental factors, and stringency 
of mitigation strategies were incorporated. Asymptomatic patients and “super-spreaders” were also factored into our 
model. Simulations were limited to a period of 2 months considering that the effects of certain parameters (e.g. 
seasonality of virus transmission, wearing of face masks, and deployment of vaccines) were sufficiently ambiguous to 
limit confidence in a longer simulation period.

Results: Using these data, our model estimated 71.5% of cases as asymptomatic. Without mitigation, a mean 
maximum infection rate of 1.08 cases/day (Intercountry range, 0.68–1.65) was estimated in symptomatic cases. 
From here, symptomatic and asymptomatic people were estimated to infect 3.39 and 7.71 other people, respectively, 
suggesting that asymptomatic persons could be responsible for 85% of new infections. An estimated 10.6% of cases 
were super-spreaders with a 2.86-fold higher transmission rate than average. Mitigation strategies with a stringency 
index value of ≥ 45% were estimated to be required to reduce the reproduction ratio below 1 for symptomatic cases. 
Simulated cases over the next 2 months differed between countries, with certain countries (eg, Argentina and Japan) 
likely to experience an accelerated accumulation of cases. 

Conclusion: Together, results from our model can guide the distribution of diagnostic tests, impact clinical trial 
development, support medication development and distribution, and inform mitigation strategies to reduce 
COVID-19 spread. The large contribution of asymptomatic cases in the transmission also suggests that measures 
such as wearing masks, social distancing, testing, and vaccination deployment are foundational to slowing the spread 
of COVID-19.

Keywords: Coronavirus; COVID-19; Infectious disease; Epidemiology; Mathematical modeling; Pandemic; SEIR 
model

INTRODUCTION

As of January 31, 2021, the coronavirus disease 2019 (COVID-19) 
first reported in Wuhan, China, in December 2019 had resulted 
in more than 100 million confirmed cases globally, with infections 
continuing to spread [1]. This unprecedented pandemic has 
presented unique challenges for medical professionals, biomedical 
researchers, governmental and nongovernmental organizations, 
and members of the pharmaceutical industry, each of whom has 
shown an unwavering commitment to patient care and support 
[2,3]. Specifically, the pharmaceutical industry has increased efforts 
to research, develop, register, and make available solutions ranging 

from antiviral agents to therapies for complications of COVID-19 
in record speed while also carefully managing supply lines and 
manufacturing sites for existing medications in high demand for 
the general treatment of patients with COVID-19 [4]. 

To support clinical trial recruitment, medication development, 
medication supply, and distribution strategies, it is vital for the 
pharmaceutical industry, national and multinational organizations, 
governments, and nongovernmental organizations to understand 
the epidemiological concept of virus transmission, the patterns 
and implications of Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) viral spread, and the impact of 
different Non Pharmaceutical Interventions (NPIs) proposed as 
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mitigation strategies on local, national, and international levels 
[5,6]. Specifically, the ability to accurately project the number of 
expected cases in each country over time could assist in selecting 
clinical trial sites with good potential for rapid patient recruitment 
and medication development. Furthermore, this information 
could guide the fair and equitable distribution of diagnostic tests, 
treatment options, and vaccines.

The basic reproduction number (R0) for SARS-CoV-2 infection 
before the implementation of mitigation strategies is estimated to 
range from approximately 2.0 to 3.6 [7-12], with a high risk for 
transmission because of high numbers of asymptomatic subjects 
and emerging clusters [13-15]. Transmission models based on real-
world epidemiological data are important tools for understanding 
the dynamics of SARS-CoV-2 transmission and can be useful to 
guide mitigation strategies and policy decisions designed to assist 
patients with COVID-19 and reduce disease spread [9,16-21]. 

Mitigation strategies with NPIs have been effective in helping to 
curb the spread of SARS-CoV-2 and in reducing the Reproduction 
Ratio (RR) [12,22], though these are likely hindered by the relatively 
high proportion of asymptomatic cases of COVID-19 [15,23,24]. 
Although the magnitude of infectiousness in asymptomatic patients 
(ie, when the infector has no symptoms throughout the course 
of the disease) is difficult to quantify, these cases are expected to 
heavily impact transmission dynamics [25,26]. Indeed, non–peer-
reviewed mathematical modeling studies highlight the importance 
of accounting for asymptomatic persons when describing 
transmission dynamics [27,28]. As such, this analysis could support 
public health considerations and suggests, by quantifying their 
contributions, that asymptomatic persons may be major drivers of 
the COVID-19 pandemic. Unless asymptomatic persons happen 
to get tested, they may continue to socialize and work during the 
entire infectious period, in contrast to situations in which the vast 
majority of people are symptomatic and can be identified without 
testing and can also rapidly quarantine. 

Although some components of viral transmission (eg, proportions 
of asymptomatic and “super-spreader” cases, duration of latency, 
presymptomatic and post symptomatic infectious periods, and 
duration of infectiousness) are likely to be consistent across 
countries, other components affecting patterns of viral spread are 
expected to differ between countries, further complicating potential 
models of viral transmission. In addition, cases of COVID-19 are 
not uniformly distributed within a country; rather, they are located 
primarily in “hotspots” of various sizes that, without mitigation, 
merge and grow, potentially including the entire population [29-
31]. A proportion of super-spreaders have also been reported in 
the COVID-19 population, and a limitation of classical models 
is the use of mean parameter values across the population even 
though different persons may have different disease characteristics 
(eg, viral load, infection rate, duration of symptoms). Additional 
proposed modeling approaches could account for super-spreader 
profiles by differentiating this type of case and estimating specific 
transmission characteristics of super-spreaders.

Although several epidemiological transmission models exist, our 
model is the first to clearly quantify the effect of NPIs on COVID-19 
transmission in individual countries while also accounting for 
the expected contribution of asymptomatic cases to COVID-19 
transmission and distinguishing potential super-spreaders. Given 
that these components are crucial for robust, country-specific 
projections, we aimed to implement a modified Susceptible, 
Exposed, Infectious, Removed (SEIR) model of SARS-CoV-2 

transmission incorporating those components, with the objectives 
of supporting the development of medications, optimizing 
clinical trial recruitment, and facilitating a fast-to-market strategy 
for medications that have the potential to reduce symptoms and 
complications in patients with COVID-19.

METHODS

Data sources

Real-world epidemiological data from 175 countries were obtained 
from the Johns Hopkins University COVID-19 Center for Systems 
Science and Engineering COVID-19 Dashboard on January 31, 
2021 [1]. Included were data from national and state government 
health departments and local media reports. In addition, country-
level mitigation data from the Coronavirus Government Response 
Tracker, collected and validated by Oxford University [32], were 
used to investigate the potential mitigation impact of NPIs on 
the transmission of SARS-CoV-2, with the objective of building 
country-specific quantitative relationships between NPIs and 
transmission model parameters.

Model development

Development of the initial modified SEIR model was based on the 
susceptible population (S), exposed patients not yet infectious (E), 
infected infectious patients who are asymptomatic (Ia), infected 
infectious patients (I), recovered patients (R), and death (D) (Figure 
1). Additional components, detailed below, were added to account 
for reporting rates of individual countries, incorporate hotspots 
and emerging clusters, include asymptomatic and super-spreader 
profiles, and evaluate the impact of various mitigation strategies 
on transmission rate. The model was used to estimate the expected 
total number of symptomatic and asymptomatic cases regardless of 
whether they were reported. 

To account for regional differences in initial exposure, we started 
with a set date of January 1, 2020, and estimated a country-specific 
lag time to the first infected case in each country. To forecast 
accurately, it was essential to properly incorporate the population 
at risk for infection in each country and to avoid overestimating or 
underestimating the transmission rate because this could impact 
the model’s outcomes and ultimately misinform subsequent 
decisions regarding medication development and deployment. To 
account for non-uniform geographic distribution of cases within a 
country, the size of a susceptible population was initially estimated 
by mimicking the size and distribution of COVID-19 hotspots and 
was inflated every 15 days using an estimation of the inflation 
parameter for that country. 

Figure 1: Initial COVID-19 transmission model. Note: S, susceptible 
population; E, exposed patients not yet infectious; Ia, infected infectious 
patients who are asymptomatic; I, infected infectious patients; R, 
recovered; D, death. λ, median incubation period; α, start of infectious 
period; δ, duration of infectious period.
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Between-country variability

Because our objective was to describe and forecast the number of 
cases in each country, we had to consider which parameters would 
be similar across countries (virus specific) and which parameters 
would vary between countries (country specific). Therefore, 
we included a certain amount of intercountry variability in our 
model to account for country-specific factors, among them 
potential differences in transmission resulting from cultural and 
environmental differences and differences in the way cases were 
reported. Similarly, the impact of mitigation strategies on the rate 
of transmission was considered country specific.

Simulations

Our model was used to project the mid- to long-term expected 
number of cases in each country according to different scenarios. 
We fixed the stringency index at the latest reported value for each 
country at the cut-off date (January 31, 2021) because it appeared to 
reflect the maximum number of sustainable mitigations countries 
could implement without jeopardizing economic factors. However, 
different scenarios could account for specific viral spread according 
to the size of the target population (to mimic the occurrence of 
new clusters). We defined two possible scenarios. In scenario 1, 
which corresponds to low viral spread, the susceptible population 
was increased every 15 days using country-specific means of the 
inflation parameter values estimated during the period with strong 
mitigations, such as during the lockdown period (mid-March 
to mid-May). Scenario 2 corresponds to high viral spread with a 
biweekly increase of the susceptible population implemented using 
country-specific means of the inflation parameter values estimated 
over the recent months with no travel restrictions (mid-September 
to mid-January).

We limited the simulation period to 2 months because we 
considered the effects of certain parameters (eg, seasonality of virus 
transmission, effects of wearing face masks, test strategy, vaccine 
deployment, and new viral strains) sufficiently ambiguous to limit 
confidence in a longer simulation period.

The asymptomatic population was included in our SEIR model 
by estimating the proportion of asymptomatic cases and assuming 
a daily infection rate half that of symptomatic cases. This rate 
assumption was based on reports of reduced viral load in 
asymptomatic persons, a potential surrogate marker of the infection 
rate [23,33,34]. The infectious period of asymptomatic cases was 
fixed at 10 days based on the observed viral load time course 
[23,33]. These characteristics of asymptomatic cases were then 
further refined using sensitivity analysis. The super-spreaders were 
accounted for in our SEIR model in the same way asymptomatic 
cases were. However, both the proportion of super-spreaders in 
the population and the increase in their infection rate could be 
estimated in our model. 

The effect of mitigation strategies on the RR (number of new cases 
per subject during the entire infectious period) was evaluated using 
the Oxford COVID-19 Government Response Tracker [32], which 
calculates a stringency index to score the strength of mitigations. 
This tool systematically collects country-specific policy responses 
to COVID-19, including indicators such as school closures and 
travel restrictions (Figure 2). The value of an index on any given 
day is calculated as the average of nine sub-indices pertaining to 
individual policy indicators assigned a value between 0 and 100, 
where the stronger the mitigation, the higher the stringency index. 
In our model, the relationship between the stringency index 
and the daily infection rate was characterized using an Emax 
model from which a maximum infection rate could be estimated 
considering no mitigation (stringency index of 0), and then a 
decrease in the infection rate could be estimated depending on the 
stringency index, the magnitude of the decrease, and the stringency 
index value that would correspond to 50% of the decrease. We 
also assumed a similar relationship between the stringency index 
and the daily infection rate for symptomatic and asymptomatic 
cases, considering that different NPIs constituting the stringency 
index (eg, school or public transport closing) would impact both 
infection rates. The policy most specific to symptomatic cases is 
to quarantine starting soon after the emergence of symptoms; we 
included this in the model as directly impacting the infectious 
period of symptomatic cases only.

Figure 2: Stringency index for mitigation strength scoring. Note: Cj, ordinal value of the indicator; Gj, general value; Ij, subindex; Nj, 
maximum value of the indicator.
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RESULTS

Tailored model for understanding virus spread 
characteristics per country

Parameter estimates are shown in Table 1. Across countries, our 
model estimated that it takes an average of 2.59 days after a person 
contracts the virus to become infectious and another 4.28 days 
before the onset of symptoms, resulting in an incubation period 
of almost 7 days. Estimates indicate that 71.6% of all cases are 
asymptomatic and 10.6% of all cases are super-spreaders, with a 
transmission rate 2.86-fold higher than average. 

The stringency index, derived from the Oxford COVID-19 
Government Response Tracker [32], was used for scoring initiated 
mitigations. In our model, the maximum infection rate in the 
absence of specific policies (other than self-imposed quarantine in 
response to symptoms) was estimated as 1.08 cases per subject per 
day of symptoms, with a range between 0.689 and 1.65, depending 
on the country. Assuming a reduction in the infection rate of 50% 
for presymptomatic and asymptomatic cases, the average RR was 
computed as shown in Table 2. Based on this, without any mitigation 
strategy in place, a symptomatic person is predicted to infect a total 
of 3.4 people – approximately 2.3 during the presymptomatic 
period and 1.1 during the symptomatic period. An asymptomatic 
person is predicted to infect 7.7 people in total. After accounting 
for the proportion of asymptomatic cases estimated by the model, 
it can be derived that asymptomatic persons are responsible for 
85% of new infections. In addition, the relationship between the 
stringency index and the daily infection rate could be estimated 
within the model; an example based on global-level data is shown 
in Figure 3. A stringency index value of 34.9% was estimated as 
required to result in a 50% decrease in daily infection rate, with 
a range between 23.2% and 65.9%, depending on the country. 

OPEN ACCESS Freely available online

Therefore, the stringency index must exceed 45% to result in the 
RR in symptomatic cases dropping below 1 (Figure 3).

Most of the parameters were well estimated. Data fitting to 
describe the observed cumulative cases are shown in Figure 4 for 
representative countries. Between-country differences observed 
in cumulative cases over time were well captured with the model 
and could be explained by changes in the stringency index and the 
potential geographic spread of the virus, which are the two 
time-dependent variables in the model  [33,34]. 

Supporting questions around clinical development 
and future supply

The simulation was also able to illustrate the projection of expected 
cases for the next 2 months (Figure 5). These projections may 
help inform clinical operation considerations with regard to site 
locations for new COVID-19 clinical trials and allow companies to 
anticipate future demands for medications and prioritize supplies 
in territories with the highest current or future needs. For each 
of the scenarios tested, certain countries (such as Argentina and 
Japan) are likely to have more accelerated accumulations of cases 
than countries (such as the United Kingdom, Iran, and Indonesia) 
that expect only moderate increases, especially as strict mitigations/
lockdowns are put in place. Some countries, such as India and 
Brazil, appear “flat” with almost no new cases predicted. The 
ability to predict where this acceleration will occur may allow for a 
more appropriate selection of clinical trial sites for new COVID-19 
medications and may increase patient participation in these clinical 
trials. This, in turn, will ensure that medications that are safe and 
effective can be rapidly distributed to the patients who need them. 
Such simulation results, if regularly revised, could also allow for 
increased availability of medications where the need is likely to be 
high while identifying countries that may be less relevant targets.

Model parameter Description Value Precision, % Variability between countries, %
λ Time to becoming infectious after contracting virus, days 2.59 0.074 None

α Time to development of symptoms after becoming infectious, 
days

4.28 0.407 None

kq Time to starting quarantine after symptom onset, days 1 Fixed None
Pra Proportion of asymptomatic cases, % 71.6 0.048 None
Pss Proportion of super-spreaders, % 10.6 0.239 None
βss Transmission rate increase in super-spreaders 2.86 10.2 134

lagD Time to the first two infected persons, days 33.2 4.78 62.8
βMax Maximum infection rate 1.08 5.36 70.6
βmin Minimum daily infection rate 0.135 10.5 136

S50_pop
Stringency index needed to reach 50% of the maximum effect 

on the infection rate
34.9 6.1 79.9

Table 1: Population parameter estimates.

Table 2: Estimated RR of symptomatic and asymptomatic cases.

Symptomatic cases Asymptomatic cases
Days Daily infection rate New cases, n Days Daily infection rate New cases, n

Presymptomatic 4.28 0.54 2.31 4.28 0.54 2.31
Symptomatic 1 1.08 1.08 — — —

Asymptomatic — — — 10 0.54 45.4
Total RR — — 3.39 — — 7.71

A 50% reduction in the infection rate for presymptomatic and asymptomatic cases was assumed. Note: RR, reproduction ratio (number of new cases 
per subject during their entire infectious period).
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Figure 4: Data fitting for representative countries. Blue dots represent observed data; black lines represent model prediction.

Figure 3: Relationship between the stringency index and the reproduction ratio.

OPEN ACCESS Freely available online
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DISCUSSION

The objective of this analysis was to tailor a transmission model 
to address the current issue faced by pharmaceutical companies, 
governments, and multinational organizations: how to best identify 
countries that can facilitate faster and more efficient development 
of potential COVID-19 therapies, with the ultimate goal of getting 
potentially life-saving medications to those in need. The model 
presented here has the potential to help support the selection of 
clinical trial sites, the initiation of mitigation strategies, and the 
distribution of COVID-19 diagnostics, treatments, and vaccines.

 This modeling study of COVID-19 transmission, based on 
total global cases reported as of January 31, 2021, demonstrated 
disease model parameters consistent with those that have been 
reported in the literature, such as an incubation period of 7 days 
[35-37]. In addition, our model was able to estimate similar rates 
of asymptomatic cases and proportions of super-spreaders across 
all countries. The estimated proportion of asymptomatic cases 
reported here (71.6%) appears somewhat higher than reported 
in the literature [15,23,38-40], perhaps because of the strong 
correlation between the proportion of asymptomatic cases and 
the relatively reduced transmission rate in the asymptomatic 
population (estimated at half that of symptomatic cases in our 
model). Sensitivity analyses around this reduced transmission 
rate in asymptomatic persons could impact the estimation of 
the proportion of asymptomatic cases but should not impact 
any other results or simulation outcomes. A better assessment 
of the reduced transmission rate in asymptomatic persons could 

potentially provide a proportion of asymptomatic cases closer to 
the other reported values. Another alternative could be to fix the 
proportion of asymptomatic cases in order to estimate the expected 
reduction of transmission in such a population. In addition, the 
estimated proportion of super-spreaders identified here (almost 
10%) is similar to the expected proportion identified in other 
studies [41]. According to their daily infection rate, super-spreaders 
are expected to infect 2.86 times the number of people average 
spreaders infect. In the absence of mitigation, this would lead 
to one symptomatic super-spreader infecting approximately 9.7 
people and one asymptomatic super-spreader infecting almost 22 
people, highlighting the large contribution this small proportion 
of people can make to virus transmission, which is consistent with 
previous reports [42]. Furthermore, our model confirms that most 
new cases result from asymptomatic transmission, either during the 
presymptomatic period (by persons who later become symptomatic) 
or by asymptomatic persons [27,28,43]. In general, these data 
highlight the importance of incorporating asymptomatic persons 
in transmission models to obtain more accurate projections of 
future cases.

To better describe country-specific data, identify which countries 
are likely to experience large numbers of emerging cases, and help 
inform decisions surrounding future clinical trial locations, our 
strategy incorporated intercountry variability into the model. This 
variability was considered for parameters that may differ, depending 
on social, cultural, and societal factors (such as the rate of infection 
and the strength of NPIs), allowing for appropriate country-specific 
forecasts. These parameters could indirectly account for the 

Figure 5: Simulation results by country. Black dots indicate observed data; blue shaded areas indicate simulated time course for each scenario 
with low viral spreading (eg, lockdown continues); red shaded areas indicate simulated time course for each scenario with high viral spreading 
(eg, winter conditions); gray rectangles highlight the forecasted period.
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number of contacts each person may have (eg, household context, 
place of work) and the level of adherence to NPIs, with an effect 
that could differ between countries despite a similar stringency 
index. Notably, the amplitude of the intercountry variability was 
large, suggesting considerable heterogeneity between countries. 

With this model, we were able to simulate the expected number 
of COVID-19 cases over time using different scenarios of 
mitigation. Our model can be used to project the future profile 
of the pandemic based on current data to investigate the effect 
of mitigation specific to each country. It also allows for the 
simulation of potential new clusters though a country-specific 
stringency index (ie, last stringency index carried forward in the 
simulation), accounting for an increase in the target population 
over time based on country-level estimates. Together these data can 
provide important information for the identification of promising 
new sites for COVID-19 clinical trials and may help support global 
supply chain networks by identifying potential supply-and-demand 
challenges arising in different countries during the pandemic.

Our model does have certain limitations. First, it was based on 
observed infected cases. Given that some patients are asymptomatic 
or show only mild symptoms, however, it is likely that the true 
number of cases is higher than captured here. In addition, changes 
in the reporting rate because of local testing policies and potential 
seasonality differences are not incorporated or investigated in this 
model. As data on these factors are gathered over time, it may 
be possible to integrate them into our model to support future 
forecasting. Nevertheless, it is worth noting that this model has 
remained relatively stable since September 2020, with biweekly 
updates only minimally impacting the forecasting results. Finally, 
the model does not account for the availability of a vaccine. 
When an efficacious vaccine is widely available, our model must 
be adjusted to account for the reduced size of the susceptible 
population and the limited possibility of transmission. As with 
all predictive models, additional data on each of these factors 
will improve our understanding of SARS-CoV-2 transmission; 
integrating these data into our model can support more accurate 
forecasting in the future. 

CONCLUSION

In summary, our model can support and inform the development of 
clinical trials and the supply and distribution of future medications. 
By updating and adjusting the model as new data are received, 
our model could potentially inform longer term considerations as 
well. Finally, our model also represents a possible framework for 
describing transmission characteristics of other diseases, estimating 
viral spread, and refining country-specific estimates of disease 
impact.  
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