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Introduction
MicroRNAs (miRNAs) are endogenous ~ 22 nucleotides (nt)-long 

RNAs that play important regulatory roles in animals and plants by 
targeting messenger RNAs (mRNAs), for cleavage or translational 
repression [1]. Although the first miRNAs were identified in 1993 [2], 
they escaped notice until relatively recently.

MiRNAs comprise one of the most abundant classes of gene 
regulatory molecules in multicellular organisms, and influence the 
output of many protein-coding genes [1].

The multitude of small non-coding RNAs (ncRNAs) found in 
plants (siRNAs, miRNAs, tasiRNAs) complicates the identification of 
miRNAs. Like animal miRNAs, plant miRNAs (1) are endogenously 
expressed from one arm of a foldback precursor, (2) are generally 
conserved in evolution, and (3) come from regions of the genome 
distinct from previously annotated genes [2].

MiRNA precursors (pre-miRNAs) in plants are much more 
variable in size than those of animals, ranging from around 60 to a 
few hundred nucleotides, whereas those in animals are typically 70-nt-
long [3], and can have a much more complicated secondary structure, 
including several bulges. Plant pre-miRNAs are fully processed in 
the nucleus by protein complexes, and the mature miRNA is then 
exported to the cytoplasm, where it is incorporated in effector 
molecular machinery. Plant miRNAs frequently cleave and thus induce 
immediate degradation of target mRNAs, with target sites, unlike with 
animal miRNAs, often being located in the coding region, but can also 
be found in non-coding portions of the gene such as the 3’-UTR, or 
even the 5’-UTR [2].

Several miRNA discovery methods have been developed specifically 
for plant genomes [3], but most either rely heavily on a conservation 
filter, or they are target-centered approaches, being dependent on 
their ability to confidently identify bonafide miRNA targets. Methods 
depending on the sieve of evolutionary conservation require a direct 

comparison with a sequenced genome of a phylogenetically close 
species; otherwise they are limited to the identification of miRNAs 
that are extensively conserved across evolution, hampering the 
discovery of species-specific or genus-specific regulators. More 
recently, an approach that does not rely on a conservation sieve or the 
identification of targets–CRAVELA–was proposed [4,5]. Although 
originally developed for miRNA discovery in animals, the principles 
it uses are also applicable to plants, as we demonstrate in this paper. 
The number of candidates CRAVELA identifies is still too numerous to 
systematically submit for experimental verification; so additional filters 
need to be introduced.

The CRAVELA processing pipeline is summarized in Figure 1. The 
primary analysis relies on major characteristics of miRNA precursors: 
the intrinsic features of pre-miRNAs (such as stability and robustness), 
the typical secondary structure, based on the structural characteristics 
of a set of seed precursors, usually chosen from among previously 
known miRNAs of the given species or taken from homologs of related 
species. The authors of CRAVELA also propose a third type of analysis 
referred to as transcriptional potential, since the aim of the tool is to 
identify genomic sequences with miRNA-like features, but which are 
not necessarily transcribed. Here, we purport to provide a method to 
perform this additional analysis. We tested our approach by obtaining 
precursor candidates from Eucalyptus spp. and subsequently using an 
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Abstract
MicroRNAs are endogenous molecules that act by silencing targeted messenger RNAs, and which have an 

important regulatory role in many physiological processes in both plants and animals. Here, we propose a pipeline 
that makes use of CRAVELA, a single-genome microRNA finding tool originally developed for microRNA discovery in 
animals, and an NGS data analysis algorithm that provides a novel scoring function to evaluate the expression profile 
of candidates, taking advantage of the expected relative abundance of RNA fragments originating from the mature 
sequence, compared to other portions of the microRNA precursor. This approach was tested in Eucalyptus spp. for 
which, despite their economic importance, no microRNAs have been documented. The outcome of our approach was 
a short list of candidates, including both conserved and non-conserved sequences. Experimental validation showed 
amplification in 6 out of 8 candidates chosen from the best-scoring non-conserved sequences.
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RNA-Seq dataset produced to study the process of wood formation. A 
total of 4 out of 5 top-scoring candidates identified using our approach 
were experimentally validated.

Methods
Overview

The work presented in this paper was developed in the context of 
the microEGo project, which aims to identify miRNAs involved in 
the regulation of the Eucalyptus globulus tension wood xylogenesis 
(wood formation). Genomic and transcriptomic data were available 
for miRNA finding. The global methodological process includes both 
in silico and “bench” approaches. Figure 2 provides an overview of 
the global methodology. The computational pipeline described in this 
paper corresponds to the in silico tasks represented by green boxes.

The small RNA-Seq (35bp, GA Analyzer, ILLUMINA) dataset 
was produced with libraries of xylem tissue collected from E. globulus 
specimens, a species very close to E. grandis, for which, unlike the 
former, a sequenced genome is available [6]. Sampling of seasonal 
wood was made with a population involving a total of 36 trees from 
three distinct, non-related genotypes (HD161, CN5 and G-70), 
kindly provided by RAIZ Institute (Portugal). Different samples were 
collected in each season, and for each condition and each clone, three 
biological replicates were performed. The reaction wood was obtained 
from three genotypes (GM2-58, GB3 and MB43), kindly provided by 
ALTRI Florestal, SA. A total of 36 trees were bent in 4 different time 
points and harvested along with the nine non-bent trees (controls). A 
total of three biological replicates were performed for each condition 
and each clone.

The small RNA-Seq raw data from E. globulus was subject to a 
sequence read clustering and quality assessment, based on a minimum 
number of reads. At this point, sequences with less than 5 reads or 
containing documented repeats were eliminated. The RFAM database 
[7], was also used to filter annotated ncRNAs. Knowing that the mature 
sequence of a miRNA has a length ranging between 19 and 26 nt, the 
dataset was trimmed, preserving only clustered reads with a length 
within the range. This procedure allowed for an aggressive reduction of 
the number of candidates, keeping only those with minimal guarantees 
of detectable expression of a putative mature sequence (first three 
stages of the procedure described in Figure 2, green box 1).

CRAVELA candidate identification

The input of CRAVELA was the genome of E. grandis, obtained 
from Phytozome [6] (version 7.0, annotation 1.0). The primary 
pipeline produces a ranked list of stable and robust candidates relying 
on the intrinsic measures [4]. The optimal cut-offs obtained with this 
procedure for other plants selected approximately the top 10% (data 
not shown). However, in order to obtain a conservative reduction of 
the candidate set, we preserved the top 25% (Figure 2, green box 2).

To obtain potential homologs to be used as seeds for the structural 
analysis [5], a bidirectional best hit (BBH) list was obtained using 
BLASTn (version 2.2.25), comparing the dataset of selected candidates 
with miRBase [8] entries (release 17), referring to the documented 
pre-miRNAs of Arabidopsis thaliana (thale cress), Vitis vinifera 
(common grape vine) and Populus trichocarpa (black cottonwood), 
which correspond to widely studied plants. A BBH consists of a pair 
of sequences (candidate and documented pre-miRNA), which are 
the best unidirectional BLASTn hit of each other. This procedure was 
repeated for each organism. In the case of candidates having a BBH 
with sequences originating from more than one organism, only the best 
scoring BBH was preserved.

Expression profile

The expression profile of a pre-miRNA candidate refers to the 
distribution of the number of reads overlapping at each position of 
the putative precursor. In order to obtain this value for each position, 
it is necessary to align the sequenced RNAs to a reference genome. 
Burrows-Wheeler Alignment Tool (BWA) [9] was chosen for this 
purpose due to its flexibility, for allowing insertions/deletions and 
exhibiting an overall good performance.

The authors of miRDeep [10], an NGS-based approach to miRNA 
identification, made the observation that transcriptomic data of a bona 
fide pre-miRNA, should provide an expression profile having more 
abundant reads in the portion corresponding to the mature sequence 
than in the remaining portions of the precursor hairpin, because 
the latter is a transient structure that is relatively short-lived when 
compared to the miRNA (Figure 3). 

MiRdeep evaluates candidates suggested by the NGS data alone, 
so it requires several other filters to control for noise. CRAVELA, 
on the other hand, produces a set of candidates which are already 

Figure 1: CRAVELA processing pipeline. The left-most module evaluates 
candidates in terms of stability and robustness criteria, the middle module 
performs structural analysis and the right-most module includes annotation 
filtering and data-specific strategies to assess the transcriptional potential.
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Figure 2: Pipeline developed for in silico identification of miRNAs.
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filtered following transcription-independent criteria. Inspired by the 
aforementioned observation, we propose a scoring method, which 
focuses on the expression signature of the putative precursor. The 
overall approach is illustrated in Figure 4, it summarizing the data 
analysis steps performed.

After obtaining the small RNA sequences, as described before, 
the reads were mapped against the genome of E. grandis using BWA. 
To measure the expression level, we used an option provided by the 
TAPyR tool [11] (consensus builder), since the relative expression in 
RNA-Seq data is proportional to the number of complementary DNA 
(cDNA) fragments that originate from it. This tool option creates 
consensus sequences and counts the number of reads whose alignment 
overlaps at each position of the reference genome. This procedure is 
performed in both directions of the genome, providing the number of 
reads at each position for each strand. It was possible to use the TAPyR 
tool to perform this step, since it can read the standard SAM file format 
produced by BWA (although TAPyR is also a mapping tool, it was 
designed to work with longer read sizes and is not adapted to very short 
sequences).

The expression profile scoring is represented in Figure 2 (green 
box 3), and starts with the identification of the putative mature 
sequence within the pre-miRNA candidate. As mentioned above, it 
should correspond to the portion of the precursor with most abundant 
expression.

Let k(i) denote the number of reads aligned at position i of 
the genome, p the precursor candidate and pstart, pstop its start/stop 
coordinates, respectively. Algorithm1was used to determine the 
coordinates of the mature sequence. Intuitively, the precursor is 
scanned with a sliding window of varying width (19 to 26), which 
corresponds to the length range of a typical mature miRNA, and 
determines the combination of position and window width that 
maximizes the difference between the average number of reads within 
the window (rm) and outside the window (rb).

Relying on the putative mature sequence thus identified and on the 
secondary structure of the candidate (pre-computed by CRAVELA), 
it is possible to estimate the identity of the portion of the foldback 
precursor that is on the opposite stem, termed miRNA*. The interest of 
identifying the miRNA* is two-fold: (1) occasionally both the miRNA 
and miRNA* are functional (effectively constituting two alternative 
mature sequences), and (2) non-functional miRNA* sequences are also 
expected to be more abundant than the rest of the precursor because 
they survive longer before degradation.

Having identified both the miRNA and miRNA* sequences, we can 
obtain a score for the precursor candidate. Let Rm, Rs, and Rt be the total 
number of reads in the mature, miRNA*, and the whole candidate, 
respectively. The precursor score, σ, is thus

( ) Rm Rs
Rt

σ ρ +
=                      (1)

i.e. the proportion of read counts in the precursor located 
specifically in either the miRNA or miRNA* putative sequences, and 
consequently, 0 ≤ σ ≤ 1.

Biological validation

A miRNA-specific RT-qPCR protocol consisting in a stem-loop 
RT, followed by an end-point qPCR was performed for the validation 
of mature sequences [12].The validation was carried out using Xylem, 
Ovaries and Seedling tissue, harvested from non-bent trees. Random 
primers were used for the construction of the cDNA libraries, and the 
primers for qPCR were designed using Prime3Plus web application 
[13]. All the miRNA primers that we used in this validation are 
compiled in Table 1. 

Results
The CRAVELA framework identifies an initial set of over 4 

million candidates, which are subsequently drastically reduced by 
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Figure 3: The expected miRNA expression profile - Adapted from [14].
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Figure 4: Flowchart with the RNA-Seq data analysis and its integration with the 
in silico analysis.
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the application of scoring and filtering procedures. After ranking the 
precursors with the intrinsic measures and conservatively keeping the 
top 25%, we produced a reduced list of ~ 1 million candidates. This list 
is compared using BLASTn with the precursor sequences on miRBase 
for three related plant species, in order to identify a small set of potential 
homologs to seed the structural analysis step. The BLASTn procedure 
yielded approximately 600 matches; the unique bidirectional best hits 
were computed, as described in the CRAVELA candidate identification 

section. The found homologs and their respective organism and 
sequence are compiled in Table 2.

A list of 21 unique homologs, supported by very low E-values 
(maximum of 10-7), was obtained and used in the structural analysis, 
eliciting the determination of a set of 380,000 candidates, which 
were than further reduced using the procedure described in the 
RNA-Seq primary data analysis section. The primary RNA-Seq data 

Table 1: MiRNA conserved and novel candidates and respective primers designed for the RT-qPCR assays.
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analysis, which aims at identifying candidates with strict guarantees 
of meaningful expression, produced a list of 3,300 candidates, which 
were then scored using the precursor scoring strategy described in 
the expression profile section. A total of 300 high-scoring candidates 
(score>0.85) were thus obtained, from which a few were included in a 
set submitted for experimental validation.

A total of 8 candidates were selected from the high-scoring list 
and the potential homologs list, relying on different sources and with 
different justifications. The information regarding the selection of 
candidates is summarized in Table 3.

The RT-qPCR assays for the pre- and mature miRNAs showed 
amplification in almost all the tested candidates as seen in Table 4. The 
miR-156 candidate did not show any selective amplification probably 
due to the high sequence similarity to the miR-157 candidate, or due to 
limitations of the technology.

The overall success was lower, while attempting precursor 
validation (4 out of 7), probably because of its high cellular turnover 
and therefore, its lower abundance. Since the goal of this paper was to 
present an approach that puts together in silico and bench procedures 
to analyze high-throughput data, we decided not to include a discussion 

of the biological significance of the obtained results. However, it is 
important to show that the computational approach lead to results that 
guided the bench experiments with meaningful biological findings.

Conclusions and Future Work
Recent advances in high-throughput sequencing technology allow 

the production of fast and abundant transcription data. Computer 
science, mathematics and statistics are essential fields for the handling 
of this output, and the integration of these data with genomic knowledge 
in an effort to unravel gene function and regulatory interactions.

The use of a mixed approach combining in silico pre-miRNA 
predictions and RNA-Seq transcriptional expression profiling elicited 
the production of a first catalogue of 3,300 putative conserved and 
novel miRNA candidates. The proposed scoring mechanism ranks 
the candidate list based on the similarity of the experimental data 
with a typical miRNA deep-sequencing expression profile. Therefore, 
it allows to refine the candidate list by discarding those not behaving 
like miRNAs, and identifying a restricted set of putative precursors 
that might be used in further experimental research. Using an RT-
qPCR protocol specific for miRNAs, it was possible to experimentally 
verify, with success, the expression of both predicted homologs and a 

Table 2: List of homologs found through the BLASTn between the E. grandisgenome and the miRBase dataset for three plant species. Although the entire precursor was 
used as a homolog, we have chosen to present only the mature sequence due to size restrictions.

Table 3: Biological validation, putative function of selected miRNAs and selection criterion
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few high-scoring non-conserved candidates produced by the miRNA 
discovery pipeline. The proposed computational pipeline, relying on 
CRAVELA for obtaining an initial list of candidates, presented results 
with encouraging accuracy in the top-scoring candidates selected for 
experimental verification. It would thus be of interest to perform the 
same data analysis on other economically important species such as V. 
vinifera, P. trichocarpa (a model tree), and other plant models, such as 
A. thaliana and Medicago truncatula.

A critical step in the functional annotation of novel miRNAs is the
identification of their targets. Despite the fact that plant miRNAs tend 
to be fully complementary to their target sites, which facilitates their 
computational enumeration, the short length of mature sequences leads 
to an excessive number of spurious matches, which result in a large 
number of false positive results. To complement the pipeline presented 
in this paper with a means to identify potential targets, notably mRNAs 
being putatively targeted by more than one candidate, could provide 
a network-based method to not only improve the accuracy of target 
prediction, but also to filter candidates with no confident targets.

As mentioned previously, the methodology described in this paper 
was applied using E. grandis genome assembly, while combining it 
with E. globulus RNA-Seq data. Sequence similarity between the E. 
grandis and E. globulus genomes proved to be sufficient to support 
transcriptional analysis on the latter, both in terms of the outcome 
of miRNA predictions, but also for the alignment of RNA-Seq reads 
with the reference genome. The use of annotation data would provide 
extra information, eliciting the exclusion of pre-miRNA candidates 
overlapping annotated genes, repeat sequences or other ncRNAs. 
Despite the evidence supporting high levels of conservation in many 
gene families between the genomes of E. grandis and E. globulus, it 
would be preferable to use the E. globulus genome. The sequencing 
and annotation of E. globulus would be an invaluable contribution to 
the research efforts seeking the identification and characterization of 
regulators of wood formation in this species, without which we cannot 
identify miRNAs specific to E. globulus. 
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