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Abstract
Peroxidases, one of the key antioxidant enzymes, are widely distributed in nature and catalyze oxidation of various 

electron donor substrates concomitant with the decomposition of H2O2. The non-animal plant peroxidases (class III 
peroxidase) are involved in various essential physiological processes of plant growth and development throughout 
their life cycle. In view of the capability of peroxidases to catalyze the redox reaction for a wide range of substrates, 
they are considered as one of the important enzyme from the point of view of their various medicinal, biochemical, 
immunological, biotechnological and industrial applications. They have been successfully used for biopulping and bio-
bleaching in the paper and textile industries. Peroxidases have also been used in organic synthesis, bioremediation, 
as well as various analytical applications in diagnostic kits, ELISA. Peroxidase based biosensors find application in 
analytical systems for determination of hydrogen peroxide, glucose, alcohols, glutamate, and choline etc. Thus, in 
view of array of physiological functions as well as industrial applications, the peroxidases have conquered a dominant 
position in research groups and become one of the most extensively studied enzymes. In this direction, the present 
review embodies the classification, mechanism of action, major physiological functions as well as industrial applications 
of plant peroxidases.
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Introduction
Development of environmentally sustainable processes is a 

challengeable task for the current bioeconomy. In this direction, the 
use of biocatalysts, enzymes, in various processes is considered as an 
ecofriendly approach. The stability, activity and specificity of enzymes 
are the fundamental parameters that are required to develop enzymes 
for their optimal applications in various industrial processes. Therefore, 
identification of newer sources for such novel enzymes with desired 
properties is important. Furthermore, modern approaches such as in-
silico molecular modeling concomitant with site directed mutagenesis 
to develop such novel enzymes with improved attributes are also in 
great demand. The present thesis is an effort in this direction.

Peroxidases (EC.1.11.1.x) are hydrogen peroxide (H2O2) 
decomposing enzymes concomitant with the oxidation of wide range 
of phenolic as well as non- phenolic substrates (RH) 

2RH + H2O2 → 2R° + 2H2O

They are ubiquitous in nature being found in bacteria, fungi, 
algae, plants and animals. The plant peroxidases, belonging to Class 
III peroxidase, are implicated in various vital processes of plant 
growth and development throughout the plant life cycle including cell 
wall metabolism, lignification, suberization, reactive oxygen species 
(ROS) metabolism, auxin metabolism, fruit growth and ripening, 
defense against pathogens etc. Due to versatility in reaction catalyzed 
by peroxidases, and their ubiquitous nature, they have immense 
potential to be an industrial enzyme with application in various 
medicinal, immunological, biotechnological and industrial sectors. 
The peroxidases find applications in bioremediation, textile synthetic 
dye decolorization, polymer synthesis, paper and pulp industry, 
in development of biosensor, diagnosis kits etc. In view of various 
applications, the identification of newer sources of novel peroxidase 
offering resistance towards temperature, pH, salts, heavy metals, 
organic solvents etc. is highly desirable. Thus, the present review is an 
attempt to summarize various physiological functions as well as the 
industrial applications of plant peroxidases.

Classification of peroxidases

On the basis of presence or absence of heme, the peroxidases have 
been classified into heme and non-heme peroxidases [1]. According to 
PeroxiBase database, >80% of known peroxidase genes are reported to 
code for heme-containing peroxidases. On the other hand, the non-
heme peroxidases such as thiol peroxidase, alkylhydroperoxidase, 
NADH peroxidase constitute only a small proportion. Since majority 
of the peroxidase sequences are reported to be heme peroxidases, thus 
they are described in detail. 

Heme peroxidases have further been assigned to two superfamilies, 
namely peroxidase-cyclooxygenase superfamily (PCOXS) and the 
peroxidase-catalase superfamily (PCATS) [2,3]. Description of 
these peroxidase superfamilies are presented as follows. A schematic 
classification of peroxidases is presented in Figure 1.

The Peroxidase-Cyclooxygenase Superfamily (PCOXS): The 
peroxidases of PCOXS superfamily exclusively contain animal 
peroxidases which have been suggested to be involved in the innate 
immunity, defense responses etc. [4,5]. The myeloperoxidase (MPO), 
eosinophil peroxidase (EPO), lactoperoxidase (LPO), thyroid 
peroxidase (TPO) are belonging to this family. In this superfamily, the 
prosthetic heme group is covalently linked with the apoprotein. 

The Peroxidase-Catalase Superfamily (PCATS): The PCATS is the 
most intensively studied superfamily of non-animal heme peroxidases. 
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Initially, the superfamily was named as the plant, fungal and bacterial 
heme peroxidase superfamily depending upon the sources of the 
peroxidases. Later on, due to emergence of new cnidarians peroxidase, 
the name of this superfamily was changed as peroxidase-catalase 
superfamily. 

The non-animal peroxidases have further been sub-divided into 
three classes namely, class I, II and III peroxidases as described in 
following sections.

(a) Class I Peroxidases: The class I peroxidases include both 
prokaryotic and eukaryotic peroxidases belonging to non-animal 
sources. Currently, 1839 sequences of this class are reported in 
PeroxiBase database. They exhibited major role in oxidative stress 
i.e., detoxification of ROS (H2O2) [6-8]. They include cytochrome 
c peroxidase (CCP; EC 1.11.1.5), ascorbate peroxidase (APX; EC 
1.11.1.11) and catalase peroxidase (CP; EC 1.11.1.6). The cytochrome 
c peroxidase (CCP), uses reducing equivalents from cytochrome c and 
reduces hydrogen peroxide to water. Ascorbate peroxidases (APx) 
are involved in hydrogen peroxide detoxification using ascorbate as 
reducing equivalents as well as in photo-protection of the chloroplasts 
and cytosol in higher plants [9,10]. The catalase-peroxidases (CPs), 
predominantly reported in bacteria, are bi-functional antioxidant 
enzymes that exhibit both catalase and peroxidase enzyme activity. 
Due to their unique catalytic capacity to dismutate hydrogen peroxide 
and ability to evolve molecular oxygen (O2) by oxidation of H2O2, 
they prevent bacteria from oxidative stress [11]. Evolutionary they are 
closely related to ascorbate peroxidases and cytochrome c-peroxidases 
[12,13]. At the structural level, the class I peroxidases lack disulphide 
bridges, calcium and an endoplasmic reticulum signal sequence. 

(b) Class II Peroxidases: The class II peroxidases, exclusively 
containing fungal peroxidases, have major role in lignin biodegradation 

[14]. In the PeroxiBase database, 609 sequences of class II peroxidases 
are reported till date. White-rot fungal lignin peroxidases (LiPs; EC 
1.11.1.14) are secretary in nature and catalyze depolymerization of 
lignin as well as possess immense potentials for waste disposal of a 
number of phenolic as well as non-phenolic compounds. Manganese 
peroxidases (MnP; EC 1.11.1.13), are also secreted by lignin-degrading 
white-rot fungi. They catalyze the peroxide-dependent oxidation of Mn 
(II) to Mn (III) and the Mn (III) is released from the enzyme as oxalate-
Mn (III) complex that serve as diffusible redox mediator having ability 
to oxidize lignin. Versatile peroxidases (VP; EC 1.11.1.16) exhibited 
a hybrid molecular architecture between LiPs and MnPs [15]. They 
are not only specific for Mn (II) as in 3MnPs, but also catalyze the 
oxidation of phenolic and non-phenolic substrates like LiPs, in the 
absence of manganese [16]. In contrary to class I peroxidases, the 
class II peroxidases have N-terminal signal peptides, four conserved 
disulphide bridges (differently located to those of class III) and calcium 
in their structure.

(c) Class III Peroxidases: The class III peroxidases are widely 
distributed in plant kingdom [17,18]. In the PeroxiBase database [1], 
5692 sequences of class III peroxidases (~ 70% of total non-animal heme 
peroxidases) are reported till date. They include horseradish peroxidases 
(HRP), peanut peroxidase (PNP), soybean peroxidase (SBP), etc. and 
they are reported to play crucial roles in the plant life cycle [19]. Thus, 
they are involved in wide range of physiological processes such as 
cell wall metabolism [20], lignification [21], suberization [22], auxins 
metabolism [23], wound healing [24], reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) metabolism [25,26], fruit growth 
and ripening [27] defense against pathogens [28] etc. These peroxidases 
exist as multigene family as evident by 73 and 138 peroxidase genes in 
the genomic sequences of Arabidopsis (Arabidopsis Genome Initiative, 
2000) and rice (International Rice Genome Sequencing Project, 2005), 

 

Figure 1: Schematic representation of classification of peroxidases.
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coordinated peroxide undergoes rapid heterolytic cleavage, producing 
a molecule of water and the semi-stable intermediate referred to as 
compound I (green in color, and also referred as oxyferryl porphyrin π 
cation radical). The reaction involves transfer of a proton from peroxide 
O1 to O2, followed by breaking of O-O bond. Departure of O2 as water 
molecule leaves O1 that is already coordinated to the heme with only 
six electrons. It completes its octate by abstracting the two most readily 
available electrons from the enzyme. One electron is removed from the 
iron, creating an oxy-ferryl (Fe=O) center. Generally, in case of most 
of the peroxidases, the second electron is removed from the porphyrin 
ring, creating a porphyrin pi-cation radical. 

This porphyrin radical accepts one electron from an electron 
donor substrate, yielding a substrate free radical and compound II 
(red in color and referred as oxyferryl heme intermediate). In the next 
one-electron reduction step from a second molecule of the substrate 
reduces compound II to the resting ferric peroxidase [34,35]. 

Another intermediate namely the compound III, in which the iron 
is in the ferrous state, is usually formed when there is a large excess of 
H2O2. It is likely that this intermediate is largely formed by combination 
of superoxide, generated by the oxidation of H2O2, with the ferric 
enzyme, although superoxide could also be generated by electron 
transfer from oxidized substrates to molecular oxygen. Compound III 
is not a catalytically active intermediate.

Physiological roles of plant peroxidases

Class III plant peroxidases have been reported to play diverse 
functions in the plant life cycle such as in cell wall metabolism, 
lignification, suberization, ROS metabolism, wound healing, fruit 
growth and ripening, seed germination etc. [36]. A schematic 
representation of diverse functions of class III peroxidases is presented 

respectively [17,29,30]. Similar to class II peroxidases, in the structural 
fold, the class III peroxidases also contain N-terminal signal peptides, 
four conserved disulphide bridges and calcium. In the present review, 
the class III plant peroxidases are detailed below.

Evolutionary relationship between heme peroxidases
The heme peroxidases of non-animal origin show low amino 

acid sequence identity (less than 20%) but, share similar helical folds 
independent to the presence (in plant and fungal peroxidases) and 
absence (in bacterial peroxidases) of disulfide bridges and structural 
calcium ions. Recently [31] have also studied the comparative account 
of non-animal heme peroxidases and reported that the peroxidases are 
clustered into three major classes. In addition, [6] have suggested that 
the class I peroxidases are the origin point for the other two classes of 
peroxidases. 

Mechanism of action 

Peroxidases share a common catalytic mechanism for the 
degradation of hydrogen peroxide [32]. The peroxidase reaction is a 
two-electron oxidation-reduction with three distinct steps [33] :

Peroxidase + H2O2 → Compound I + H2O ……………… …. .(1)

Compound I + RH → Compound II + R° ……………………. (2)

Compound II + RH → Peroxidase + R ° + H2O……………….. . (3 )

______________________________________________________________

2RH + H2O2 → 2R° + 2H2O

___________________________________________________________

Where, RH is a peroxidase substrate and R° is a free-radical product 
derived from it.

The catalytic cycle of heme peroxidases specific to plants begins 
with the coordination of peroxide to the ferric heme (Figure 2). The 

Figure 2: Catalytic cycle of heme peroxidases showing catalytic events (oxidation-reduction) occur at heme (Fe+ porphyrin IX) center of the enzyme. At the end of the 
reaction, H2O2 is degraded to H2O and reducing equivalent (RH) is polymerized.
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Figure 3: A schematic representation of various roles of plant peroxidases.

Figure 4: Generalized lignin biosynthesis pathway indicating the role of peroxidases. 
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in Figure 3. Some major roles of peroxidases are described in following 
sections: 

Lignification and suberization

Lignification occurs during normal growth and defense responses 
in plants and is one of the classical functions attributed to Class III 
peroxidases [37]. Lignin, a phenolic heteropolymer, present in the cell 
wall of plants and provides rigidity, strength, and resistance to chemical, 
physical as well as biological attacks. Lignin which contributes about 
25% of the plant biomass is considered as one of the greatest obstacle 
towards the optimal utilization of the plant biomass for various 
purposes such as paper manufacturing, production of highly palatable 
forage and bagasse utilization.

Chemically, lignin is made up of mainly three types of monolignols, 
namely p-coumaryl alcohol, sinapyl alcohol and coniferyl alcohol. 
These monolignols are synthesized via phenyl propanoid (PP) 
pathway which starts with deamination of phenylalanine, followed by 
successive hydroxylations, methylations, thiol ester formation and two 
reduction reactions leading to the formation of the three major kinds of 
monolignols. These monolignols are transported to cell wall in the form 
of glycosides and there glucosidase enzyme release the monolignols.

The polymerization of the monolignols, into lignin involves an 
oxidative mechanism with the consequent formation of phenoxy 
radicals, through the action of oxidative enzymes, such as peroxidases. 
The schematic representation of lignin biosynthesis pathway along 
with the role of peroxidase is represented in Figure 4. 

There are several reports suggesting higher expression of peroxidase 
genes in the tissues undergoing lignification [38]. Thus, Mader and 
Amberg- Fisher [39] have reported that the peroxidases have ability 
to polymerize cinnamylalcohols in the presence of hydrogen peroxide. 
Furthermore, based on experimental study, Andrews et al. [40] have 
demonstrated the link between peroxidase isoenzymes and the cross 
linking of cell wall components and the deposition of lignin-like 
phenolics in the epidermis of the tomato fruits. Christensen et al. 
[38] have purified and characterized five peroxidases in poplar xylem 
and also analyzed their correlation with lignification via oxidation of 
syringaldazine (a lignin monomer analogue). The recombinant papaya 
peroxidase was also reported to be involved in defense response and 
lignification via qRTPCR and activity measurement with coniferyl 
alcohol [41]. In addition, Ostergaard et al. [42] have reported an 
extracellular peroxidase from lignifying Arabidopsis thaliana cell 
suspension cultures. The authors have also done mutational studied 
and proposed a possible correlation between the enzyme and the 
increased levels of lignin in a mutant Arabidopsis. The evidence for a 
role of peroxidases in lignification has also been supported by studies 
on transgenic plants with altered peroxidase activity. For example, 
Quiroga et al. [43] showed that expression of a tomato peroxidase 
gene, in transgenic tobacco resulted in an increase in lignin content. 
Lagrimini et al. [44] have also found higher levels of lignin in transgenic 
tobacco with over-expressed peroxidase than the wild type plants. 

Suberization has been believed to play a role in the defensive 
responses against the entry of pathogenic micro-organisms through 
a wounded part by developing physical barrier [43,45]. This protects 
tissue from water loss and pathogen invasion. Suberized tissues are 
found in various underground organs like roots, stolon and tuber as 
well as in periderm layer. They are formed as a part of wound and 
pathogen induced defenses of specific organs and cell types, perhaps 
the most familiar example being the browning of sliced potato tubers. 
Lignification and suberization are terminal processes of determinate 

and highly differentiated plant cells capable of forming secondary cell 
walls. The cell wall peroxidases polymerize the hydroxycinnamic acid 
and their derivatives by converting them into phenoxy radicals that are 
then deposited on the extracellular surface. The accumulation of these 
polymers strengthens the cell wall, thereby restricting cell expansion 
and pathogen invasion, and confers structural strength to the plant 
body, which is especially important for trees and construction of xylem 
vessels. 

Plant defense against pathogen infection

Plants protect themselves, after pathogen attack, through 
the passive and active defense mechanisms. The passive defense 
mechanisms involve structural barriers or existing anti-microbial 
compounds which prevent colonization in the tissue, while, the active 
or induced defense responses include the hypersensitive response (HR) 
and systemic acquired resistance (SAR) i.e., production of phytoalexins 
and pathogenesis-related (PR) proteins, reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) (oxidative bursts), ion fluxes across 
the plasma membrane, lignification and the reinforcement of the cell 
wall through both the cross-linking of cell wall structural proteins. 
The active defense responses are regulated through a complex and 
interconnected network of signaling pathways mediated by salicylic 
acid (SA), jasmonic acid (JA) and ethylene (ET).

Among the proteins induced during the plant defense, the class 
III plant peroxidases are well known and they play roles through (1) 
reinforcement of cell wall physical barriers comprising lignin, suberin, 
feruloylated polysaccharides and hydroxyproline-rich glycoproteins 
[46,47] ; (2) enhanced production of reactive oxygen species as 
signal mediators and antimicrobial agents [48-50] ; and (3) enhanced 
production of phytoalexin [51]. 

Peroxidases have been reported to be induced by fungal infection 
[52,53], bacterial infection [54,55], infection caused by viruses 
and viroids etc. [56-59]. In tobacco, a positive correlation between 
peroxidase activity and resistance to tobacco wildfire disease was 
reported [60,61]. Furthermore, [54] have reported a rapid induction of 
a cationic peroxidase in rice plants, infected with Xanthomonas oryzae 
pv. oryzae. 

Wound healing

Plants respond to wounding by activating self-defense systems to 
restore damaged tissues or to defend against attacks by pathogens and 
herbivores. Among the large number of wound-inducible proteins, 
peroxidase have been shown to express upon mechanical wounding 
in various plants, including tobacco [57,58], tomato [62], potato [62], 
cucumber [63], azuki bean [64], rice [65], horseradish [66] and sweet 
potato [67]. 

Reactive Oxygen Species (ROS) metabolism

The Reactive Oxygen Species (ROS) are partially reduced forms of 
atmospheric oxygen (O2) and produced by the excitation of oxygen to 
form a singlet oxygen (O2

1) or from the transfer of electrons to O2, to 
form superoxide radical in the case of one electron; hydrogen peroxide 
(H2O2) if two electrons are transferred; or hydroxyl radical (OH-) when 
three electrons have been transferred to oxygen. These reduced species 
of oxygen are highly reactive and are capable of oxidizing various 
cellular components leading to the oxidative damage of the plant cell 
that is associated with the peroxidation of membrane lipids, protein 
oxidation, enzyme inhibition and DNA damage that ultimately leads 
to Programmed Cell Death (PCD) [68-70]. In plant cells, ROS are 
produced in cell walls, chloroplasts, mitochondria, plasma membrane, 
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endoplasmic reticulum, and apoplastic space [68,71]. In plants, the 
cellular level of H2O2 is mostly regulated by enzymatic actions of 
catalases and peroxidases. In addition to scavenging H2O2, the cell wall 
peroxidases have been considered to catalyze O2

- and H2O2 formation 
through oxidation of substrates such as NADH and IAA, in the absence 
of exogenous H2O2 [71]. 

Auxin catabolism
Peroxidases play an important role in auxin catabolism through 

the oxidative carboxylation of indole-3-acetic acid (IAA) [72]. IAA, 
one of the most studied plant growth regulators, is found throughout 
the plant, but is at highest concentrations in the apical and other 
meristematic regions. Auxin affects the plant development through 
apical dominance, cell elongation, ethylene formation and adventitious 
root formation. Plant peroxidases are involved in the oxidation of auxin 
either through the conventional H2O2-dependent pathway or through 
a H2O2-independent and O2-dependent pathway. As specific IAA 
oxygenases, the peroxidases have domains, similar to auxin-binding 
proteins, which are missing in non-plant peroxidases [23].

Gazaryan et al. [23] have also reported that over-expressing 
peroxidase in tobacco plants showed depressed IAA levels with 
decreased root branching and closed stomata. On the other hand, plants 
with suppressed peroxidase showed increased levels of IAA and rapid 
shoot growth, fused leaves and early flowering. Based on experimental 
study, Jansen et al. [73] have reported the transgenic tobacco with over-
expressed peroxidase exhibited increased UV tolerance and decreased 
IAA levels, suggesting the contribution of the peroxidases in UV 
tolerance and auxin catabolism. Furthermore, Schopfer [74] have also 
reported the involvement of plant peroxidases in cell elongation via 
IAA catabolism. 

Seed germination
The seed occupies a unique position and has fundamental 

importance in plant physiology because most of the known physiological 
processes are concentrated in the growth and development of the seed. 
The exact reaction between activation of essential enzymes, sequential 
release of hormones and the energy relations of the process during 
the germination of seed are still unknown. An increase in peroxidase 
activity during seed germination has been reported [75]. Fridovich 
[76] and Gasper et al. [77] have suggested that the peroxidase removes 
various toxic products from the seeds as a natural scavenger for seeds. 
After 4 days of germination in mung bean seedlings. Dendsay and 
Sachar [78] have observed a 30-fold activation of peroxidase activity. 
In cotton plants, increase in peroxidase activity is also correlated with 
auxin induced ethylene biosynthesis [79,80]. 

Fruit ripening

Ethylene has been demonstrated as an essential plant hormone 
involved in initiation of fruit ripening as well as promotion of 
maturation and abscission of fruits and in the regulation of senescence 
and fading of flowers [81]. Peroxidases also contribute to the synthesis 
of ethylene. L- methionine is the precursor for ethylene in tissues 
of higher plants. Three enzymes are involved in this methionine-
methional-ethylene pathway with peroxidase being most limiting 
enzyme in ethylene biosynthesis. Zymograms of peroxidase show 
change in activity pattern during initial stages fruit ripening [82]. Both 
positive and negative correlations between peroxidase activity and fruit 
ripening have been reported in literature. Thus, peroxidase activities in 
mango, apples, banana fruits etc. have been reported to increase with 
ripening [83-85] while, those of tomato, strawberry, capsicum, papaya 
fruits etc. decrease with ripening [86-89]. 

Stress tolerance

Peroxidases are considered as one of the stress indicators of plants 
because their level considerably increases after stress stimulation. 
Lignification also occurs due to stress responses [73]. 

The role of peroxidases and other antioxidant enzymes on heat stress 
have been documented by various researchers. Thus, Larkindale and 
Huang [90] have demonstrated that the expression level of peroxidases 
and superoxide dismutase increased, while those of catalase decreased 
after heat treatment of creeping bentgrass plants. Similarly, Edreva et 
al. [91] have also investigated the role of peroxidases in bean plants and 
they found that peroxidase activity is increased after heat treatment.

Salinity stress is caused by accumulation of dissolved salts in soil 
water either through natural process or due to human induced activity 
and the high salt accumulation in the soil can affect the growth of the 
plants [92,93]. Amaya et al. [94] have investigated the role of a cell 
wall peroxidase in the response to salt stress. They have observed the 
increased rates of seed germination in transgenic tobacco with over-
expressed peroxidase under both osmotic and salt stress. They have also 
suggested that enhancement of peroxidase activity stabilizes the cell 
wall structure and higher germination rate might be due to the better 
capacity to retain water that reduces the effect of water deficit caused 
by the salinity. Pujari and Chanda [95] have also studied the effect of 
high salinity on the levels of peroxidase expression in vigna seedlings 
and have reported higher activity of peroxidases in salt treated plants.

Metals such as manganese (Mn), zinc (Zn), copper (Cu) etc. are 
necessary for the plant development in trace amounts but in excess 
they become toxic for the plant [96]. In general, increase in peroxidase 
expression in response to various metals are reported and it is suggested 
that this increase could be a kind of defensive response for scavenging 
the H2O2 generated due to metal toxicity [97]. Assche and Clijsters 
[98] have reported the induction in peroxidase activity in leaves and 
roots treated with toxic doses of Zn, Cd, Ni and Pb. In addition, Fang 
and Kao [99] have also reported the increase in peroxidases activity 
as well as changes in the isozyme patterns after exposure to iron, 
copper and zinc in rice leaves and have suggested that the toxic levels 
of the metals could be responsible for both quantitative and qualitative 
changes in the peroxidase. Abercrombie et al. [100] have also reported 
that in response to metals such as aluminum, arsenic, etc. the class III 
peroxidase genes are over expressed.

Ultraviolet-B radiation is reported to influence the plant 
metabolism, growth and development leading to affecting 
photosynthesis, flowering, pollination and transpiration by altering 
gene expression [101]. Jansen et al. [102-120] have analyzed various 
tobacco lines with altered peroxidase expression and suggested a clear 
link between peroxidase activity and UV tolerance. UV tolerance has 
been reported to be linked with levels of peroxidases in plant. Thus, 
Jansen et al. [73] demonstrated that UV-tolerant plants exhibited more 
peroxidase expression than the sensitive type.

Isolation, purification, and characterization of some peroxi-
dases 

Plant peroxidases from various sources such as Eruca vesicaria, 
tea, Ficus, lettuce, citrus, broccoli, royal palm, soybean, Leucaena 
leucocephala, papaya, wheat grasss, Solanum melongena, lemon etc. 
have been isolated, purified and characterized. A brief description of 
physicochemical properties of some of them is presented in Table 1.
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S. No. Source Mol. Weight pH 
optimum

Temperature
optimum

Km/affinity for 
substrates Thermostability Effect of metal/

organic solvent References

1 Citrus jambhiri 56 kDa 5.5 40°C
Guaiacol> 

O-dianisidine> 
pyrogallol

Retained 20-30% activity at 50, 
60, and 70°C after 15, 10, and 

5 min of incubation

Inhibited by Li+, Zn2+ 
and Hg2+

Mohamed, et 
al. (2008)

2 Prunus persica 29 kDa 5 40°C o-dianisidine: 9.35 mM
H2O2: 15.38 mM

Lost 55% activity at 65°C within 
1 min

Not affected by Zn2+, 
Cu2+, Mg2+, Mn2+, NH4

+ 

(1.5-6.0 µM)
Neves (2002)

3 Lactuca sativa 
L. 35 kDa 5.0 45°C Guaiacol: 4.74 mM

pyrogallol: 1.96 mM
Retained 55% activity at 60°C 

after 1 hr

•	 Inhibited by Fe3+, 
Zn2+, Ca2+, Cu2+, Mn2+

Hu et al., 
(2012)

•	 40-70% loss of 
activity in presence of 
25% propylene glycol, 
ethanol, acetone and 

methanol

4 Carica papaya 240 kDa 7.0 40°C

Guaiacol: 0.8 mM
O-dianisidine: 0.125 

mM ascorbic acid: 5.2 
mM H2O2: 0.25 mM

Retained 80% activity at 60°C 
upto 1 Hr

Mg2+ as a potent 
activator and Ca2+ as a 

weak activator

Pandey et 
al., (2012)

5 Roystonea 
regia

51 kDa 4-11 - o-dianisidine: 9.35 mM
H2O2: 15.38 mM

Stable at 70°C after 1 h 
incubation - Sakharov et 

al. (2001)

6 Ficus 
sycomorus 43 kDa 5.5-7.0 5°C to 40°C

Guaiacol: 9.5 mM
O-dianisidine: 16.6 mM

pyrogallol: 26 mM,
H2O2 : 1.2 mM

-

•	 Activated by Ca2+, 
Ni+2 and Mg2+ Mohamed et 

al. (2011)•	 inhibited by Mn2+, 
Fe3+ Zn2+ and Hg2+

7 Leucaena 
leucocephala 200 kDa 5.0 55°C Guaiacol: 2.9 mM,

H2O2: 5.6 mM Fully active at 65°C for 20 min
•	 Activated by 

Ca2+, Mn2+, Na+ Azide 
insensitive

Pandey and 
Dwivedi, 

2011

8 Eruca vesicaria 
sbsp. Sativa 34 kDa 6.0 40°C Guaiacol: 375.74 mM 

pyrogallol: 510.14 mM
Retained 50% activity at 80°C 

after 30 min incubation

•	 Activated by Ni2+, 
Co2+, Cu2+ Nadaroglu, et 

al., (2013)•	 Inhibited by Mn2+, 
Hg2+, Zn2+, K+, Ca2+, Fe2+

9 Citrus medica 32 kDa 6.0 50°C
Guaiacol: 8 mM

o-dianisidine : 1.8 mM
H2O2: 0.66 mM

Stable at 60°C and 65°C

•	 Activated by Cu2+, 
Co2+, Mg2+, K+ and Ca2+ Mall et al. 

(2013)•	 Inhibited by Hg2+, 
Fe2+, Mn2+ and Zn2+

10
Fragaria 

ananassa 
Duch.

56 kDa 6.0 30°C - Complete loss of activity> 60°C 
within 5 min - Civello et al. 

(1995)

11
Brassica 

oleracea Var. 
Italica

Neutral and 
basic: 43 kDa
Acidic: 48 kDa

Neutral and 
basic : 6.0
Acidic: 4.0

-

Guaiacol: 0.305 mM 
(acidic), 8.789 mM 
(basic), 0.711 mM 

(neutral)

Stable at 80°C activity after 1hr 
incubation -

Thongsook 
and Barrett, 

(2005)

12 Citrus limon 200 kDa 5.0 40°C Guaiacol: 0.7 mM
H2O2: 1.09 mM

Retained 92% activity at 80°C 
for 1 h

•	 Activated by Na+, 
Zn2+, Mg2+, Ca2+ and 

Mn2+

Pandey, et 
al., (2016)

•	 tolerance towards 
Cd2+, Cs2+ and Ni2+

•	 Retained 30-
50% activity in the 
presence of 50% 

ethanol, methanol and 
isopropanol

Actinidia 
deliciosa 29 kDa 5.5 50°C Guaiacol: 7.4 mM H2O2: 

1.3 mM - Soda et al., 
(1991)

14 Camellia 
sinensis 34.5 kDa 4.5 to 5.0 - Pyrogallol > ascorbate 

> guaiacol - - Kvaratskhelia 
et al. (1997)

15 Solanum 
tuberosum

45.8 kDa 4.5 40°C -60°C - - - Bernards et 
al. (1999)

16 Trachyca-rpus 
fortunei 50 kDa 3.0 61−67°C - Moderate stable Inhibited by Na+, Ca++, 

and Mg++
Caramyshve 
et al., (2006)

17 Solanum 
melongena - 5.5 84°C Guaiacol: 6.5 mM

H2O2 : 0.33 mM - - Vernwal et al. 
(2006)

18 Fagopyrum 
esculentum

46.1 kDa 
(POX I) and 

58.1 kDa 
(POX II).

8.0 (POX I) 
4.5 (POX II)

30°C (POX 
I) and 10°C 

(POX II)

POX I-
Guaiacol: 0.288 mM,
o-dianisidine: 0.229 

mM, Ascorbate: 
0.043 mM POX II- 

o-dianisidine: 0.137 
mM, Ascorbate: 0.029 

mM

- - Suzuki et al. 
(2006)
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Applications of peroxidases

Peroxidases are important from the point of view of their industrial 
applications by virtue of their ability to catalyze the oxidation-
reduction reaction of a wide range of phenolic as well as non-phenolic 
substrates in the presence of hydrogen peroxide. A number of 
industrial applications of peroxidases have been reported in the area 
of agriculture, analytical, environmental, medical sectors etc. Thus, 
peroxidases have been used in bioremediation of contaminating 
environmental pollutants such as phenols, delignification in paper 
and pulp industry, diagnosis kit development, immunoassay, organic 
and polymer synthesis as well as in and biosensor technology. They 
are also used for developing convenient and quick methods for the 
determination and quantification of hydrogen peroxide in both the 
biological and industrial samples [121,122]. Additional applications of 
peroxidases include determination of extent of lipid peroxidation in 
meat food products, in polymerization and precipitation of aqueous 
phenols as well as in decolorization of industrial effluents [123]. Some 
of the important applications of peroxidases are described in detail in 
following sections.

Application as biosensor 
Biosensors have significance in medicine, quality control, food 

and environmental monitoring as well as in research. Enzyme based 
biosensors have advantageous over other analytical techniques with 
regards to high selectivity and high sensitivity. The performance of 
these biosensors depends upon the amount and bioactivity of enzyme 
immobilized onto the electrodes. Peroxidases have immense potential 
and wide spread application as biosensors [123]. 

Horse radish peroxidase has widely been used in development of 
biosensors [124-126]. HRP biosensors are made by applying various 
detection methods including an amperometric immunosensor, mass 
balance, potentiometric methods, photovoltaic spectroscopy, optical 
and chemiluminescent methods etc. [127-132]. Potentiometric based 
biosensors are developed by combination of an enzyme (eg. peroxidase) 
and a transducer that can detect the variation in protons. Glucose, 
maltose or lactate are reported to be detected by peroxidase based 
biosensor using potentiometric methods [133]. HRP-based biosensors 
for antioxidant monitoring have been applied in the detection of 
superoxide radical [134], nitric oxide [135], glutathione [134,136], uric 
acid [137,138] and phenolic compounds [139-141]. Besides HRP, other 
plant peroxidases such as sweet potato, tobacco, peanut, soybean etc. 
have been also explored for their applications as biosensors. The sweet 
potato peroxidase, due to its easy availability, high specific activity and 
superior electrochemical characteristics, is considered as advantageous 
for application as biosensor [126]. A recombinant tobacco peroxidase 
immobilized to graphite electrodes were reported to be advantageous 
for detection of aromatic phenols and amines [142].

Soybean peroxidase (SBP) has been reported to be advantageous 

over HRP for the biosensor manufacturing. The first SBP biosensor 
was reported by Vreeke et al. [143] as a thermostable-wired enzyme 
electrode. Spring cabbage peroxidase (SCP), has been reported to 
provide a good bioelectrocatalytic system due to its good affinity for 
various substrates, stability towards temperature and pH and ability to 
bind to polyanionic matrices and low costs of extraction and purification 
[144]. Due to efficient bioelectrocatalysis of lignin peroxidases (LiP), 
the LiP–graphite electrode biosensor systems have been developed for 
detection of recalcitrant aromatic compounds [145]. 

Application in analytical and diagnostic kits

Peroxidases are widely used in the development of analytical as 
well as diagnostic kits. Among peroxidases, horseradish peroxidases 
are most commonly used for the analytical purposes [146]. However, 
other plant peroxidases having wide pH and temperature stability are 
emerging as option for HRP. Since, the peroxidase has capability to 
produce stable chromogenic products, thus, they are suitable candidate 
enzyme for the manufacturing of various diagnostic kits based on 
enzyme conjugated antibody technology [147]. Uric acid detection kits 
have been developed using turnip root peroxidases [148].

In combination with cholesterol oxidase and cholesterol esterase, 
peroxidases have also been exploited for developing cholesterol 
detection kits that help in quantification and monitoring of human 
serum cholesterol [149,150]. Peroxidases have been used in developing 
kits for the diagnosis of bladder and prostate cancers through the 
detection of 8-hydroxydeoxyguanosine and its analogs in urine [151]. 
The monitoring of glucose for diabetes mellitus and of lactate in 
hypoxia and ischemia, are of great significance in patient management 
[152] and it would be highly desirable to develop such a sensitive 
biosensor for the detection of H2O2, which would be stable at 37°C 
and higher temperatures for sustained periods of time. Lactose content 
monitoring strips have been developed using the combination of 
immobilized β-galactosidase, galactose oxidase and HRP enzymes 
[153]. In biomedical sectors, for cancer treatment gene-directed 
enzyme/prodrug therapy, (GDEPT) have been extensively and 
successfully used. Greco et al. [154] proposed a prompt and efficient 
peroxidase-IAA based GDEPT system for cancer treatment. This 
enzyme–prodrug system has been found to be effective against hypoxic 
and anoxic tumor cells and also has potential to be used in other 
anti-cancer strategies. Besides GDEPT, in antibody-directed enzyme/
prodrug therapy (ADEPT), specific HRP-conjugated antibodies are 
used [155,156]. Influenza virus was reported to detect using ultra-
sensitive colorimetric immunoassay with peroxidase-mimic of gold 
nanoparticles [157].

Application in de-colorization of industrial dyes

Dyes are used extensively for paper printing, color photography 
and as additive in petroleum products. These are synthetic aromatic 

19 Gossyp-ium 
hirsutum

39.1 and 64 
kDa 5.0 and 6.0 25°C. - -

•	 Activated by Al3+, 
Fe3+, Ca2+, and Ni2+ Kouakou et 

al., (2009)•	 Inhibited by Mn2+, 
K+, Zn2+ and Hg2+

20 Vigna species - - - o-dianisidine: 1.55-2.24 
mM

Retained 33%, 66% and 3.4% 
activity at 70°C, 75°C and 

80°C, for 1 h
- Yves et al. 

(2011)

21 Brassica 
oleracea - 4.0 - - Retained <10% activity after 5 

min at 76.6°C - Fortea, et al., 
(2012)

22 Luffa aegyptia-
ca - 6.5 60°C Guaiacol: 2.0 mM

H2O2: 0.2 mM - - Yadav et al., 
(2011)

Table 1: Physicochemical properties of some purified plant peroxidases.
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compounds having complex structures, biologically un-degradable 
and causing environmental problems. For the degradation of theses 
synthetic industrial dyes, the currently available methods such as 
chemical oxidation, reverse osmosis, and adsorption, are highly efficient, 
but they suffer with some disadvantages. Now- a-days the interest is 
towards the use of microbial degradation of dyes, because this process is 
less expensive and ecofriendly alternative [158]. Enzymes such as lignin 
peroxidases (LiPs) and manganese peroxidases (MnPs), are involved in 
the decolorization of synthetic azo dyes such as orange II, and others 
[159]. Horseradish peroxidase (HRP) is reported to degrade phenol and 
substituted phenols via a free radical polymerization mechanism and 
can be effective in degrading and precipitating industrially important 
azo dyes, such as Remazol [160,161]. The properties of white-rot fungi 
to oxidize various recalcitrant xenobiotics released to the environment 
are thought to result from the activities of LiP, MnP, and laccases 
[162]. A purified peroxidase produced by Geotrichum candidum dec 
1, was involved in decolorization of dyes [163]. Pandey et al. [164,165] 
have also reported that the purified lemon peroxidase was found to 
be oxidized the industrial dyes in the order of aniline blue>methyl 
orange>indigo carmine >trypan blue>crystal violet.

The textile industry, being one of the traditional industrial 
segments, consume large quantities of water, chemical products and 
synthetic dyes and generate large volumes of wastewater that contain 
a high organic load that are responsible for acute or chronic toxicity 
on the ecosystems. Thus, the wastewater from textile industries is 
considered as one of the most polluting among all industrial wastes, 
thereby requiring appropriate treatment technologies. Peroxidases 
have been shown to have great potential in the decolorization process 
to decrease textile industry pollutant residues [166,167]. Uses of 
peroxidases, such as horseradish, Brassica campestres turnip, tomato, 
bitter gourd, soybean, Ipomea palmata and Saccharum spontaneum 
peroxidases, for degrading and detoxifying polyaromatic hydrocarbons, 
polychlorinated biphenyls, and other synthetic industrial dyes have 
been reported [168-178]. 

Application in bioremediation of phenolic compounds
Aromatic compounds such as phenols and its derivatives are a 

major class of pollutants in wastewater from a number of food and 
chemical industries [179]. Phenols are known to be toxic and also 
hazardous carcinogens that can accumulate in the food chain. Being 
highly toxic their discharge into the environment should be highly 
regulated [180]. The polymerization using redox enzymes is one of the 
phenol removal methods. The enzyme treatment offers a high degree 
of specificity, operation under mild conditions and high reaction 
velocity [180] concomitant with an ecofriendly approach. The ability 
of peroxidases to catalyze the formation of free-radical from various 
aromatic pollutants and their polymerization can be potentially 
exploited in bioremediation and wastewater treatment. Thus, 
peroxidases have been reported for removal of phenolic compounds 
from synthetic model effluents and also from real industrial effluents 
[160,161,181-183]. There are a number of reports in literature on 
detoxification of wastewater contaminated with phenols, cresols, and 
chlorinated phenols using HRP. Using HRP, Bewtra et al. [184] have 
determined the optimum pH for removal of 2, 4-dichlorophenol as 
6.5. The removal efficiency is also affected by the hydrogen peroxide 
concentration. Soybean and turnip peroxidases have also been shown 
to have good potential for removal of phenolics compounds [185,171]. 
Additives, such as PEG or gelatin, usually improve removal efficiency 
by protecting the enzyme [186]. The addition of PEG-3350 or PEG-
8000 to soybean peroxidase, increased the removal efficiency of 2, 
4-dichlorophenol by a factor of 10 or 50, respectively [187]. Thus, the 

potential of peroxidase for soil and water detoxification constitute a 
possible basis for the development of bioremediation technologies.

Application in pulp and paper industry

Lignin, a phenolic heteropolymer, shows negative impact on the 
proper exploitation of plant biomass for the pulp and paper industry. 
Thus, the lignin should be removed prior to the production of good 
quality paper. The chemical delignification leads to production of 
various pollutants. Thus, the enzymatic degradation of lignin is 
suggested as a better alternative. Lignin peroxidase (LiP) and manganese 
peroxidase (MnP) are successfully used for biopulping, biobleaching 
as well as selective delignification in the paper industry and selective 
delignification helps in the production of cellulosic materials that can 
be used as efficient feed and biofuel [188,189]. 

Hair dyeing 

Traditionally the hair coloring dyes are synthesized via oxidative 
polymerization of dye precursors (phenols or aminophenols, and 
couplers). For this process, the hydrogen peroxide (3%) is used that 
initiates the polymerization reaction but it bleaches the natural 
hair pigment melanin. These concentrations of H2O2, when applied 
repeatedly, can cause hair damage. To achieve a gentler dyeing with 
milder oxidation process, the enzymes such as oxidases, peroxidases 
etc. have been proposed as better options [190].

Analytical applications

Enzyme Linked Immunosorbent Assays (ELISA) has advantages 
over other immunoassays in simplicity, low cost, reliability, simple 
equipment requirement etc. ELISA is usually developed to detect 
antigens or antibodies by producing an enzyme such as peroxidase 
catalyzed color changes. In these assays an enzyme-linked antibody 
specific to the antigen is required along with a chromogenic substrate, 
which give colored product in the presence of the enzyme and the 
color of the product is proportional to the amount antigen/antibody 
of interest. For such type of assays HRPs are the most commonly 
used enzymes as linked with antibody. They are used to screen the 
monoclonal antibodies against dangerous mycotoxins of various 
fungal species like Aspergillus, Penicillium (ochratoxins), Fusarium 
(T-2 toxin, trichothecenes) etc [191-193]. A large number of reports 
regarding the development of enzyme immunoassays using peroxidase 
as reporter enzyme to detect toxins, pathogens, and other analyses are 
available. For example, in detection of Goynyautoxins, Chlamydia, 
Fusarium toxin, Dengue virus proteins, Hepatitis-E virus peroxidases 
are used [194-199]. HRP-based immunoassays for the detection of 
undeclared milk proteins (eg. bovine b-lactoglobulin) in foods has also 
been developed [200]. 

The DNA detection using complementary DNA probes is of 
significance in diagnostics and research. The non-radioactive DNA 
probes associated with peroxidases, such as HRP have become safer than 
radioactive probes [201]. Peroxidases have been reported to become 
suitable for microarray analyses because it catalyses a large number of 
electron-transfer reactions with natural and synthetic substrates. It can 
be used either directly immobilized on the microarray [202], or as a 
labeling agent for nucleic acids, antibodies and other proteins [203,204]. 
The HRP-based or associated microarrays (biochips) have been used in 
various applications such as expression analysis, recombination and 
gene mapping, mutation analysis etc [205,206].

Application in organic polymer synthesis and grafting

The importance of heme peroxidases in polymer chemistry is 
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based on their ability to oxidize a variety of phenolic molecules thereby 
generating reactive species (phenoxy radicals) which provide ideal sites 
for cross-linking (coupling) leading to polymerization reactions. The 
grafting application of peroxidase is one of the important industrial 
applications of heme peroxidases. The free radicals generated from 
the reactions catalyzed by peroxidases, can induce formation of 
other new functional polymers such as phenolic resins [207,208]. The 
broad spectrum of peroxidase applications in organic synthesis is due 
to their ability to catalyze different types of reactions as 1) oxidative 
dehydrogenations (2RH + H2O2 → 2R° + 2 H2O), 2) oxygen transfer 
reactions (R + H2O2 → RO + H2O), 3) oxidative halogenations (RH + 
H2O2 + HX → RX + 2H2O) and 4) H2O2 dismutation (2 H2O2 → 2H2O + 
O2) [209,210]. The peroxidases have been used in the development of 
hybrid resins from renewable sources to replace phenol–formaldehyde 
based resins that are widely used in surface coatings, adhesives, 
laminates, molding, friction materials, abrasives, flame retardants, 
carbon membranes, glass fiber laminates, fiberboards, and protein-
based wood adhesives etc [211]. 

Blinkovsky and Dordick [212] have demonstrated the HRP 
mediated polymerization of phenolics and incorporation of phenols 
into lignin leading to the formation of polymers of great potential 
as phenolic resins [213]. For example, enzymatically synthesized 
poly (p-phenylphenol) and poly (p-cresol) were reported to have 
high melting points, whereas, the poly (p-phenyl-phenol) exhibited 
higher electrical conductivity than that of phenol-formaldehyde 
based resins. The incorporation of cresol into lignin by peroxidase 
provides a platform for using lignin as a raw material for grafting 
molecules to obtain new functional polymers [214]. Thus, the ability 
of peroxidases to modify lignin and develop new functional polymers 
with excellent properties leads to the progress in lignin applications 
such as in development of polymer adhesives, biodegradable plastics, 
polyurethane copolymers, paints, dispersants in dyes, in pesticides, and 
printed circuit boards [207,215-217]. Using Soybean peroxidase (SBP), 
Ikeda et al. [218] successfully developed polyphenol resins without 
involvement of formaldehyde, which exhibited better properties than 
that of conventionally polymerized resins. 

Kim et al. [219] have used SBP to catalyze the oxidative 
polymerization of cardanol to polycardanol. Cardanol is an excellent 
raw material for the preparation of high grade insulating varnishes, 
paints, enamels, laminating resins, and rubber. Thus, the cardanol-
based resins show resistance towards softening action of mineral oils, 
acids and alkaline conditions, termite, and insects and have coefficient 
of friction less sensitive to temperature changes than phenol–
formaldehyde based resins. 

The free radical polymerization of methyl methacrylate (MMA) 
catalyzed by peroxidase (such as HRP) was developed by Karla and 
Gross [220]. Poly (methyl methacrylate) (PMMA) is a colorless 
polymer used extensively for the production of scratch resistance 
optical products, plastics, and PVCs. In addition, peroxidase mediated 
polymerization of acrylamide in to poly-acrylamide with good thermal 
properties have been reported [221-223]. Peroxidases have also been 
used to catalyse the free-radical polymerization of vinyl monomers, 
such as acrylamide, acrylic acid and methacrylates, such as methyl, 
phenylethyl, 2-hydroxyethyl methacrylate [220,224]. MnP also reported 
to catalyze the polymerization of acrylamide into a thermoplastic resin 
namely polyacrylamide in the presence of 2, 4-pentanedione, has been 
reported [225]. With the versatile properties of peroxidases, styrene 
was also polymerized into polystyrene that is widely used as packaging 
material, injection molded parts, UV screening agents, in disposable 
cutlery, and CD and DVD cases [226]. 

The chemical synthesis of conducting polymers such as polyaniline, 
the most extensively studied conducting polymers having high 
environmental stability and promising electronic application including 
electronic equipment, photovoltaic cells, plastic batteries, polymer 
light-emitting diodes, and optical displays, is not eco-friendly, thus 
HRP have been tried as an alternative for the synthesis [227-234]. But 
due to low activity of HRP towards the synthesis of Polyaniline, the 
other anionic peroxidase purified from soybean, african oil palm tree is 
developed as better substitute of HRP [235]. 

Peroxidase catalyzed polymerization of substituted and un-
substituted phenols and anilines have also been reported as better 
and striking alternative to the conventional chemical (formaldehyde) 
polymerization method [236-238]. Peroxidases also catalyze the stereo-
specific oxygen transfer reactions such as heteroatom oxidations, 
oxidation of C-H bonds in allylic/benzylic compounds, alcohols and 
indoles that yield various synthetic compounds of significance [210]. 
The plant peroxidases have also been shown to have application in 
the synthesis of α- 3’, 4’-anhydrovinblastine, by the coupling reaction 
of catharanthine and vindoline. The α-3’, 4’-anhydrovinblastine is a 
metabolic precursor of vinblastine and vincristine which are used in 
cancer chemotherapy [238,239,240].

Conclusion
Peroxidases catalyze oxidation of a wide range of phenolic as well 

as non-phenolic compounds. Plant peroxidases, belonging to class 
III peroxidases, have been implicated in various plant growth and 
developmental processes such as cell wall metabolism, fruit growth 
and ripening, metabolism of reactive oxygen species (ROS), defense 
against pathogens etc. In view of the wide applications of peroxidases 
in key areas such as clinical biochemistry, immunology, biotechnology, 
environment and industry, they are considered as one of the important 
industrial enzyme. Thus, peroxidases have been used in bioremediation 
of contaminating environmental pollutants such as phenolic 
compounds, delignification in paper and pulp industry, diagnosis kit 
development, immunoassay, organic and polymer synthesis as well as 
in ELISA and biosensor technology. Furthermore, with the potentials 
of nano-based biosensor applications, in recent years, peroxidases have 
gained more prominence. The use of immobilized enzymes, in various 
industrial processes, is one of the advancement in their application. 
For all such applications of peroxidases there is a need for search of 
novel peroxidases offering tolerance towards the factors / ingredients 
of the reaction environment such as temperature, pH, salts, metals and 
organic solvents etc. 
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