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Introduction
Computational methods inspired by natural phenomenon have 

gain much interest in the recent years. The natural phenomenon from 
microscopic matter to living behavior of insects or large animals is 
studied to develop distinct computing techniques in last few decades. 
Genetic algorithm is the pioneer method inspired by biological 
evolution and successfully applied in solving numerous tasks [1-4]. In 
the last decade, collective behaviors of various insects (e.g. ant, bee, fish, 
firefly, glow worm) have been investigated and a number of computing 
methods in the category of swarm intelligence (SI) have been proposed 
[5-14]. Recently, living and hunting behaviors of animals (e.g. cattle, 
gray wolf, lion) are considered to develop better SI based optimization 
techniques [15,16]. Among the developed algorithms, particle swarm 
optimization (PSO) [10] seems the most popular now days due to its 
simplicity as well as performance which is based on behavior of bird 
flocking or fish schooling.

PSO was developed for function optimization as like most of the 
optimization methods and it was shown better or at least competitive 
to any other methods in solving various optimization tasks [10,17-19]. 
Later on, PSO has been transformed to tackle different combinatorial 
optimization tasks including traveling salesman problem (TSP) [20-27]. 
Among various combinatorial problems, TSP is the most important 
problem having many real world applications [28]. Considering TSP as 
a general test bench, a number of developed methods have been applied 
to solve TSPs to identify their performance; among them ant colony 
optimization (ACO) is the prominent one [8,29]. A number of PSO 
based methods with different modifications have also been developed 
to solve TSP [11,20-26]. 

The aim of the study is to make a comparative study of several 
popular PSO based methods to solve TSP. The study is important 
because different PSO based methods have been developed by different 
researchers and tested on different sets of problems. Therefore, the 

description of the popular PSO based methods in a similar fashion 
will be more understandable with distinct features of individuals. 
Moreover, experimental results on a common benchmark TSP data set 
will reveal performance of each method. 

The rest of the paper is organized as follows. Section II briefly 
describes basic PSO and popular PSO based methods for TSP. Section 
III presents as well as compares experimental results of the PSO based 
methods along with ACO in solving benchmark TSPs. This paper is 
concluded in Section IV with few remarks.

PSO and its Popular Variants to Solve TSP
This section first explains basic PSO to solve function optimization 

and then explains popular PSO variants for TSP. 

Particle swarm optimization (PSO)

PSO is a population based optimization technique mimicking social 
behavior of flocks of birds or schools of fishes [10]. PSO has become 
a popular method in solving difficult optimization problems. At first, 
PSO generates a random initial population of particles. Each particle 
maintains a solution of given problem with three parameters: position, 
velocity and fitness. At every iteration step, each particle changes 
its position (i.e., search a new point) based on velocity calculated 
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considering its previous best position and the best one among all the 
particles in the population. The processes continue until the stopping 
criterion is reached. PSO has been successfully applied on numerous 
continuous and combinatorial optimization tasks [10,17-27].

PSO was developed for continuous problems (e.g. function 
optimization) in which particles moves in multi-dimensional search 
space to reach optimal position [10]. If a particle resides in Xi={xi1, 
xi2, xi3,……xiD}, Pi=(pi1,pi2,…piD) is its previous best position and 
G=(g1,g2,…gD) is the global best position of entire population, the 
particle calculates its velocity Vi1,Vi2,….ViD according to the following 
equation.

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 1
1 1 2 2  *  *t t t t t t

i i i i iV V c r P X c r G Xω − − − − −= + − + −      (1)

In the equation ω is inertia factor, c1and c2are learning factors, r1 
and r2 and are vectors of random values between (0,1). After that the 
particle moves to a new position adding the calculated velocity with its 
position according to Eq. (2).

( ) ( ) ( )1  t t t
i i iX X V−= +            (2)

Algorithm 1 shows the steps of PSO algorithm. The number 
of particles in PSO is a user defined parameter; and each particle 
is assigned with a random solution and a random velocity in 
initialization step (Step 1). At this initial stage, Pi is considered as the 
assigned random tour. On the other hand, global best solution G 
is defined as the best one based on the fitness. At every iteration 
step, for each particle, PSO calculates a new velocity value using 
Eq. (1) which is used to find the next position of the particle using 
Eq. (2) as mentioned in Step 2. The fitness of the particle is then 
updated for the new solution ( )t

iX  and compared with fitness of Pi 
and G. Pi is updated with ( )t

iX  if it is found better than Pi (Step 3). 
Similarly, G is updated with ( )t

iX  if it is found better than G (Step 
5). In PSO, G holds the best solution encountered by the particles 
throughout the operation; therefore, solution of G is considered 
as the outcome when operation terminates (Step 6). Termination 
criteria are checked in every iteration after PSO operations (Step 5) 
and processes (i.e., Step 2 to Step 4) repeat until reaching stopping 
condition. Usually, a sufficiently good fitness of G or a maximum 
number of iterations is considered as termination criteria.

A number of variations to the basic PSO and incorporation of other 
techniques with PSO have been investigated to improve its performance 
[17,19,30-37]. Several variants of PSO is also available to solve TSP 
[10,21-27], the most studied combinatorial optimization task. To 
solve TSP, a PSO particle represents a complete TSP tour and velocity 
associated with it considers a measure to change the tour towards a new 
tour. The existing studies proposed different techniques and parameters 
for velocity calculation and hence got new tour. Among the methods, a 
number of prominent methods use the parameters Swap Operator and 
Swap Sequence. Following subsections explain the operators in detail 
and then explain the methods.

Swap operator and swap sequence based operation on TSP

A Swap Operator (SO) contains a pair of indices that indicates two 
cities may swap in a tour. Suppose, a TSP problem has 5 cities and a 
solution is S=(a-c-e-b-d). Let a Swap Operator is S  then new 
solution with the SO is like below

S׳=S+SO(2,4)=(a-c-e-b-d)+SO(2,4)

=(a-c-e-b-d)

Here, ‘+’ means to apply SO on the solution S [11]. Swap Operator 
is the most important in solving TSP problem and its operation is 
similar to mutation operation of genetic algorithm [1,2]. 

Swap Sequence (SS) is a collection of one or more SO(s) that 
might be applied on a solution one after another sequentially. A SS is 
considered as the velocity of PSO. The Swap Sequence can be defined as:   

SS12=(SO1, SO2, SO3,…..SOn),                   (3)

Where (SO1, SO2, SO3,…..SOn) are Swap Operators. Implication of 
a SS on a solution is nothing but implication of all its SOs maintaining 
order. Eq. (4) shows solution S2 is achieved applying SS12 on S1. 

S2=S1+SS12=S1+ (SO1, SO2, SO3,……, SOn)   (4)

The implication order of SOs of SS12 is important because 
implication of same SOs in different order may give different solutions 
from the original solution. SS12 may also be calculated from solutions S1 
and S2 in the following equation: 

SS12=S2-S1= (SO1, SO2, SO3,….., SOn)                    (5)

here ‘-’ means that SOs of SS12 need to be applied on solution S1 to get 
S2.

As an example, if     S1=(a-c-e-b-d) and S2=(b-c-a-e-d) then 
SS12=SO(1,3), SO(2,3), SO(4,5). 

Moreover, operator defines merging operation of several SSs to get 
a new SS [11]. If SS1=SO(1,3), SO(5,4) and SS2=SO(5,2), SO(4,3) then 
new Swap Sequence SS(new) merging SS1 and SS2 is 

SS(new)=SS1 ⊗  SS2 

= {SO (1,3), SO (5,4)} ⊗ {SO (5,2), SO (4,3)} =SO (1,3), SO (5,4), 
SO (5,2), SO (4,3) (6)

It is notable that outcome with different SSs may be same even 
applying on a solution. Among these SSs which have the least SOs is 
called Basic Swap Sequence (BSS). As an example, when SSs,

SS112=SO(1,2),SO(2,1),SO(1,3),SO(2,3),SO(4,5) and SS212=SO(1,3), 
SO(2,3), SO(4,5) is applied on 

S1=(a-c-e-b-d) independently, the outcome is S2=(b-c-a-e-d) 
Therefore, SS212 is the Basic SS. It is also found by using Eq. (5), i.e., 
S2–S1.

Prominent PSO based methods to solve TSP

The work of [11] is the basic SS based PSO (SSPSO) method to 
solve TSP transforming PSO operations of function optimization to 
TSP. Introducing additional operations with SSPSO other algorithms 
to solve TSP are self-tentative PSO (STPSO) and Enhanced Self 
Tentative PSO (ESTPSO) [21]. STPSO introduces tentative behavior 
in SSPSO that tries to improve each particle placing a node in a 
different position. ESTPSO also considered block node adjustment 
in addition to individual node adjustment of STPSO [24]. Most 
recently, Velocity Tentative PSO (VTPSO) introduced tentative 
operation with velocity implementation [26]. The algorithms follow 
common initialization technique like standard PSO: consider 
user defined number of particles, assign random tour (Xi) and 
velocity (Vi) to each individual particle, calculate fitness of each 
tour, consider Pi as Xi, and assign G as the best tour among those 
tours. On the other hand, the tour that belongs to G is commonly 
considered as an outcome in any algorithm. The algorithms differ 
among themselves in velocity SS calculation, new tour generation 
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and additional operations with PSO operations. The following 
subsections briefly explain the methods. 

SSPSO [11] is the pioneer PSO based method to solve TSP 
considering SS as a velocity operator to transform a tour to a new 
one applying all its SOs. The velocity SS of a particle is measured on 
its previous best tour ( ( )1t

iP − ) and the global best tour (G(t-1)) in the 
population using Eq. (7). 

( ) ( ) ( ) ( )( ) ( ) ( )( ) [ ]1 1 1 1 1        , 1,0  t t t t t t
i i i i iV V P X G Xα β α β− − − − −= − − ò      (7)

( ) ( ) ( )1  t t t
i i iX X V−= +                            (8)

( )1t
iP −  (and (G (t-1))) will be considered on velocity calculation 

selecting more SOs. 

Algorithm 1: Particle Swarm Optimization (PSO) 
Step 1: Initialization 
Step 2: Calculate the velocity and update position of the particles 
according to Eq. (1) and Eq. (2). 
Step 3: Update Pi if the new solution (t)

iX is superior to Pi.
Step 4: Update G if the new solution (t)

iX is superior to G.
Step 5: Loop to Step 2 until a termination criterion is met.
Step 6: Take the global best solution G as an outcome.

In Eq. (7), α, β are random number between 0 and 1, ( ) ( )( )1 1  t t
i iP Xα − −−  

means all SOs in BSS for ( ) ( )( )1 1t t
i iP X− −−  should be maintained with the 

probability of α, it is the same for ( ) ( )( )1 1t t
iG Xβ − −− . The bigger the value of α 

(and β) the greater the influence of ( )1t
iP −  (and (G (t-1))) will be considered 

on velocity calculation selecting more SOs.

Algorithm 2: Swap Sequence based PSO (SSPSO)
Step 1:Initialization
Step 2: For each particle Xi in the swarm 
a. Calculate velocity ( )t

iV  according to Eq. (7)
b. Update solution using Eq. (8)
c. Update Pi if the new solution ( )t

iX  is superior to Pi
d. Update G if the new solution ( )t

iX  is superior to G
Step 3: Loop to Step 2 until a termination criterion is met
Step 4: Take the global best solution G as an outcome.

After that each particle moves to a new tour ( ( )t
iX ) applying velocity 

SS on its previous solution ( ( )1t
iX − ) using Eq. (8).

The steps of SSPSO are shown in Algorithm 2. As like any other 
population based algorithm SSPSO initializes (Step 1) user defined 
number of particles with random solutions (i.e., TSP tour). At 
this stage, a random velocity SS is assigned to each particle; Pi is 
considered as the current random tour and G is the best tour among 
them. Step 2 is for the main operation of SSPSO using Eq. (7) and 
Eq. (8). The method checks termination criterion in each iteration 
in Step 3. Usually a maximum number of iterations are considered 
as the termination criteria. If termination criterion meets then G is 
considered as the outcome (Step 4); otherwise it loops back to Step 
2 for further operation. 

STPSO [21] introduces tentative behavior after PSO operation 
in solving TSP owing to improve each particle. The steps of STPSO 
algorithm to solve the TSP are shown in Algorithm 3. Step 2 of STPSO 
is for PSO operations and is similar to SSPSO. The method calculates 
particle’s velocity as of Eq. (9) and updates position similar to SSPSO 
using Eq. (8). 

Algorithm 3: Self -Tentative PSO (STPSO)
Step 1: Initialization
Step 2: For each particle Xi in the swarm 

a. Calculate velocity ( )t
iV according to Eq. (9)

b. Update solution using Eq. (8)
c. Update Pi if the new solution ( )t

iX  is superior to Pi
d. Update G if the new solution ( )t

iX  is superior to G
Step 3: Tentative Operation on Each Particle Xi

a. Single Node Adjustment
b. Update Pi  if the new solution ( )t

iX  is superior to Pi
c. Update G if the new solution ( )t

iX  is superior to G
Step 4: Loop to Step 2 until a termination criterion is met
Step 5: Take the global best solution G as an outcome

( ) ( ) ( ) ( )( )1 1 1
1 1    .t t t t

i i i iV V c r P Xω − − −= −
( ) ( )( ) [ ]1 1

2 2 1 2.  , 1,0t t
ic r G X r r− −− ò                   (9)

In Eq. (9), C1 and C2 are learning factors, and r1 and r2 are vectors of 
random values between (0,1). The scalling factor ω defines the portion 
of previous veloctiy in the current velocity.

Self -Tentative operation in STPSO (Step 3) is mainly single node 
adjustment. For each particle, from the second node to the end the 
following actions are done: delete the node from the original position; 
measure fitness values with different positions and place it for which it 
gives the best fitness [23]. Outcome of this Self-Tentative operation is 
better particle solution (i.e., TSP tour) if any single node adjustment is 
able to improve its fitness. However, single node adjustment of STPSO 
might not be sufficient to get optimal result in some cases [22].

ESTPSO [22] is an extension of STPSO with block node adjustment 
to get better result overcoming limitation of single node adjustment. 
The steps of ESTPSO algorithm are shown in Algorithm 4. 

Algorithm 4: Enhanced Self -Tentative PSO (ESTPSO)
Step 1: Initialization
Step 2: For each particle Xi in the swarm 

a. Calculate velocity ( )t
iV  according to Eq. (9)

b. Update solution using Eq. (8)
c. Update Pi if the new solution ( )t

iX  is superior to Pi
d. Update G if the new solution ( )t

iX  is superior to G
Step 3: Tentative Operation on Each Particle Xi
Single Node Adjustment
Block Node Adjustment
Update Pi if the new solution ( )t

iX  is superior to 
Update G if the new solution ( )t

iX  is superior to G
Step 4: Loop to Step 2 until a termination criterion is met
Step 5: Take the global best solution G as an outcome

In ESTPSO, the block node adjustment (Step 3b) after single 
node adjustment (Step 3a) is only the addition to STPSO. In block 
node adjustment, position of a block of nodes of a particle is altered 
for better fitness of particle tour. Since selection of block length 
is hard to determine ESTPSO adopted a dynamic strategy based 
on generation. After the basic PSO operation and the single-node 
adjustment, the block size k is determined as a random number 
between 2 and Kmax. The value of Kmax changes according to the 
generation and becomes longer with the generation [24]. Detailed 
description regarding block node adjustment is available in the 
existing studies [22,23]. Finally, the termination criteria of ESTPSO 
are similar to SSPSO and STPSO.
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VTPSO [26] is the most recent PSO based method conceiving a 
moderate way (called partial search) of getting new tour with velocity 
SS while calculates velocity similar to other methods (e.g. SSPSO, 
STPSO). Moreover, it also employs a moderate self-tentative technique 
to improve its performance. 

Algorithm 5 shows the steps of the VTPSO which initializes the 
population with random solutions. At each iteration step, VTPSO 
calculates velocity SS (Step 2a) using Eq. (10) that is simpler than Eq. 
(9) of STPSO/ESTPSO. Eq. (10) does not have any parameter to set and 
α, β are random numbers between 0 and 1. 

Algorithm 5: Velocity Tentative PSO (VTPSO)
Step 1: Initialization 
Step 2: For each particle Xi in the swarm 
Calculate velocity ( )t

iV  using Eq. (10)
Update ( )t

iX  through Partial Search manner 
Apply Tentative Operation on ( )t

iX  if is Superior to Pi
Update Pi if the new solution ( )t

iX  is superior to Pi
Update G if the new solution ( )t

iX  is superior to G
Step 3: Loop to Step 2 until a termination criterion is met
Step 4: Take the global best solution G as an outcome

( ) ( ) ( )( ) ( )( )1 1 1    t t t t
i i i i iV V P X G Xα β− − −= − −

[ ], 1,0α βò                      (10) 

The partial search (PS) technique, to apply calculated SS to update 
particle’s position (i.e., TSP tour) is the main difference of VTPSO 
from other methods. In PS technique (Step 2b) , performance of a tour 
is measured after applying each of SOs of SS and the final velocity is 
considered for which it gives better tour. Therefore, the final velocity 
may be a portion (from the beginning) of calculated velocity SS. It 
is reported that PS technique may explore better result evaluating 
intermediate tentative tours without increasing the computational 
time. VTPSO applies self-tentative operation (Step 2.c) on tour (Xi) 
when it is found better than Pi. The detail description of PS technique 
and VTPSO is available in [26]. Finally, the termination criteria of 
VTPSO are similar to other methods.

Experimental Studies
This section first gives a short description of the benchmark TSPs 

and experimental settings. After that experimental result of the PSO 
based methods are presented and comparison among them is made. 
Since ACO is the most prominent method for TSP [8,9,29], it is also 
considered in this study to identify the effectiveness of a PSO based 
method with respect to it. This section also presents an experimental 
analysis to identify variation effect of parameter values on performance. 

Benchmark problems and experimental setup

In this study, a suite of 58 benchmark problems are considered 
from TSPLIB [38] where number of cities varied from 14 to 493, thus 
give a diverse test bed. A numeric value in the problem name indicates 
the number of cities in that tour. As an example, eil76 has 76 cities. 
A city in a problem is represented as a coordinate; therefore, the TSP 
cost matrix is prepared calculating distance using the coordinates. As 
like any TSP solving method, the algorithms of this study took the cost 
matrix as input of a problem and give sequence of cities as outcome 
those to be visited in order to make the tour with minimal cost. 

Every algorithm requires appropriate parameter settings to get 
proper outcome. For STPSO and ESTPSO, the value of scaling factor 

ω of Eq. (9) is calculated using Eq. (11) that is identified to give better 
result according to the previous study [20]. 

( )( )0.1 1 1 2* / *0.05 , sqr t Tω = − − −                (11)

where t and T are current iteration and iteration as termination 
criteria, respectively. Moreover, the values of c1 and c2 (i.e., scaling 
factors) of Eq. (9) were 0.08 and 0.12, respetively as of previous studies. 
On the other hand, SSPSO and VTPSO does not require any parameter 
to set for velocity SS calculation. In ACO, alpha and beta were set to 1 and 
3, respectively. Population size, i.e., number of particles in the swarm, 
is a common parameter in any PSO based method. The population 
size was 100 in all four PSO based methods. Whereas, population size 
was equal to number of cities in ACO as it desire. On the other hand, 
fixed number of iteration was considered as the termination criteria 
of the algorithms and it was set 500 for fair comparison. The selected 
parameters are not optimal values, but considered for simplicity as well 
as for fairness in observation.

The algorithms have been implemented on Visual C++ of Visual 
Studio 2013. The experiments have been conducted on a PC (Intel Core 
i7-4790 CPU @ 3.60 GHz CPU, 8 GB RAM) with Windows 7 64-bit OS.

Experimental Results
This section compares PSO based methods including ACO on the 

basis of experimental results in solving the benchmark TSPs. Results 
are presented in two different tables for small and large sized problems. 
Table 1 presents average and minimum (i.e., best) tour costs achieved 
by the methods for 20 individual runs for small sized problems. For 
a particular problem, the best one (i.e., smallest value) among the 
five algorithms is shown in bold-face type and worst one (i.e., largest 
value) is shown in underlined-face type. Bottom of the table shows the 
summary of the results presented for individual problems. Best/worst 
summary indicates on how many problem instances a method gave 
best/worst result among the five methods. Pair wise Win/Draw/Loss 
summary is for comparing a method with other methods individually. 
ACO is the prominent method for solving TSP and starts placing an 
ant in each of individual cities. Thus, it considers population size as 
the number of cities in a given problem. The tour costs achieved by 
ACO in different runs are found consistent showing lower Standard 
Deviation (SD) values. For several problems, especially small sized 
problems (e.g., ulysses16, gr17, gr21), ACO has shown same tour 
cost in all 20 individual runs and therefore SD of average tour cost is 
shown as zero in the Table 1. On the other hand, SSPSO gave most 
variant outcomes among different runs showing largest SD value for 
any problem. Among the PSO based methods, ESTPSO has shown 
the most consistent outcome (i.e., SD value is minimum) and for 
very small sized problem it showed SD value zero such as burma14, 
ulysses16, gr17 gr21. However, VTPSO and ESTPSO (even SD values 
larger than ACO) achieved better average tour costs than ACO for 
several problems. As an example, ACO achieved average tour cost 
of 747.12 with 8.13 SD for st70 problem. On the other hand, for the 
same problem ESTPSO and VTPSO achieved tour costs 722.21 (with 
SD 23.17) and 716.29 (with SD 17.79), respectively. Since outcome of 
ACO does not change much in different runs and it is unable to work 
with population size larger than number of cities, a PSO based method 
might be a good choice to achieve better outcome from several runs 
varying population size. 

The average tour costs from 20 runs for the small sized problems 
presented in left side of the Table 1 indicate that ESTPSO and VTPSO 
are better than ACO and SSPSO is inferior to ACO. SSPSO is shown 
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on average largest tour cost over the problems (i.e., 57702.65) showing 
worst for all 24 problems. The average tour cost achieved by ACO is 
14576.15 and it is better than SSPSO. On the other hand, VTPSO, the 
latest PSO based method, has shown best average tour cost of 13413.20 
and is found best for 14 cases out of 24 cases. ESTPSO is shown best 
for 12 cases and outperformed ACO. Although STPSO is worse than 
ACO on the basis of average result (i.e., 17109.40) it is shown best for 
three cases but ACO is found best for none. The pairwise Win/Draw/
Loss summary indicates that ESTPSO and VTPSO are individually 
better than ACO in 23 cases; and ACO outperformed ESTPSO and 
VTPSO for rat99 and gr17, respectively. STPSO is found competitive to 
ACO showing outperformance on each other for 12 cases. In general, 
STPSO outperformed ACO for small sized problems (e.g., burma14, 
ulysses16) and ACO is shown better than STPSO for relatively large 
sized problems (e.g., kroD100, kroE100). Population size was fixed 
at 100 for STPSO and it was the number of cities in ACO, therefore, 
the larger population for relatively large problems in ACO might be 
the reason for better performance of ACO over STPSO for such large 
cases. But the outperformance of ESTPSO over STPSO as well as 
ACO indicates the effectiveness of block node adjustment in ESTPSO. 
ESTPSO is found better than STPSO for 21 cases and both showed 
similar outcomes in remaining three cases. On the other hand, VTPSO, 
which follows different way of improvement of PSO rather than STPSO 
and ESTPSO, is shown better than STPSO and ESTPSO for 17 and 12 
cases, respectively.

Achieved best tour costs from 20 individual runs presented right 
side in Table 1 also support the average result of left side and indicate 
the effectiveness of a method to solve benchmark TSP. On the basis 
of average results of 24 problems, VTPSO is the best and SSPSO is 
the worst. VTPSO is shown on average lowest tour cost of 12803.5. 
The average minimum tour costs are 14521.8, 54494.97, 15467.3 and 
12886.0 for ACO, SSPSO, STPSO and ESTPSO, respectively. On the 
basis of best/worst summary, VTPSO is shown to achieve best tour with 
shortest path for 21 cases showing worst for none. For eil76 problem, as 
an example, VTPSO achieved best tour path with tour cost of 573.18. 
For the same problem, tour costs for ACO, SSPSO, STPSO and ESTPSO 
were 597.95, 2001.76, 674.86 and 586.13, respectively. With similar 
outcomes for several cases, STPSO and ESTPSO are shown best for 9 
and 15 cases, respectively. From pairwise Win/Draw/Loss summary, 
VTPSO and ESTPSO are better than ACO for all 24 cases. Among PSO 
based methods VTPSO and ESTPSO are shown better than SSPSO for 
24 and 15 cases, respectively. On the other hand, VTPSO outperformed 
ESTPSO for 9 cases, showed similar outcomes for 12 cases and for rest 
three cases it was inferior to ESTPSO. 

Table 2 presents average and minimum (i.e., best) tour costs 
achieved by the methods for 20 individual runs for 34 large sized (cities 
larger than 100) problems. Similar to Table 1, for a particular problem, 
the best one (i.e., smallest value) among the five algorithms is shown in 
bold-face type and worst one (i.e., largest value) is shown in underlined-
face type. Bottom of the table also shows the summary of the results. 
On the basis of average tour costs, placed at left side of the table, 
VTPSO is the best and SSPSO is the worst among the five methods. 
SSPSO is shown worst for all 34 problems and VTPSO is shown best 
for 25 cases. In such large problems ACO performed best for six cases 
although it failed to perform best for any small problems (as seen in 
Table 1). The average tour cost achieved by ACO for all 34 problems is 
21065.67; and the value is better than SSPSO and STPSO which showed 
average tour costs of 217008.2 and 37834.28, respectively. Among PSO 
based methods, ESTPSO is competitive to ACO with average tour 
cost of 21042.42 and VTPSO is shown the best method achieving least 

average tour cost of 20802.25. The pairwise Win/Draw/Loss summary 
indicates that ESTPSO and VTPSO are better than ACO for 24 and 28 
cases, respectively. On the other hand, SSPSO and STPSO are found 
inferior to ACO for all 34 cases. For such large problems, the better 
performance of ACO is logical because in such cases population size 
of ACO was larger than fixed 100 of SSPSO and STPSO. Again, the 
outperformance of ESTPSO and VTPSO over ACO for 24 and 28 cases 
indicates the effectiveness block node adjustment in ESTPSO and 
effectiveness of VTPSO technique.

Achieved best tour costs from 20 individual runs for the large 
problems presented at the right side in Table 2 also support the average 
result of left side and indicate the effectiveness of a method to solve 
benchmark TSP. On the basis of average results, VTPSO is the best 
and SSPSO is the worst. VTPSO is shown on average lowest tour 
cost over all the problems (i.e., 19604.71). The average of minimum 
tour costs are 20825.95, 205410.5, 29203.18 and 19739.41 for ACO, 
SSPSO, STPSO and ESTPSO, respectively. On the basis of best/worst 
summary, VTPSO is shown to achieve best tour with shortest path for 
22 cases showing worst for none. ACO and ESTPSO are shown the 
best for remaining 2 and 10 cases, respectively. From pairwise Win/
Draw/Loss summary, VTPSO and ESTPSO are better than ACO for 
32 cases. Among PSO based methods, VTPSO and ESTPSO are better 
than SSPSO and STPSO for all 34 cases. On the other hand, VTPSO 
outperformed ESTPSO for 23 cases and for remaining 11 cases ESTPSO 
is shown better than VTPSO. Finally, VTPSO is shown the best method 
among the tested methods and ESTPSO is also found better than ACO.

Experimental analysis

This section investigates the performance of the methods varying 
population size and number of iteration. The results presented in 
Tables 1 and 2 were for the fixed number of population size (=100) 
and iterations (=500) for all the problems. It is necessary to observe 
how the methods perform on the variation of both the parameters. The 
experiments were performed on the same machine mentioned before. 
Three problems with different sizes were selected for the analysis; the 
problems are eil51, gr96 and gr137.

Figure 1 shows the achieved tour cost for different population sizes 
that varied from 10 to 500 while total iteration was fixed at 500. The 
presented results are the averages for five independent runs. Since 
ACO uses population size equal to the number of cities, the results 
presented for ACO were only for different runs with fixed population 
size for a particular problem. Therefore, ACO has shown almost 
invariant performance. On the other hand, a PSO based method 
is found to improve with population size. As an example, for eil51 
problem at population size 20, STPSO achieved tour cost of 507.53 
and is competitive to ACO which achieved tour cost of 504.6. For 
the same eil51 problem, STPSO showed best tour cost 467.76 at 400 
populations that are much better than ACO. It is notable from the 
figure that SSPSO, the pioneer PSO based method, is the worst among 
the methods for any population size and much worse than ACO. On 
the other hand, ESTPSO and VTPSO are found always better than 
ACO and competitive to one another. However, VTPSO, the latest 
PSO based method, seems best among the methods and also showed 
less variant performance when population varied from 50 to 500. This 
indicates that VTPSO works well and gives suitable performance with 
relatively small population size. In VTPSO partial search based velocity 
implementation might be helpful to deliver better outcome even with 
small population.

Figure 2 compares the variation of termination criteria (i.e., total 
iteration) on tour costs among the methods. The number of iterations 
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varied from 50 to 1000 while population size was fixed at 100. The 
presented results are the average for five independent runs. It is seen 
from the figure that all the methods show the worst tour costs at 
iteration 50, improved with iteration up to a certain value, and after 
that improvement was not significant. As an example, ACO achieved 
best tour cost 576.1 at 600 iteration for gr96 problem. On the other 
hand, the best tour cost achieved by ESTPSO and VTPSO are 541.72 
and 534.84 at iteration 800 and 100, respectively. At a glance, similar to 
Figure 1, SSPSO is the worst among the methods for any iteration value 
and ESTPSO and VTPSO is always better than ACO. 

Since the experiments are performed in a single machine, the time 
requirement comparison among the methods to solve a particular 
problem is also interesting to observe computational effectiveness of 

a method. For a particular problem time requirement depends on the 
number of population and the number of iteration. As a sample case, 
to solve gr96 problem corresponding time requirements for population 
variation of Figure 1b and iteration variation in Figure 2b are presented 
in Figure 3. It is notable that shape of time requirement curves is also 
similar for eil51 and gr137 problems. It is observed from the figure 
that STPSO took much time than SSPSO because it introduced single 
node adjustment over SSPSO and ESTPSO took much time than 
STPSO because it introduced block node adjustment upon STPSO. 
On the other hand, ACO took less time than SSPSO; and VTPSO is 
competitive to ACO. As an example, for 500 iterations SSPSO, STPSO 
and ESTPSO took 346.55, 420.33 and 600.0 s, respectively. For the same 
500 iterations, ACO took 249.88 s. Among the PSO based methods, 

Sl Problem
Average Tour Cost (Standard Deviation) Minimum Tour Cost 

ACO SSPSO STPSO ESTPSO VTPSO ACO SSPSO STPSO ESTPSO VTPSO

1 burma14 31.31 (0.24) 34.61 (1.16) 30.87 (0) 30.87 (0) 30.87 (0) 31.21 31.84 30.87 30.87 30.87

2 ulysses16 77.13 (0) 83.94 (3.69) 73.99 (0) 73.99 (0) 74 (0) 77.13 77.36 73.99 73.99 73.99

3 gr17 2332.58 (0) 3215.53 (260.48) 2332.58 (0) 2332.58 (0) 2342.84 (20.9) 2332.58 2772.53 2332.58 2332.58 2332.58

4 gr21 2955.42 (0) 4958.37 (256.77) 2685.32 (31.15) 2672.27 (0) 2697.59 (39.61) 2955.42 4465.08 2672.27 2672.27 2672.27

5 ulysses22 86.18 (0.15) 110.19 (4.59) 75.6 (0.29) 75.36 (0.09) 75.35 (0.08) 85.59 99.88 75.31 75.31 75.31

6 gr24 1267.13 (0) 2295.48 (105.69) 1251.59 (7.73) 1249.82 (0) 1249.82 (0) 1267.13 2021.14 1249.82 1249.82 1249.82

7 fri26 646.39 (0.37) 1229.12 (73.02) 636.62 (4.52) 635.58 (0) 637.41 (4.94) 644.8 1089.92 635.58 635.58 635.58

8 bayg29 9964.78 (0) 17427.38 (919.49) 9102.34 (82.61) 9074.15 (0) 9133.78 (103.12) 9964.78 14914.93 9074.15 9074.15 9074.15

9 bays29 9964.78 (0) 17777.28 (655.35) 9091.49 (42.15) 9074.15 (0) 9092.9 (52.32) 9964.78 16092.24 9074.15 9074.15 9074.15

10 hk48 12707.6 (11.88) 34555.42 (1269.5) 12568.62 (694.69) 11125.15 (52.41) 11551.63 (303.42) 12699.86 31607.75 11616.3 11104.67 11104.67

11 att48 38989.37 (0) 108035.27 (3646.6) 37040.66 (1928.7) 33892.75 (183.5) 34561.61 (553.46) 38989.37 99784.19 34076.62 33784.02 33784.02

12 eil51 500.87 (7.14) 1235.1 (33.63) 490.07 (16.59) 445.43 (4.63) 444.57 (5.86) 473.11 1149.68 460.39 435.62 435.35

13 berlin52 8074.63 (31.59) 22208.33 (595.27) 8542.19 (360.55) 7761.66 (170.1) 7875.94 (216.04) 7966.99 20294.9 7684.23 7544.37 7544.37

14 st70 747.12 (8.13) 2799.86 (81.36) 903.53 (54.52) 722.21 (23.17) 716.29 (17.79) 734.19 2621.95 810.59 687.17 687.83

15 eil76 597.95 (7.03) 2001.76 (41.07) 674.86 (23.78) 586.13 (10.63) 573.18 (7.38) 580.91 1925.04 617.31 569.25 562.94

16 pr76 127371.7 (0) 451769.47 (9267.9) 144306.46 (7518.8) 113158.94 (3377.9) 113603.24 (2860.9) 127371.68 433409.25 132607.74 109059.3 108981.2

17 gr96 587.96 (8.6) 2702.02 (51.52) 725.8 (43.14) 554.35 (26.52) 544.7 (14.28) 567.52 2595.8 643.7 516.1 523.07

18 rat99 1369.2 (0.85) 6571.79 (139.97) 1750.38 (107.56) 1389.78 (47.04) 1345.47 (32.05) 1366.3 6260.14 1475.11 1295.55 1261.13

19 kroa100 24645.72 (73.91) 134460.78 (2742.0) 33198.45 (1724.5) 23506.66 (860.23) 22214.29  507.14) 24524.53 128768.75 29043.03 21622.39 21408.48

20 kroB100 25234.1 (481.4) 131988.83 (3281.7) 32542.56 (2272.9) 24393.93 (619.48) 23314.96  506.74) 24675.03 122797 28137.74 23236.43 22367.61

21 kroC100 23324.62 (131.3) 132512.47 (3337.7) 32537.78 (2089.0) 22387.53 (762.92) 22196.17  513.44) 23248.13 123441.85 29969 21347.21 21268.17

22 kroD100 24399.57 (15.5) 127337.76 (3974.8) 34642.48 (2113.8) 23508.77 (1228.5) 22623.57  552.35) 24396.01 120331.25 30699.7 21547.04 21650.61

23 kroE100 24530.33 (157.8) 135175.79 (2772.8) 33389.21 (2838.3) 24407.89 (792.4) 23466.54  598.72) 24396.38 130475.25 27945.66 23111.2 22516.1

24 rd100 9421.11 (60.17) 44377.02 (1271.6) 12032.2 (734.04) 8856.77 (361.24) 8557  265.87) 9210.67 40851.51 10209.74 8186.36 7971.41

Average 14576.15 57702.65 17109.40 13413.20 13288.49 14521.84 54494.97 15467.32 12886.06 12803.57

Best/
Worst 0/0 0/24 3/0 12/0 14/0 0/0 0/24 9/0 15/0 21/0

Method
Pairwise Win/Draw/Loss Summary on Average Tour Cost and Minimum Tour Cost
ACO SSPSO STPSO ESTPSO VTPSO ACO SSPSO STPSO ESTPSO VTPSO

ACO - 0/0/24 12/0/12 23/0/1 23/0/1 - 0/0/24 13/0/11 24/0/0 24/0/0
SSPSO - 24/0/0 24/0/0 24/0/0 - 24/0/0 24/0/0 24/0/0
STPSO - 21/3/0 17/1/6 - 15/9/0 15/9/0
ESTPSO 12/2/10 - 9/12/3

Table 1: Comparison of the experimental results of ACO and PSO based methods to solve small sized (up to 100 cities) benchmark TSPs.
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Sl Problem
Average Tour Cost  (Standard Deviation) Minimum Tour Cost 

ACO SSPSO STPSO ESTPSO VTPSO ACO SSPSO STPSO ESTPSO VTPSO

1 eil101 737.44  (6.64) 2799.6 (55.71) 841.14  (54.15) 696.12  (11.97) 841.14  (9.92) 715.18 2638.47 753.94 672.75 655.32

2 lin105 15522.5  
(316.84) 96919.84  (2316.55) 23162.54  (2384.2) 16114.34 (790.08) 23162.54 (520.81) 15364.58 91743.07 19359.05 15085.39 14701.58

3 pr107 46557.69  116.01) 439116.3  (8574.2) 79486.49  (10357) 44632.63 (152.47) 79486.49 (1196.7) 46413.52 423469.7 53122.02 44301.7 44584.38

4 pr124 65145.25  (0) 565621.5 (10300.14) 100979 (11571.8) 66481.58  (2618) 100979 (1094.0) 65145.25 541989.1 79706.86 62501.23 61662.91

5 bier127 128108.2 (1239.1) 532280.7 (11315.41) 161793.5  (9365.7) 126838 (2872.1) 161793.5 (2398.0) 124559.4 500526.7 148245.8 121039.1 121082.5

6 ch130 7043.3  (79.38) 38272.61  (1007.29) 9563.97  (630.88) 6733.25 (163.74) 9563.97  (155.1) 6917.91 35046.95 8538.29 6444.42 6215.44

7 pr136 110876  (16.33) 681912.2 (15325.97) 153750.3 (10588.1) 106603.1 (4022.4) 153750.3 (2461.8) 110872.2 625531.6 127394.6 99219.27 99942.05

8 gr137 926.85  (8.95) 4938.19  (154.07) 1167.4  (108.41) 809.29  (18.95) 1167.4  (17.61) 899.09 4596.79 1008.87 760.18 744.18

9 pr144 59627.42 (182.34) 671970.6 (13867.41) 136396.1 (12809.8) 66097.9 (2920.6) 136396.1 (2536.2) 59415.4 635296.6 114332.8 59547.19 59647.36

10 ch150 6907.15  (73.31) 45323.59  (711.77) 10344.47  (753.51) 7388.19 (208.37) 10344.47 (162.49) 6770.18 44110.16 8753.37 7028.03 6852.18

11 kroA150 30759.58 (317.35) 212961.4  (3320.12) 45118.03 (4028.44) 29300.59 (520.57) 45118.03 (583.37) 30040.62 204164.8 40186.03 28526.15 27212.81

12 kroB150 31053.56 (162.19) 209840.5  (3584.08) 44153.4 (2972.24) 28998.75 (726.54) 44153.4 (631.66) 30604.29 197637.7 38407.87 27885.29 26776.94

13 pr152 79504.02 (181.38) 880786.2  (8982.42) 154613.9 (15284.8) 79432.29 (2062.2) 154613.9 (1507.6) 79153.02 857622.4 128456.6 76726 74107.38

14 u159 47793.27 (309.99) 372243.5  (8821.78) 71030.94 (7560.71) 47970.1 (1431.5) 71030.94 (1383.2) 47514.43 347189.8 56732.94 45354.17 44083.4

15 rat195 2570.99  (27.35) 19296.1  (268.74) 3781.4  (307.53) 2657.21  (76.82) 3781.4  (49.58) 2534.75 18623.87 3223.31 2508.52 2473.74

16 d198 17456.37 (146.45) 155376.2  (2762.86) 29275.75 (2765.72) 17308.64 (171.01) 29275.75 (239.69) 17301.47 150029 23170.7 17017.81 16104.26

17 kroA200 34620.74 (174.42) 286928  (5161.32) 54925.81 (5570.29) 32648.93 (862.85) 54925.81  (520.9) 34547.69 273295.2 43842.92 31304.88 30707.25

18 kroB200 35127.96 (344.72) 281184.7  (6593.01) 51218.46 (4437.39) 32710.35 (628.33) 51218.46 (717.11) 34207.79 261440.5 44143.71 31554.36 30514.27

19 gr202 569.97  (2.1) 2747.51  (50.37) 708.17  (35.06) 528.3  (8.73) 708.17  (7.47) 566.08 2602.78 653.21 512.17 504.62

20 ts225 137421  (62.63) 1386139 (15612.99) 203659.1 (15882.4) 142049.5 (4738.6) 203659.1 (3344.5) 137358.4 1337783 175849.7 132591.6 134505.6

21 tsp225 4547.87  (59.27) 35850.1  (498.44) 6094.45  (401.84) 4356.25  (98.76) 6094.45  (63.08) 4472.68 34613.2 5352.26 4179.77 4139.85

22 pr226 90550.08 (145.82) 1461647  (17035.9) 179124.4 (19713.2) 93182.75 (3927.4) 179124.4 (3025.7) 90501.46 1422765 127690 83840.3 84343.33

23 gr229 1925.31  (22.14) 13639.65  (320.98) 2494.74  (241.34) 1784.97  (33.21) 2494.74  (24.73) 1865.63 12644.35 2112.95 1720.43 1712.69

24 gil262 2796.2  (22.13) 23616.51  (262.73) 4238.6  (251.12) 2673.61  (57.12) 4238.6  (33.04) 2767.35 22813.56 3801.81 2578.68 2577.09

25 pr264 54388.15  (121.6) 938471.6 (17197.82) 130455.7  (10701.2 55732.53 (1123.0) 130455.7 (978.38) 54206.21 904252.3 110299 53459.95 53766.16

26 pr299 57205.3 (361.35) 653271.6 (14348.11) 92542.76 (8643.73) 56468.8  (11355) 92542.76 (953.62) 57051.19 615387.7 74224.96 54614.16 52069.8

27 lin318 48511.98 (319.68) 522028.6  (6432.04) 86710.79  (4269.7) 47532.54 (1011.6) 86710.79 (651.62) 48126.45 506435.5 78735.93 45705.48 45284.7

28 linhp318 48392.22 (355.54) 524957.8  (6525.9) 84472.38 (4819.54) 47708.68 (983.28) 84472.38 (722.67) 47984.96 503906.9 77181.54 46149.11 45575.61

29 rd400 17921.84 (118.08) 191166.5  (1426.84) 27744.46 (1639.29) 16890.71 (276.56) 27744.46  (204.3) 17754.66 186799.9 24943.48 16361.51 16589.19

30 fl417 13554.67 (111.29) 437355.2  (2844.06) 33195.24 (3983.01) 13740.95 (446.37) 33195.24 (337.72) 13390.96 431821.1 26455.5 12964.52 12409.94

31 gr431 2373.62  (19.74) 25599.18  (365.42) 3475.87  (197.85) 2121.45  (38.51) 3475.87  (24.81) 2336.38 24819.06 3043.36 2020.22 2021.43

32 pcb442 58469.86 (108.89) 703108.9  (7123.31) 88675.92 (5954.78) 57322 (1339.6) 88675.92 (928.78) 58288.81 678325.6 77460.67 53923.08 54956.45

33 pr439 127423.3 (312.16) 1721145 (13467.78) 237200.6 (18261.1) 121396 (3551.0) 237200.6 (2131.5) 127228.3 1677427 204236.6 116092 117113.8

34 d493 39807.93 (422.63) 406682.7  (4723.98) 60717 (3072.74) 38992.88 (434.14) 60717 (652.84) 39152.43 390534.4 54361.93 38054.69 37448.02

Average 21065.67 217008.2 37834.28 21402.42 20802.25 20825.95 205410.5 29203.18 19739.41 19604.71

Best/
Worst 6/0 0/34 0/0 3/0 25/0 2/0 0/34 0/0 10/0 22/0

Method
Pairwise Win/Draw/Loss Summary on Average Tour Cost and Minimum Tour Cost

ACO SSPSO STPSO ESTPSO VTPSO ACO SSPSO STPSO ESTPSOO VTPSO
ACO - 0/0/34 0/0/34 24/0/10 28/0/6 - 0/0/34 0/0/34 32/0/2 32/0/2

SSPSO - 34/0/0 34/0/0 34/0/0 - 34/0/0 34/0/0 34/0/0
STPSO - 34/0/0 34/0/0 - 34/0/0 34/0/0

ESTPSO - 31/0/3 - 23/0/11

Table 2: Comparison of the experimental results of ACO and PSO based methods to solve large sized benchmark TSPs.

VTPSO took 228.43 s that is less than required by ACO. Although 
VTPSO calculates velocity similar to other PSO based methods it 
achieved faster convergence due to partial search based velocity 
implementation. Finally, VTPSO performed as the best tour achieving 
method using least time.

Conclusion
Recently, PSO has gained popularity in solving difficult 

optimization problems and a number of PSO based methods have been 
investigated to solve TSP. A PSO based method calculates velocity of a 
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Figure 1: Variation effect of population size on tour cost.
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Figure 2: Variation effect of iteration on tour cost.



Citation: Akhand MAH, Hossain SI, Akter S (2016) A Comparative Study of Prominent Particle Swarm Optimization Based Methods to Solve Traveling 
Salesman Problem. Int J Swarm Intel Evol Comput 5: 139. doi: 10.4172/2090-4908.1000139

Page 9 of 10

Volume 5 • Issue 3 • 1000139
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

 
 

0

300

600

900

1200

1500

1800

0 100 200 300 400 500

R
eq

ui
re

d 
tim

e 
(S

ec
.)

Population

ACO
SSPSO
STPSO
ESTPSO
VTPSO

 
 

0

200

400

600

800

0 200 400 600 800 1000

R
eq

ui
re

d 
tim

e 
(S

ec
.)

Iteration

ACO
SSPSO
STPSO
ESTPSO
VTPSO

(a) Required time varying population (b) Required time varying iteration
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particle considering its current TSP solution with the personal best and 
global best solutions and then updates its tour incorporating calculated 
velocity with its solution. In this study, prominent PSO based methods 
are studied and their outcomes are compared in solving a large number 
of benchmark TSPs. The methods differ in velocity calculation as well 
as velocity implementation. In performance evaluation, ACO is also 
considered since it is a prominent method for TSP. Experimental 
results reveled that SSPSO (the pioneer method) is the worst among 
the PSO based methods and even worse than ACO. STPSO is found 
competitive to ACO; ESTPSO and VTPSO are found better than ACO. 
But in case of time requirement, ESTPSO is computationally heavy 
due to its several operations out of basic PSO operations. On the other 
hand, VTPSO has shown the most cost effective PSO based method 
and is better than ACO to solve benchmark TSPs. 
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