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Background and Purpose
Neurological disorders of the brain which affect the white matter 

(WM) may bring microscopic changes that eventually affect the water 
diffusion in and around affected regions. From the perspective of 
diagnosis and treatment of any disease it is imperative to detect these 
changes as early as possible. The main advantage of diffusion tensor 
imaging (DTI) is its ability to capture the information regarding 
diffusion of water molecules at the microscopic level, which is otherwise 
not feasible with other conventional magnetic resonance (MR) 
contrasts. The efficacy and power of DTI in providing this microscopic 
information non-invasively has enabled clinicians and researchers to 
study numerous neurological disorders of the brain. 

Since its initial development in the early 1990s [1] the field of 
DTI has advanced rapidly with hundreds of publications describing 
pathophysiological changes in the brain white matter (WM) brought 
on by the disease process, as well as properties of the intact brain WM 
in healthy humans. Many articles and books have been written to 
describe the theory [2-6] and mathematics behind DTI [7-9] as well as 
softwares for DTI data processing and analysis [10,11]. Nevertheless, 
DTI users without extensive mathematical background may lack a good 
understanding of mathematical concepts of DTI. The DTI literature 
has a tendency to utilize rigorous mathematical descriptions of the DTI 
technique [7,8], which may limit the comprehension of the technique 
for those DTI users without extensive mathematical background. 
Literature which has tried to explain the underlying concepts of DTI 
without rigorous mathematics [12] has failed to show a connection 
between the DTI concepts and the mathematics on which DTI is based. 
Despite several publications attempting to make this connection, clear 
descriptions of DTI, DTI image processing and the reasons behind 
each processing step are needed. The aim of the present article is to provide 
DTI users with simple, easy-to-understand explanations of the geometrical 
and physical interpretation of the mathematics behind DTI.

Understanding DTI Mathematics
Brief explanation of the term DTI

Diffusion is a net movement of molecules due to the concentration 
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Abstract
Diffusion tensor imaging (DTI) is one of the most powerful magnetic resonance imaging (MRI) techniques developed 

in the twentieth century. In spite of the fact that DTI has been in use for more than two decades, it is still hard to 
find publications that simplify mathematics behind DTI for DTI users without extensive mathematical background. 
We believe that this may prevent some researchers from using DTI technique to its fullest extent. To the best of our 
knowledge, there are no published reviews which have tried to clarify the methods of DTI measurement and analysis. In 
this article, we attempted to explain the mathematics of DTI in simple terms with the goal of providing DTI users, with a 
better understanding of this technique and its usage. In addition, we have also described the DTI processing steps and 
explained the reasons behind each step. 
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gradient1 (in general gradient means a gradual increase or a decrease 
in magnitude of any physical quantity for e.g. temperature or pressure 
in space or over time, here it refers to the difference in concentration), 
called mass transport, arising as a result of mixing particles without 
requiring any bulk motion (i.e. any non-individual molecule 
movement) of the particles [13]. In the case of DTI, the particles are 
water molecules. Applied to the nervous system WM, diffusion is used 
indirectly as a probe to study the underlying neuronal fiber tracts. 
The diffusion mobility of water, denoted by a diffusion coefficient in 
the brain varies spatially due to the orientation and organizational 
nature of neuronal fiber tracts and it changes with the health of the 
neuronal fiber tracts. Diffusion phenomenon is explained using Fick’s 
law and Brownian motion. Albert Einstein related Fick’s law and 
Brownian motion to explain diffusion. To remain with the scope of this 
article we briefly explain Fick’s law, Brownian motion and Einstein’s 
relation that unifies them. Imagine a small glass tank which contains 
a mixture of two different solutions in different concentrations, due 
to the difference in concentration in the solute particles in different 
regions there will be net flow of the solute particles from the region 
of higher concentration to the lower concentration (for e.g. like heat 
flowing from a higher to a lower temperature region). The net flow of 
the molecules depends on the concentration gradient and the intrinsic 
diffusion constant of the molecule. This is explained using Fick’s law 

1Diffusion happens through Brownian motion, even in the absence of any 
concentration gradients, though in the presence of a concentration gradient there 
may be net transport of a substance
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value of the physical quantity does not change with direction it is 
called “isotropic”. For instance, when the diffusion of water is entirely 
unconstrained (e.g. in a cup of water), the diffusion of water molecules 
is called ‘isotropic’, meaning that the path a given molecule follows 
through space is governed by Brownian motion, and it is equally likely 
to move in any direction. The diffusion imaging approach (before DTI) 
did not fully capture the anisotropic water diffusion. 

For example, Figure 1 (left) shows the isotropic and anisotropic 
diffusion process; in the case of isotropic diffusion, water molecule 
displacement is equal in all three directions (i.e. X, Y, and Z) taking 
a spherical shape as shown in Figure 1 left. On the other hand, when 
diffusion is anisotropic, water molecular displacement differs when 
measured in different directions taking an ellipsoidal shape (Figure 
1 right)1. DW imaging does not capture this ellipsoidal shape hence, 
insufficient for describing water diffusion in neuronal tracts which are 
highly convoluted and where water diffusion is anisotropic; however, 
this limitation has been overcome by DTI

Understanding DTI using the matrix notation of the diffusion 
constant

The following sections will provide the equivalent mathematical 
description of the difference between diffusion imaging and DTI. 
Matrix2, notations I and II below expresses D matrix for DTI (I) and 
diffusion imaging (II), indicating the primary difference between DTI 
and diffusion imaging. If a diffusion sensitizing gradient is applied to 
only 3 directions (i.e. X, Y and Z) as in the case of diffusion imaging, 
then diffusion coefficients can be estimated only along these 3 
directions which are Dxx, Dyy and Dzz. Due to the fact that the diffusion 
in the brain WM tracts is anisotropic, measuring diffusion along X, 
Y and Z directions (i.e. vector model) is not sufficient to describe the 
diffusion process in this tissue. In essence the diffusion imaging does 
not fully capture the anisotropic diffusion, (this is denoted by zero off 
diagonal elements in notation II) whereas DTI does. To capture the 
anisotropic diffusion in addition to the 3 main directions i.e. X, Y, 
Z, diffusion is measured along the off diagonal elements XY, XZ and 
YZ directions with the corresponding diffusion coefficients Dxy, Dxz, 
Dyz, as presented in notation I. Even though the diffusion matrix for 
anisotropic diffusion has 9 elements only 6 independent elementsthe 
Dyx or Dxy tensor element represents more of a correlation between 
diffusion in the X and Y directions in the chosen reference frame 
similarly for yz and zx directions, so Dyz=Dzy, Dzx=Dxz,, Dxy=Dyx, Dyz=Dzy, 
Dzx=Dxz hence we need to measure only along 6 independent directions 
Dxy, Dxz, Dyz, Dxy, Dxz and Dyz more information about the tensor and 

(Equation 1 below) which states that the net flow of molecules called 
the diffusive flux (J) (Latin word for flow) is equal to the concentration 
gradient (∇C where ∇ denotes gradient and C is the concentration of 
the particles) multiplied by the diffusion constant D of the molecule 
[4]. However, even under equilibrium conditions (i.e. without any 
concentration or temperature or pressure differences) there is still 
microscopic motion of molecules with no net flow of molecules this 
is called as Brownian motion (the basis for this comes from Robert 
Brown’s observation of pollen grains which when suspended in water 
under equilibrium conditions displaced). This microscopic motion of 
the molecules under equilibrium conditions is measured as the average 
displacement of the molecules in a given time (say a time interval over 
which we observe the molecules). Albert Einstein gave a probabilistic 
model to describe the displacement of an ensemble of molecules (group 
of molecules) by relating the Fick’s law and Brownian motion as given 
in equation 2 below. The 𝒙2 denotes mean square displacement (mean 
square is used because there is an equal probability that a molecule can 
move in +x or -x direction thereby giving a zero average value), D is the 
diffusion constant of the particle and t is the time interval over which 
the displacement was observed more details can be found in [13].

J=D∇C                   (1)

𝒙2=2Dt                     (2)

Tensor can be crudely defined as the characterization of the 
physical system properties. A tensor is a mathematical way to express 
a physical phenomenon. Briefly, for example a zeroth order tensor is 
one that is used mathematically to express a physical phenomenon/
quantity that has only magnitude (but no direction) for example 
temperature, pressure (commonly known as scalars), more details are 
given in section 2.4 below. In DTI, the diffusion process (of water) is 
described using a second order tensor model.

Image is a visual representation of any physical phenomenon. It 
is generally a spatial representation i.e. a map of a physical or a non-
physical quantity in either 2- or 3- dimensions. In DTI, imaging refers 
to the spatial distribution of the density of diffused water protons in the 
underlying tissue.

Why use DTI?

The DW data set can be obtained by applying DW gradients (i.e. 
in addition to the other gradients used in conventional MR imaging 
(for more details refer to Supplementary Material 1) in any number 
of directions to measure water diffusion in the underlying tissue. DW 
images obtained before the advent of DTI merely applied DW gradients 
along three orthogonal directions, generally denoted by X, Y and Z. 
This three-directional diffusion weighted imaging was called “diffusion 
imaging”, and will be referred to as diffusion imaging in the rest of this 
article. Using this three directional DW dataset diffusion coefficient is 
estimated which is less than the normal diffusion coefficient of water 
(1.0 × 10-3 mm2/s). This reduction in diffusion coefficient occurs due to 
inhomogeneous (i.e. varying with position) and anisotropic (i.e. varying 
with direction) nature of the WM fiber tracts. Thus, the coefficient of 
diffusion is termed as apparent diffusion coefficient (ADC).

Prior to DTI, diffusion imaging failed to fully account for the fact 
that diffusion in tissues such as WM of the brain carries different values 
in different directions (i.e. diffusion phenomenon is more than a vector 
quantity, more on this in upcoming sections). This property of the 
WM diffusion is referred to as anisotropy (i.e. varying with direction). 
The anisotropic diffusion in brain WM is due to its highly coherent 
organization as well as its tissue composition (i.e. axonal membrane, 
microtubules, microfilaments and myelin). On the other hand, if the 

1This ellipsoidal shape can be prolate (meaning that if the parallel eigenvalue 
is very much greater than the perpendicular eigen values λ1>> λ2≈ λ3) or oblate 
(where λ1 ≈ λ2>>λ3) to capture the range of shapes we see in diffusion tensors.
2A matrix is a mathematical notation used to arrange numbers or symbols in terms 
of the row and column elements.

Figure1: Pictorial diagram of isotropic and anisotropic diffusion.
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its symmetric property is given in section 2.4 below) are required to 
capture anisotropic diffusion i.e. Dxx, Dyy, Dzz, Dxy, Dxz, Dyz. 
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In essence, in the case of anisotropic diffusion, diffusion constants 
need to be measured in at least 6 different orientations: Dxx, Dyy, Dzz, Dxy, 
Dyz, Dzx (as Dxy=Dyx, Dyz=Dry, Dzx=Dxz). This is due to the fact that in tissues 
such as the brain WM, diffusion assumes the shape of an ellipsoid and a 
tensor can best describe the anisotropic diffusion, i.e. the ellipsoid.

Understanding the physical and mathematical description of 
the tensor

In the matrix notation used to denote D, i.e. Dxx, Dyy, Dxy (using 
subscripts to D), the notation D with two subscripts is a second 
order tensor notation. The geometrical description of the ellipsoid in 
the previous sections is in fact a physical description of the tensor. 
Mathematically, a tensor denoted by Tij, is called a second order 
tensor, where the subscript i represents a 3-dimensional coordinate 
system, such as X, Y and Z, while subscript j represents another set 
of 3-dimensional coordinates such as X1, Y1 and Z1. The diffusion 
tensor matrix is a covariate matrix (covariate means variation with 
respect to two variables) of the stochastic (a stochastic process is one 
whose statistical properties such as mean, variance etc. vary with time) 
paths of molecules. For these reasons a tensor has two subscripts and 
it is symmetric i.e. for example Dxy=Dyx). Because of this symmetric 
property, the tensor matrix is real valued (numerical values can be real 
or complex). The eigen values of this tensor matrix are then obtained 
by a mathematical procedure called matrix diagonalization (matrix 
diagonalization or eigenvalue estimation is a mathematical procedure 
where a transformation matrix is found in such a way that it will 
transform (rotate) the given input matrix to its principal orientation, 
after diagonalization except the diagonal elements all the off diagonal 
elements will become zero). The diagonal elements obtained after 
matrix diagonalization are invariant (do not vary with the direction of 
measurement) and are called as eigenvalues. Moreover, the eigenvalues 
are positive since the tensor is positive definite. As shown in Figure 2, in 
the case of diffusion tensor ellipsoid we need 3 parameters to describe 
its shape: denoted by L1, L2 and L3, as well as the three coordinates to 
describe its orientation in space (δ, θ and Φ).

Imaging

Now that we understand what a tensor is, we can acquire data so that 
we can estimate this tensor element in every voxel in the brain tissue. 
As mentioned earlier, the diffusion tensor matrix has only 6 elements 
(the matrix in total has 9 elements) that are independent i.e. Dxx, Dyy, 
Dzz, Dxy, Dyz and Dzx. In order to determine these 6 elements DW 
images have to be acquired in 6 non-collinear (points do not lie along 
the single straight line) directions. Therefore, the minimum number 
of directions in which we need to acquire data in order to reconstruct 
diffusion tensor in each voxel is 6 plus a non-diffusion weighted image 
which is commonly known as b=0 image (using b=0 image only we can 
estimate how much diffusion has occurred in the diffusion weighted 
image).

DTI Image Processing
In this section, we describe DTI image processing step-by-step and 

also describe briefly the reasons behind each step. The image processing 
steps are as follows: 1) Oblique angle correction, 2) Susceptibility 
artifact correction, 3) Eddy current distortion correction and motion 
correction, 4) Rotating the gradient table, 5) Fitting DTI data and 
estimating the DTI metrics such as fractional anisotropy (FA), mean 
diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), 6) 
Artifacts, noise in DTI and 7) Normalization to template images.

Oblique angle correction

For oblique angle correction, what matters is the oblique angle 
between the scanner and image coordinates. Scanner coordinates refer 
to the coordinates of the MRI scanner and image coordinates refers to 
the coordinates of the DTI images. Both scanner and image coordinates 
are based on the 3-way coordinate system, denoted by x, y, and z 
direction. Unlike other conventional MR images, DTI has vectorial 
information, and thus this vector information has to be preserved 
correctly during data preprocessing, so that the diffusion tensor matrix 
can be correctly estimated. The first essential step is to correct for the 
oblique angle between the scanner and image coordinates. The oblique 
angle information is stored in the MR image. Open ware MRI convert 
(http://lcni.uoregon.edu/~jolinda/MRIConvert/) extracts the oblique 
angle information from the MR image and performs the correction for 
it and outputs the corrected gradient vector file (in diffusion weighted 
imaging a gradient file is the one which contains information about 
the directions in which the diffusion weighting gradients were applied) 
which will be used in the subsequent processing steps (described below). 
Statistical parametric mapping (SPM) an open software (software has 
toolboxes (http://www.fil.ion.ucl.ac.uk/spm/toolbox/) to correct for 
oblique angle. Explore DTI (http://www.exploredti.com/) can also be 
used to correct for oblique angle.

Susceptibility artifact correction

DTI data is acquired using echo planar imaging sequence (EPI). EPI 
is a fast imaging sequence which suffers from susceptibility artifacts, 
due to the inhomogeneities in the magnetic field. Susceptibility artifacts 
occur due to differences in magnetic properties (i.e. susceptibility) of 
different tissues. The susceptibility effects are more pronounced at the 
air/tissue interfaces in the brain tissue. The phase of the MR signal is 
mainly determined by the local gradient field (phase and frequency 
encoding gradients, see Supplementary Material 1) and the magnetic 
field inhomogeneity (caused by the susceptibility differences between 
air/tissue interfaces). The phase information in turn determines the 
position of the voxel in an MR image [14]. The evolution in phase 
(phase change over time) between two adjacent sample points in 

Figure 2: The number of parameters required in order to describe the ellipsoid 
in space: 1 major axis, L1; two minor axes L2 and L3; and 3 coordinates: δ, θ 
and Φ.
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k-space (for details on what is k-space please refer to Supplementary 
Material 1) is sensitive to the magnetic field inhomogeneities [14]. In 
the EPI sequence the magnetic field inhomogeneities significantly affect 
the pixel position along the phase encoding direction when compared 
to the frequency encoding direction [14]. Therefore, magnetic 
field inhomogeneity due to the susceptibility differences (air/tissue 
interfaces) affects the phase of the MR signal causing mislocalization 
of voxels in the image. These, mislocalized voxels can be repositioned 
(restored to their original location) using the phase information (MR 
images are reconstructed using Fourier Transform which is a complex 
variable i.e. it has both magnitude and phase information). One of the 
commonly used approaches to correct for susceptibility artifacts is 
to use field maps. Field maps capture phase evolution over time; this 
is achieved by acquiring magnitude and phase images over two echo 
time points (for what is an echo time see Supplementary Material 1). 
Other approaches that are used to correct for susceptibility artifacts 
include non-linear registration of the diffusion weighted images to 
T1-weighted images. The amount of deformation (in voxel positions 
after non-linear registration) gives the amount of distortion due to 
susceptibility artifacts. Therefore, the deformation information is used 
to restore the voxels to their actual positions, more information on this 
can be found elsewhere [15]. Another approach to correct susceptibility 
artifact is to acquire two EPI images one traversing the k-space from 
top to bottom and another from bottom to top. These two images 
have distortions in opposite direction but with identical magnitudes 
(these are called as distorted images). A model of the image formation 
process of spin echo-EPI together with these distorted images is then 
used to correct for the susceptibility artifacts more details can be found 
in Andersson et al. [16]. Parallel imaging is now commonly employed 
in DW imaging. This technique not only reduces the susceptibility 
artifacts but also the scan time (depending on the parallel imaging 
factor). Briefly, in parallel imaging the field of view (FOV) (the area 
to be scanned) is divided among multiple arrays of receiver coils (each 
receiver coil has the sensitivity profile corresponding to some part of 
the divided FOV in k-space) and the signal from each receiver coil is 
then combined to produce a final image. For example, let us assume 
that we have two receiver coils, the FOV (k-space) is then divided into 
two halves say top and bottom, array coil one will capture the top of 
the FOV and the array coil 2 covers the bottom FOV. The signal from 
these two coils (top of FOV and bottom of FOV) are then combined 
to get the final image. Since each array coil covers a certain portion of 
the k-space the number of phase encoding steps is reduced eventually 
reducing the susceptibility artifact and the scan time (since the signal 
is captured simultaneously in the two array coils). Different parallel 

imaging techniques such as SMASH, SENSE, GRAPPA are available 
depending on whether the image reconstruction is done in the k-space 
or in image space, more details can be found in [17]. 

Briefly the toolboxes that are available to correct susceptibility 
artifact include FUGUE from FMRIB (Functional Magnetic Resonance 
Imaging of Brain) software library (FSL) (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FUGUE) using field maps, TOPUP toolbox in FSL (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP) performs correction for 
susceptibility artifact using Andersson et al. [16] approach i.e. using 
images with opposite the phase encoding blips. Similarly, SPM offers 
FieldMap toolbox to correct for susceptibility artifacts using field maps 
(http://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap/). Figure 3a and 3b 
shows typical example of a diffusion weighted image with susceptibility 
artifact and after its correction.

Eddy current distortion correction and motion correction

Eddy currents are currents (formed due to diffusion gradients) 
that flow in the direction opposite to the main current. Eddy current 
artifacts occur because of the on/off switching of the diffusion gradients 
while acquiring the DW images and cause shearing (i.e. skewing the 
geometry of an object) and scaling (i.e. changing the size of an object). 
Most DTI image processing softwares correct for the eddy currents 
along with motion correction (i.e. patient’s head motion in between 
the DW image acquisitions) by using a 12 parameter transformation 
(also known as affine transformation) to modify an object so that it 
matches the target object, non-diffusion weighted b=0 images are 
used as a target as they do not have the artifact. The rotational and 
translational parameters of the affine matrix account for the head 
motion correction and the remaining 6 parameters (i.e. 3 shear and 3 
skew values) account for the eddy current distortion correction. MR 
hardware based eddy current distortion correction methods are also 
available these include: a) self-shielded gradient coils with additional 
wiring reduce the gradients outside the gradient coils, b) eddy current 
arising from RF coils can be minimized by using coils with reduced 
conductive surfaces and c) the shape of the currents to the gradient 
hardware can also be adjusted to correct for eddy current distortion, 
for example in the commonly used trapezoidal shape the current can 
be increased on the upward and downward slopes of the pulse to the 
coil [18].

In FSL the diffusion toolbox (FDT) (http://fsl.fmrib.ox.ac.uk/fsl/
fsl-4.1.9/fdt/fdt_eddy.html) has both graphical user interface (GUI) 
and command line option to correct for eddy current distortion. In 
GUI ‘Eddy Current Correction’ in FDT toolbox can be used and in 
command line version option is “eddy_correct” command can be 
used. Other softwares that offer eddy current correction include SPM 
toolboxes, DTI Studio (https://www.mristudio.org/wiki/DtiStudioV2) 
and explore DTI.

Rotating the gradient table (B vector)

Once eddy current correction is performed, the gradient table 
needs to be re-oriented (to account for the eddy current and motion 
distortion correction steps), so the gradient table is multiplied with 
the affine 12 parameter matrix obtained in the above eddy current 
correction step. The gradient table after oblique angle correction 
should be used for this correction. This step ensures that the gradient 
table is in the same orientation as the DW images. In FSL software 
the command line program “rotate_bvecs” is used to rotate the 
gradient table after correcting for artifacts. Explore DTI software 
can also be used to perform this pre-processing step. SPM toolboxes 
can also be used.

Figure 3: a) Shows susceptibility artifact in DTI data collected from one of our 
amyotrophic lateral sclerosis (ALS) patients, b) arrows indicate mislocalized 
voxels that were restored using field map correction procedure.
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Fitting the data

Finally, the pre-processed DW images are fitted to the DTI model, 
which refers to the model used to characterize the diffusion of water 
molecules in tissues, followed by the estimation of the DTI metrics such 
as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity 
(AD) and radial diffusivity (RD) etc. The process of fitting the data is 
explained below.

There are only six unknowns (Dxx, Dyy, Dzz, Dxy, Dyz, Dzx) in the 
diffusion tensor matrix notation I thus if we have a 6-directional 
DW data set then the unknown diffusion constants can be obtained 
by solving the equation. On the other hand, if DW data is acquired in 
more than 6 directions3 then the number of equations is more than the 
number of unknowns and the problem is said to be overdetermined. 
For an overdetermined system, the solution can be obtained by fitting 
to the equation 2 below.

1000DD

o

S e
S

−=                                       (3)

In equation 2 SD is the diffusion weighted data (obtained with 
b=1000) and S0 is the b=0 image. More details on the equation 2 and its 
derivation for readers interested in mathematical details are provided 
in Supplementary Material 2. Additionally, a simple algebraic analogy 
is given in Supplementary Material 3 illustrating the difference between 
solving and fitting procedures.

After fitting the DWI images a diffusion tensor matrix is obtained 
in each voxel as given in notation II. This tensor matrix, as mentioned 
above, has 6-dimensional information, we normally reduce the 
6-dimensional tensor information to 3 dimensions by a mathematical 
process, called matrix diagonalization or rotation to principle direction 
(explained in section 2.4). This step will result in eigenvalues and 
eigenvectors for each and every voxel in the image. Eigenvalues are 
useful in characterizing the anisotropy in white matter tissue.

Figure 4 provides an analogy/depiction using a vector for the 
diagonalization procedure. From Figure 4, we can see that when vector 
R is not in its principal orientation (inclined at an angle θ with respect 
to X-axis) R is resolved into the components along X and Y as (X cos 
θ, Y sin θ). On the other hand, when vector R is rotated to either X 
or Y (i.e. its principal orientation for present purposes is rotated 
to the X axis, which can be similarly applied for the Y axis) then the 
components of the vector R (i.e. X cos θ) become X (as θ=0, cos0=1 
and the Y sin θ=0 as sin 0=0). Diagonalization of the diffusion tensor 
matrix to obtain eigenvalues and vectors is similar to this analogy, and 
the diffusion tensor matrix after diagonalization gives eigenvalues as 
shown in matrix notation IV.
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where λ1, λ2, and λ3 are the eigenvalues. Softwares FSL, SPM, DTI 
studio, Explore DTI and Track v is (http://trackvis.org/) can be used 
for tensor fit.

DTI metrics (derived from the eigenvalues) and their 
interpretation in pathological tissue

MD, FA, AD and RD (commonly used DTI metrics) and other DTI 
metrics such as Trace (D)[19], relative anisotropy (RA) and measures 
that describe the geometry (shape of the diffusion tensor) proposed by 
Westin such as linear, planar and spherical indices [20,21] can also be 
calculated from the eigenvalues. The formula for MD, FA, AD, RD, 
Trace (D), RA, Westin’s indices CL, CP and CS using eigenvalues is 
given in equations 3-11. 

( )1 2 3MD
3

λ λ λ+ +
=                       (4)

( ) ( ) ( )2 2 2
1 2 3

2 2 2
1 2 3

MD MD MD3FA
2

λ λ λ
λ λ λ

− + − + −
=

+ +
                         (5)

1AD λ=                                                                                                 (6)

( )2 3RD
2

λ λ+
=                    (7)

1 2 3( ) λ λ λ= + +Trace D                                     (8)

2 2 2
1 2 3( ) ( MD) ( MD)λ λ λ− + − + −

=
MD

RA
MD

                       (9)

1 2( )
( )

λ λ−
=CL

Trace D                     (10)

2 32( )
( )

λ λ−
=CP

Trace D
                   (11)

33
( )

λ
=CS

Trace D
                    (12)

The eigenvectors are obtained from eigenvalues and they provide 
information about the orientation of the tensor as shown in Figure 5a, 
where the lines indicate the orientation of the ellipsoid in each voxel. 
Combining FA values in each voxel with this orientation information 
from the eigenvector virtual neuronal tracts are reconstructed (Figure 
5b), which is termed fiber tractography. 

These DTI measures have been interpreted as reflecting different 
types of pathophysiology related to neuronal degeneration. MD is 
the average of eigenvalues and provides information regarding the 

3Commonly, DW data are acquired in at least 25 or more directions to improve 
signal to noise ratio and for the robust estimation of eigenvalues; in other words, 
there are more than 6 directions

Figure 4: Illustration for diagonalization of a tensor matrix using an analogy.



Citation: Rajagopalan V, Jiang Z, Stojanovic-Radic J, Yue GH, Pioro EP, et al. (2017) EA Basic Introduction to Diffusion Tensor Imaging Mathematics 
and Image Processing Steps. Brain Disord Ther 6: 229. doi: 10.4172/2168-975X.1000229

Page 6 of 7

Volume 6 • Issue 2 • 1000229
Brain Disord Ther, an open access journal
ISSN: 2168-975X

amount of obstruction to water molecule diffusion. In general, increase 
in MD values reflects loss of the integrity of axonal fiber tracts and 
myelin damage. The FA value is the variance of eigenvalues in a given 
voxel and a decrease in FA reflects axonal and myelin degeneration. 
FA values range from 0 to 1 with zero corresponding to isotropic 
diffusion suggesting loss of neuronal fiber tracts and 1 to anisotropic 
diffusion suggesting coherent and intact fiber tracts. Madler [22] et al. 
evaluated whether the anisotropy is due to myelin or axonal integrity 
by comparing DTI metrics FA and MD with myelin water fraction 
(MWF) (a measure based on the myelin water content obtained using 
a quantitative technique called as T2 relaxometry). They observed that 
FA and AD correlated significantly with MWF, however in regions of 
highly organized fiber tracts such as corpus callosum (CC) the diffusion 
anisotropy measures did not correspond to high MWF suggesting that 
anisotropy is due to both the myelin and axonal integrity. Beaulieu [23] 
showed that changes in FA values can result from either differences 
in axial diffusivity, radial diffusivity or both. There is accumulating 
evidence that the integrity/degeneration of axons is reflected by AD [2] 
and of myelin by RD [1,24]. 

Hofling et al. [25] found an increase in RD and a decrease in AD in 
Globoid cell leukodystrophy patients in whom both axonal and myelin 
damage were observed. They also found that DTI metric changes 
correlated significantly with histopathological results of myelin and 
axonal damage. Aging studies [26] found changes in FA in CC, internal 
capsules, frontal, parietal and occipital white matter tissues which 
appeared normal in other conventional images such as T1-Weighted 
images. Hugenschmidt et al. [27] found widespread reduction in FA 
values in aging population in white matter tissue when compared to 
white matter volume changes suggesting that DTI measures are more 
sensitive to WM damage.

Changes in MD and FA values have been reported in neurological 
conditions such as stroke (during transition from acute to subacute to 
chronic stroke, MD decreases and FA increases in acute phase, then 
renormalizes and then increase in MD with a decrease in FA was found 

during the chronic stroke) [28], increase in MD with a decrease in 
FA has been observed in the sclerotic hippocampi of chronic epilepsy 
patients [29]. In the case of brain tumor patients an increase in MD 
values with a decrease in FA was observed in cystic or necrotic areas 
[30]. These changes are interpreted as being reflective of organizational 
changes (loss of structural organization and expansion of extra-cellular 
space) when cytoarchitecture is disrupted. We found that AD and RD 
values were significantly elevated in Amyotrophic Lateral sclerosis 
patients indicative of myelin and axonal damage [31,32].

Artifacts, noise in Diffusion MRI
Partial volume effects occur due to the heterogeneous nature of 

different tissue types in the brain (compartments of white matter-white 
matter, white matter-grey matter etc.). Partial volume effects causes 
higher uncertainty (since there is always noise along with the signal we 
measure in the diffusion data, the diffusion tensor estimation always 
has some uncertainty associated with its estimation) in the estimates 
of anisotropic measures FA and trace [33]. Similarly, background 
noise can also cause DW image intensity to reach baseline noise floor 
leading to biased estimates of eigenvalues. The presence of noise can 
cause isotropic media to appear as anisotropic and anisotropic media 
to appear more anisotropic. Pierpaoli and Basser [34] proposed using 
intervoxel coherence of eigenvectors in the neighboring voxels to 
improve the estimate of eigenvalues [35]. 

In addition, the noise in diffusion weighted images affect fiber 
tracking. The noise characteristics (i.e. improving the effective or 
measured signal to noise ratio (SNR))  can be changed by using a  filter.  
This is known as regularization. One of the post-processing methods 
used to filter noise is spatial smoothing. There are three ways to perform 
the smoothing a) smoothing the diffusion weighted images before 
fitting the tensor; b) smoothing the eigenvectors and eigenvalues or 
c) smoothing the tensor itself [36]. The information conveyed by the 
tensors is lost if we use approach a) i.e. smoothing the DWI dataset or 
approach b) i.e. smoothing the eigenvalues and eigenvectors. However, 
tensor regularization methods preserve the information in tensor and 
are preferred, several tensor regularization methods are available for 
more details refer to [36,37].

N/2 ghosting (also called a Nyquist ghosting) is another type of 
artifact commonly seen in DWI dataset. N/2 ghosting [18] occurs 
because the k-space is sampled in a zig-zag manner with odd lines of 
k-space displaced from the even k-space lines. Figure 6 shows a typical 
example of an N/2 ghosting artifact. It can be seen from the Figure 6 
that N/2 ghosting occurs in phase encode direction (vertical direction). 
N/2 ghosting can be mitigated by reducing the number of phase 
encoding steps; parallel imaging can be used. Another approach is to 
use navigator echoes (navigator echoes capture the zig-zag information 
which allows correction using post-processing methods [18]. 

Normalization to template/Atlas images
Exploratory analysis techniques such as voxel based morphometry 

(VBM), tensor based spatial statistics (TBSS) require registration of 
subject’s DW (or the maps of FA, MD etc.) images to atlas (or template) 
space. This is done in order to ensure that homologous regions are being 
compared across the groups (for example between control and patient 
groups). Since DTI data has both tensor and scalar (derived from the 
tensor) information ,normalization can be performed using either 
maps of scalar measures such as FA (for example in TBSS approach) 
or using the tensor information itself [38,39]. It is demonstrated 
that using tensor information for image registration provides better 
normalization of tract morphology and orientation when compared to 
using scalar measures such as FA or trace [40,41]. 

Figure 5: a) Short white lines indicate the eigenvectors in each voxel in a 
brain coronal slice. b) An example of the typical fiber tractography showing 
reconstructed virtual neuronal tracts (blue color) based on FA values and 
eigenvectors.

 

Figure 6: A typical example of an N/2 ghosting artifact commonly seen in DTI 
data (in one of our amyotrophic lateral sclerosis (ALS) patient data).
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Conclusion
In this overview, we tried to provide a simple explanation of 

the terms frequently used in DTI studies, as well as the geometrical 
meaning of the underlying DTI mathematics. We also tried to explain 
the details related to the DTI image processing steps. In order to 
stay within the scope of the article, some important details, such as 
different tractography approaches for reconstructing virtual neuronal 
fiber tracts, were not covered. The diffusion process can not only be 
described using a tensor model but it can also be model-free as is the 
case with diffusion spectrum imaging, not described here. Future 
reviews will address these components of diffusion weighted imaging.
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